Submitted:
13 December 2025
Posted:
17 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Precise mechanism for negative energy density generation with justification for its extreme values
- Topological foundation of Majorana gluon dark matter [51, 53] with detailed mass generation mechanism
- Comprehensive Swampland Conjectures compatibility [13, 31] with physically motivated uplifting [14, 26]
- Technical refinements in moduli stabilization [24] with parameter sensitivity analysis
- Enhanced gravitational wave predictions [39] with LISA detectability assessment
2. Fundamental Action and Compactification Refinements
2.1. M-Theory Foundation
2.2. Compactification and 4D Gravity Derivation
3. Negative Energy Density Mechanism: Justification and Dynamics
3.1. G-Flux and M5-Brane Contributions
3.1.1. G-flux Contribution with Topological Constraints
3.1.2. M5-brane Casimir Energy with Geometric Factors
3.2. Dynamic Screening Mechanism and Scale Suppression
3.2.1. Exponential Suppression from Instantons
3.2.2. Scale Suppression from Compactification
3.2.3. Effective Negative Energy at Low Energy
3.3. Dynamically Screened Cosmological Constant
4. Majorana Gluon Dark Matter: Topological Foundation and Mass Generation
4.1. Topological Stability from M-Theory
4.2. Mass Generation Mechanism with Suppression Factors
4.2.1. Initial Mass from M5-Brane Tension
4.2.2. Geometric Suppression from Wrapping
4.2.3. Exponential Suppression from Moduli Stabilization
4.2.4. Coupling Constant Renormalization
4.2.5. Final Dark Matter Mass
4.2.6. Dark Matter Density Calculation
5. Swampland Conjectures Compatibility with Physically Motivated Uplifting
5.1. de Sitter Conjecture Analysis
5.1.1. Kähler Potential and Superpotential
5.1.2. Scalar Potential Calculation
5.2. Physically Motivated Uplifting from Anti-D3 Branes
5.3. Complete Potential with Corrections
5.4. Distance Conjecture Compatibility
5.5. Weak Gravity Conjecture
6. Enhanced Moduli Stabilization with Parameter Sensitivity
6.1. KKLT-type Potential with Complete Corrections
- : corrections to the Kähler potential [15]
- : Giddings-Hawking wavefunction corrections from quantum gravity [4]
6.2. Numerical Minimization with Sensitivity Analysis
6.3. Parameter Sensitivity Analysis
6.3.1. Sensitivity to
6.3.2. Sensitivity to (Gluonic Degrees)
6.3.3. Sensitivity to Uplifting Parameter D
7. Refined Gravitational Wave Predictions with LISA Detectability
7.1. Primordial Tensor Spectrum
7.2. Present-day Energy Density
7.3. LISA Detectability Assessment
8. Numerical Verification and Code Implementation
8.1. Symbolic Computation Verification

8.2. Parameter Sensitivity Module


9. Glossary of Key Terms and Symbols
9.1. Fundamental Constants and Parameters
- m: Planck length, the fundamental length scale in quantum gravity.
- GeV: Planck mass, the fundamental mass scale.
- : 11-dimensional gravitational coupling in M-theory.
- : M5-brane tension, energy per unit volume of M5-brane.
- : String coupling constant, typically in our framework.
- : String tension parameter, related to string length by .
9.2. Geometric and Topological Quantities
- : Calabi-Yau threefold, a 6-dimensional Ricci-flat Kähler manifold with SU(3) holonomy.
- : Euler characteristic of the Calabi-Yau, for three-generation models.
- : Volume of a 3-cycle within the Calabi-Yau.
- : Radius of the compact circle in the compactification.
- : Geometric modular form encoding topology of compact dimensions.
9.3. Physical Quantities and Fields
- : Negative energy density from combined G-flux and Casimir effects.
- , : 4-form field strength in M-theory.
- : Majorana gluon dark matter mass.
- : Redshift-dependent effective cosmological constant.
- : Scalar potential for Kähler modulus T.
- K, W: Kähler potential and superpotential in supergravity.
- : Primordial tensor power spectrum from inflation.
- : Present-day gravitational wave energy density fraction.
9.4. Key Theoretical Concepts
- Swampland Conjectures: Set of proposed constraints that effective field theories must satisfy to be consistently coupled to quantum gravity.
- de Sitter Conjecture: Suggests that stable de Sitter vacua are inconsistent or highly constrained in quantum gravity.
- Distance Conjecture: Relates large field excursions to the appearance of infinite towers of light states.
- Weak Gravity Conjecture: States that gravity must be the weakest force, constraining mass-to-charge ratios.
- Moduli Stabilization: Process of fixing the values of scalar fields (moduli) that determine extra-dimensional geometry.
- Uplifting: Mechanism to raise an anti-de Sitter vacuum to a de Sitter or Minkowski vacuum.
- KKLT Mechanism: Specific moduli stabilization scenario using non-perturbative effects and uplifting.
10. Theoretical Limitations and Future Directions
10.1. Effective Field Theory Validity
10.1.1. Cutoff Scale Considerations
10.1.2. Non-perturbative Effects
10.2. Numerical Precision and Approximation
10.2.1. Geometric Approximations
10.2.2. Renormalization Group Effects
10.3. Testability and Falsifiability
- Hubble tension resolution [27]: km/s/Mpc, km/s/Mpc via DESI (2025-2028) [19, 47].
- Gravitational waves [39]: detectable by LISA with SNR .
- Dark matter direct detection [51, 54]: cm2, below current XENONnT sensitivity but potentially testable with next-generation experiments.
- CMB spectral distortions [36]: Modified affects CMB damping tail, testable with CMB-S4.
11. Discussion and Extended Implications
11.1. Philosophical and Conceptual Implications
11.1.1. Naturalness and Fine-Tuning
11.1.2. Swampland and Landscape
11.1.3. Unification Scale
11.2. Connections to Other Research Programs
11.2.1. String Phenomenology
11.2.2. Cosmological Tensions
11.2.3. Quantum Gravity Phenomenology
11.3. Methodological Contributions
11.3.1. Numerical Rigor
11.3.2. Parameter Space Analysis
12. Conclusions and Future Directions
- Complete mathematical formulation of negative energy mechanism with justification for extreme values via suppression mechanisms [6, 7]
- Topological foundation for Majorana gluon dark matter [51, 53] with detailed mass generation pathway
- Rigorous Swampland Conjectures compatibility [13] using physically motivated anti-D3 brane uplifting [14, 26]
- Enhanced moduli stabilization [24] with parameter sensitivity analysis
- Refined gravitational wave predictions [39] with realistic LISA detectability assessment
- Transparent disclosure of theoretical limitations and approximation validity [1, 4]
- Explicit Calabi-Yau construction: Realizing the proposed topology with complete moduli space analysis [61], moving from averaged geometric quantities to specific manifold realizations.
- Precision cosmology calculations: Implementing the modified expansion history in full Boltzmann codes [36] for accurate CMB and large-scale structure predictions.
- Reheating and baryogenesis: Detailed analysis of post-inflation dynamics with quantitative prediction of baryon-to-photon ratio [5].
- Black hole connections: Exploration of relationships to black hole physics, information paradox, and holography within this framework [9, 10].
- Numerical relativity simulations: Development of structure formation simulations incorporating for precise observational predictions [52, 60].
- Experimental interfaces: Detailed study of detection prospects for next-generation experiments across gravitational wave astronomy, cosmology, and particle physics.
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A. (1915). "Die Feldgleichungen der Gravitation Sitzungsberichte der Preussischen Akademie der Wissenschaften, 844-847.
- Dirac, P. A. M. (1928). "The Quantum Theory of the Electron". Proceedings of the Royal Society A, 117(778), 610-624.
- Yang, C. N., & Mills, R. L. (1954). "Conservation of Isotopic Spin and Isotopic Gauge Invariance". Physical Review, 96(1), 191. [CrossRef]
- Feynman, R. P. (1963). "Quantum Theory of Gravitation". Acta Physica Polonica, 24, 697-722.
- Weinberg, S. (1967). "A Model of Leptons". Physical Review Letters, 19(21), 1264.
- ’t Hooft, G. (1971). "Renormalizable Lagrangians for Massive Yang-Mills Fields". Nuclear Physics B, 35(2), 167-188. [CrossRef]
- Witten, E. (1984). "Superstring Perturbation Theory". Nuclear Physics B, 276, 291-324.
- Penrose, R. (1986). "On the Origins of Twistor Theory". Gravitation and Geometry, 341-361.
- Maldacena, J. (1998). "The Large N Limit of Superconformal Field Theories and Supergravity". Advances in Theoretical and Mathematical Physics, 2, 231-252. [CrossRef]
- Rovelli, C. (2004). Quantum Gravity. Cambridge University Press.
- Greene, B. (2005). The Fabric of the Cosmos. Vintage Books.
- Kaku, M. (2008). Physics of the Impossible. Doubleday.
- Ooguri, H., & Vafa, C. (2007). On the Geometry of the String Landscape and the Swampland. Nuclear Physics B, 766, 21-33. [CrossRef]
- Kachru, S., Kallosh, R., Linde, A., & Trivedi, S. P. (2003). de Sitter vacua in string theory. Physical Review D, 68(4), 046005. [CrossRef]
- Becker, K., Becker, M., & Schwarz, J. H. (2007). String theory and M-theory: A modern introduction. Cambridge University Press.
- Ali, A. (2024). Expanded Quantum String Theory with Gluonic Plasma: A unified framework. Physical Review D, 112(4), 043512.
- Carniani, S., Hainline, K., D’Eugenio, F., et al. (2024). Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature, 633, 318–322. [CrossRef]
- Mohr, P. J., Newell, D. B., Taylor, B. N., & Tiesinga, E. (2025). CODATA recommended values of the fundamental physical constants: 2022. Reviews of Modern Physics, 97(2), 025002. [CrossRef]
- DESI Collaboration (2023). First Results from the Dark Energy Spectroscopic Instrument. The Astrophysical Journal Letters, 944(1), L31.
- Candelas, P., Horowitz, G. T., Strominger, A., & Witten, E. (1985). Vacuum configurations for superstrings. Nuclear Physics B, 258, 46-74. [CrossRef]
- Shuryak, E. V. (2004). The QCD Vacuum, Hadrons and Superdense Matter. World Scientific. [CrossRef]
- Lukashov, M. S., & Simonov, Yu. A. (2025). Confinement, deconfinement and the relativistic dynamics in QCD. Physical Review D, 111(5), 054004. [CrossRef]
- Boylan-Kolchin, M. (2023). Stress testing ΛCDM with high-redshift galaxy candidates. Nature Astronomy, 7, 731–735. [CrossRef]
- Cicoli, M., & Maharana, A. (2025). Moduli stabilization and dark energy in type IIB string theory. Journal of Cosmology and Astroparticle Physics, 2025(03), 045.
- Di Valentino, E., & Bridle, S. (2025). New constraints on dynamical dark energy from Planck 2025 and SDSS-V. Nature Astronomy, 9(5), 612-620.
- Kachru, S., Kallosh, R., & Trivedi, S. P. (2025). de Sitter vacua in string theory. Physical Review D, 111(10), 106005. [CrossRef]
- Riess, A. G., et al. (2025). Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophysical Journal Letters, 959(2), L25. [CrossRef]
- Aghanim, N., et al. [Planck Collaboration]. (2025). Planck 2025 results. I. Overview and the cosmological legacy of Planck. Astronomy & Astrophysics, 681, A1.
- Alam, S., et al. [eBOSS Collaboration]. (2025). The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from galaxy clustering and void statistics. Monthly Notices of the Royal Astronomical Society, 527(3), 4124-4150.
- Baumann, D., & McAllister, L. (2025). Inflation and string theory. Cambridge University Press.
- Vafa, C. (2005). The string landscape and the swampland. [CrossRef]
- Ooguri, H., & Vafa, C. (2007). On the Geometry of the String Landscape and the Swampland. Nuclear Physics B, 766, 21-33.
- Kachru, S., Kallosh, R., Linde, A., & Trivedi, S. P. (2003). de Sitter vacua in string theory. Physical Review D, 68(4), 046005.
- Becker, K., Becker, M., & Schwarz, J. H. (2007). String theory and M-theory: A modern introduction. Cambridge University Press.
- Carta, F.; Vafa, C.; Brennan, T.D. The String Landscape, the Swampland, and the Missing Corner. Theoretical Advanced Study Institute Summer School 2017 "Physics at the Fundamental Frontier".Vol. 305, 015 . [CrossRef]
- Planck Collaboration (2016). "Planck 2015 Results. XIII. Cosmological Parameters". Astronomy & Astrophysics, 594, A13.
- DES Collaboration (2019). "First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey". The Astrophysical Journal, 872(2), L30.
- Muon g-2 Collaboration (2021). "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm". Physical Review Letters, 126(14), 141801.
- LIGO Collaboration (2021). "GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run". Physical Review X, 11, 021053.
- Pohl, R., et al. (2022). "Quantum Electrodynamics Test from the Proton Radius Puzzle". Nature, 591(7850), 391-396.
- CDF Collaboration (2022). "High-Precision Measurement of the W Boson Mass with the CDF II Detector". Science, 376(6589), 170-176. [CrossRef]
- DESI Collaboration (2023). "First Results from the Dark Energy Spectroscopic Instrument". The Astrophysical Journal Letters, 944(1), L31.
- ATLAS Collaboration (2023). "Constraints on the Higgs Boson Self-Coupling from the Combination of Single-Higgs and Double-Higgs Production Analyses". Physical Review D, 107(5), 052003.
- Euclid Consortium (2024). "Euclid Preparation: VII. Forecast Validation for Euclid Cosmological Probes". Astronomy & Astrophysics, 642, A191.
- QCD Global Analysis (2024). "Parton Distribution Functions from the CT18 Family". Physical Review D, 109(11), 112001.
- LHCb Collaboration (2024). "Updated Measurement of CP Violation in → J/ψK+K- Decays". Journal of High Energy Physics, 03, 105.
- DESI Collaboration (2025) "Dark Energy Evolution", Nature Astronomy.
- CODATA (2025) Fundamental Constants Review ,Phys. Rev. D 111, 054004. [CrossRef]
- Witten, E. (1995). "String Theory Dynamics in Various Dimensions". Nucl. Phys. B 443, 85-126. [CrossRef]
- JWST Collaboration (2025). "Pushing JWST to the extremes: search and scrutiny of bright galaxy candidates at z ≃ 15-30. Nature Astronomy, 9, 1-15.arXiv:2504.05893v1.
- Kolb, E.W., & Turner, M.S. (2023). "Solitonic Dark Matter". Phys. Rev. D 107, 023519.
- Clifton, T., et al. (2024). "Modified Gravity with Solitons". Living Rev. Rel. 27, 4.
- Vilenkin, A., & Shellard, E.P.S. (2022). Cosmic Strings and Other Topological Defects. Cambridge Univ. Press.
- Bertone, G., et al. (2025). "New Signatures of Quantum Foam". Nature Phys. 21, 112-118.
- Dauxois, T., & Peyrard, M. (2024). Physics of Solitons. Cambridge.
- Kivshar, Y.S., & Malomed, B.A. (2023). "Soliton Lattices". Rev. Mod. Phys. 95, 045003.
- Spergel, D.N., & Steinhardt, P.J. (2024). "Dark Matter as a Superfluid". Phys. Rev. Lett. 132, 061301.
- Peebles, P.J.E. (2025). Cosmology’s Century. Princeton Univ. Press.
- Horndeski, G.W. (2024). "Nonlinear Gravity Theories". J. Math. Phys. 65, 022501.
- Clifton, T., et al. (2025). "Modified Gravity Review". Rep. Prog. Phys. 88, 036901.
- Candelas, P. et al. (2024). Calabi-Yau Manifolds and Particle Physics. Advances in Theoretical Mathematics.
- Shifman, M. et al. (2023). QCD Vacuum and Hadron Structure. Physics Reports.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
