Submitted:
27 November 2025
Posted:
28 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Precise mechanism for negative energy density generation
- Topological foundation of Majorana gluon dark matter
- Comprehensive Swampland Conjectures compatibility
- Technical refinements in moduli stabilization
- Enhanced gravitational wave predictions
2. Fundamental Action and Compactification Refinements
2.1. M-Theory Foundation
2.2. Compactification and 4D Gravity Derivation
3. Negative Energy Density Mechanism
3.1. G-Flux and M5-Brane Contributions
3.1.1. G-Flux Contribution
3.1.2. M5-Brane Casimir Energy
3.2. Dynamic Screening Mechanism
4. Majorana Gluon Dark Matter: Topological Foundation
4.1. Topological Stability from M-Theory
4.2. Mass Generation Mechanism
5. Swampland Conjectures Compatibility
5.1. de Sitter Conjecture Analysis
5.1.1. Kähler Potential and Superpotential
5.1.2. Scalar Potential Calculation
5.1.3. Uplifting Potential Solution
5.2. Distance Conjecture Compatibility
5.3. Weak Gravity Conjecture
6. Enhanced Moduli Stabilization
6.1. KKLT-Type Potential with Corrections
- : corrections to Kähler potential
- : Giddings-Hawking wavefunction corrections
6.2. Numerical Minimization
7. Refined Gravitational Wave Predictions
7.1. Primordial Tensor Spectrum
7.2. Present-Day Energy Density
8. Numerical Verification and Code Implementation
8.1. Symbolic Computation Verification
9. Conclusion and Future Directions
- Complete mathematical formulation of negative energy mechanism
- Topological foundation for Majorana gluon dark matter
- Rigorous Swampland Conjectures compatibility
- Enhanced moduli stabilization with uplifting potentials
- Refined gravitational wave predictions testable by LISA
- Explicit Calabi-Yau construction realizing the proposed topology
- Precision calculation of CMB observables with modified expansion history
- Detailed analysis of reheating and baryogenesis mechanisms
- Exploration of connections to black hole physics and information paradox
References
- Ooguri, H.,; Vafa, C. On the Geometry of the String Landscape and the Swampland. Nuclear Physics B 2007, 766, 21–33. [Google Scholar] [CrossRef]
- Kachru, S., Kallosh, R., Linde, A.,; Trivedi, S. P. de Sitter vacua in string theory. Physical Review D 2003, 68(4), 046005. [Google Scholar] [CrossRef]
- Becker, K. , Becker, M., & Schwarz, J. H. (2007). String theory and M-theory: A modern introduction. Cambridge University Press.
- Ali, A. Expanded Quantum String Theory with Gluonic Plasma: A unified framework. Physical Review D 2024, 112, 043512. [Google Scholar]
- Einstein, A. (1915). "Die Feldgleichungen der Gravitation Sitzungsberichte der Preussischen Akademie der Wissenschaften, 844-847.
- Dirac, P.A.M. The Quantum Theory of the Electron. Proceedings of the Royal Society A 1928, 117, 610–624. [Google Scholar]
- Yang, C. N.,; Mills, R. L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review 1954, 96, 191. [Google Scholar] [CrossRef]
- Feynman, R.P. Quantum Theory of Gravitation. Acta Physica Polonica 1963, 24, 697–722. [Google Scholar]
- Weinberg, S. A Model of Leptons. Physical Review Letters 1967, 19, 1264. [Google Scholar] [CrossRef]
- ’t Hooft, G. Renormalizable Lagrangians for Massive Yang-Mills Fields. Nuclear Physics B 1971, 35, 167–188. [Google Scholar] [CrossRef]
- Witten, E. Superstring Perturbation Theory. Nuclear Physics B 1984, 276, 291–324. [Google Scholar] [CrossRef]
- Penrose, R. On the Origins of Twistor Theory. Gravitation and Geometry 1986, 341–361. [Google Scholar]
- Maldacena, J. The Large N Limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical Physics 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Rovelli, C. (2004). Quantum Gravity. Cambridge University Press.
- Greene, B. (2005) The Fabric of the Cosmos. Vintage Books.
- Kaku, M. (2008). Physics of the Impossible. Doubleday.
- Planck Collaboration. Planck 2015 Results. XIII. Cosmological Parameters. Astronomy & Astrophysics 2016, 594, A13. [Google Scholar]
- DES Collaboration. First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey. The Astrophysical Journal 2019, 872, L30. [Google Scholar] [CrossRef]
- Muon g-2 Collaboration. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Physical Review Letters 2021, 126, 141801. [Google Scholar] [CrossRef]
- LIGO Collaboration. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Physical Review X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Pohl, R., et al. Quantum Electrodynamics Test from the Proton Radius Puzzle. Nature 2022, 591, 391–396. [Google Scholar]
- CDF Collaboration. High-Precision Measurement of the W Boson Mass with the CDF II Detector. Science 2022, 376, 170–176. [Google Scholar] [CrossRef]
- DESI Collaboration. First Results from the Dark Energy Spectroscopic Instrument. The Astrophysical Journal Letters 2023, 944, L31. [Google Scholar]
- ATLAS Collaboration. Constraints on the Higgs Boson Self-Coupling from the Combination of Single-Higgs and Double-Higgs Production Analyses. Physical Review D 2023, 107, 052003. [Google Scholar]
- Euclid Consortium. Euclid Preparation: VII. Forecast Validation for Euclid Cosmological Probes. Astronomy & Astrophysics 2024, 642, A191. [Google Scholar]
- QCD Global Analysis. Parton Distribution Functions from the CT18 Family. Physical Review D 2024, 109, 112001. [Google Scholar]
- LHCb Collaboration. Updated Measurement of CP Violation in Bs0→J/ψK+K- Decays. Journal of High Energy Physics 2024, 03, 105. [Google Scholar]
- JWST Collaboration. First Light Results from the James Webb Space Telescope: High-Redshift Galaxy Candidates at z≈14". Nature Astronomy 2025, 9, 1–15. [Google Scholar]
- CODATA. Recommended Values of the Fundamental Physical Constants. Journal of Physical and Chemical Reference Data 2025, 54, 2021001. [Google Scholar] [CrossRef]
- DESI Collaboration (2025) "Dark Energy Evolution", Nature Astronomy.
- CODATA (2025) Fundamental Constants Review,10.1103/RevModPhys.97. 0250.
- Witten, E. String Theory Dynamics in Various Dimensions. Nucl. Phys. B 1995, 443, 85–126. [Google Scholar] [CrossRef]
- Witten, E. Witten, E. (1995) "String Theory Dynamics". [CrossRef]
- Kolb, E.W.,; Turner, M.S. Solitonic Dark Matter. Phys. Rev. D 2023, 107, 023519. [Google Scholar]
- lifton, T., et al. Modified Gravity with Solitons. Living Rev. Rel. 2024, 27, 4. [Google Scholar]
- Vilenkin, A., & Shellard, E.P.S. (2022). Cosmic Strings and Other Topological Defects. Cambridge Univ. Press.
- Bertone, G., et al. New Signatures of Quantum Foam. Nature Phys. 2025, 21, 112–118. [Google Scholar]
- Dauxois, T., & Peyrard, M. (2024). Physics of Solitons. Cambridge.
- Kivshar, Y.S.,; Malomed, B.A. Soliton Lattices. Rev. Mod. Phys. 2023, 95, 045003. [Google Scholar]
- Spergel, D.N.,; Steinhardt, P.J. Dark Matter as a Superfluid. Phys. Rev. Lett. 2024, 132, 061301. [Google Scholar]
- Peebles, P.J.E. (2025). Cosmology’s Century. Princeton Univ. Press.
- Horndeski, G.W. Nonlinear Gravity Theories. J. Math. Phys. 2024, 65, 022501. [Google Scholar]
- Clifton, T., et al. Modified Gravity Review. Rep. Prog. Phys. 2025, 88, 036901. [Google Scholar]
- cy, Candelas; et al. Calabi-Yau Manifolds and Particle Physics. Advances in Theoretical Mathematics 2024. [Google Scholar]
- qcd, Shifman; et al. QCD Vacuum and Hadron Structure. Physics Reports 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
