Submitted:
19 November 2025
Posted:
20 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
- a)
- Early MLPA studies focused on digital footprints like social media activity.
- b)
- Optimizing predictive validity used large samples to improve model accuracy.
- c)
- Comparison to traditional assessments examined whether machine learning models could outperform self-reports and peer reports. This involved three key stages: data collection, data extraction, and personality prediction [6].
3. Proposed Methodology
4. Result
5. Conclusions
References
- Kale, P. S. R.; Pawar, S. R.; Behare, T. M.; Hingwe, S. H.; Khuje, S. A. Issue 2. JETIR. 2024. Available online: http://www.jetir.org.
- Tadesse, M. M.; Lin, H.; Xu, B.; Yang, L. Personality predictions based on user behavior on the Facebook social media platform. IEEE Access 2018, 6, 61959–61969. [Google Scholar] [CrossRef]
- Kosan, M. A.; Karacan, H.; Urgen, B. A. Predicting personality traits with semantic structures and LSTM-based neural networks. Alexandria Engineering Journal 2022, 61(10), 8007–8025. [Google Scholar] [CrossRef]
- Murphy, M. Artificial intelligence and personality: Large language models’ ability to predict personality type; Emerging Media, 2024. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Ashraf, S.; Sabahat, N. Predicting MBTI personality type with K-means clustering and gradient boosting. 2020 23rd IEEE International Multi-Topic Conference (INMIC); 2020. [Google Scholar] [CrossRef]
- Stachl, C.; et al. Personality research and assessment in the era of machine learning. European Journal of Personality 2020, 34(5), 613–631. [Google Scholar] [CrossRef]
- Bleidorn, W.; Hopwood, C. J. Using machine learning to advance personality assessment and theory. Personality and Social Psychology Review 2019, 23(2), 190–203. [Google Scholar] [CrossRef] [PubMed]
- Sai Abhishak, I.; Vashisht, S. A study was conducted to predict personality traits using machine learning techniques on a dataset obtained from social media. 2024. Available online: https://ssrn.com/abstract=4833913.
- Hoppe, S.; Loetscher, T.; Morey, S. A.; Bulling, A. Eye movements during everyday behavior predict personality traits. Frontiers in Human Neuroscience 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Mehta, Y.; Fatehi, S.; Kazameini, A.; Stachl, C.; Cambria, E.; Eetemadi, S. Bottom-up and top-down: Predicting personality with psycholinguistic and language model features. In Proceedings of the IEEE International Conference on Data Mining (ICDM); 2020; pp. 1184–1189. [Google Scholar] [CrossRef]
- Berkovsky, S.; et al. Detecting personality traits using eye-tracking data. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI); 2019. [Google Scholar] [CrossRef]
- Agarwal, D.; Karthikeyan, M. M. Personality prediction using machine learning. 2023. Available online: http://www.irjmets.com.
- Chincholkar, A.; Bhosale, D.; Adsul, S.; Bodkhe, A.; Kadam, R. A comprehensive survey on personality prediction using machine learning techniques. International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE) 2023, 12(11). [Google Scholar] [CrossRef]
- Rehman, A. U.; et al. A machine learning--based framework for accurate and early diagnosis of liver diseases: A comprehensive study on feature selection, data imbalance, and algorithmic performance. International Journal of Intelligent Systems 2024, 2024(1). [Google Scholar] [CrossRef]
- Mir, A.; et al. A novel approach for the effective prediction of cardiovascular disease using applied artificial intelligence techniques; ESC Heart Failure, 2024. [Google Scholar] [CrossRef]
- Azeem, M.; Ullah, A.; Ashraf, H.; Jhanjhi, N. Z.; Humayun, M.; Aljahdali, S.; Tabbakh, T. A. Fog-oriented secure and lightweight data aggregation in iomt. IEEE Access 2021, 9, 111072–111082. [Google Scholar] [CrossRef]
- Ahmed, Q. W.; Garg, S.; Rai, A.; Ramachandran, M.; Jhanjhi, N. Z.; Masud, M.; Baz, M. Ai-based resource allocation techniques in wireless sensor internet of things networks in energy efficiency with data optimization. Electronics 2022, 11(13), 2071. [Google Scholar] [CrossRef]
- Khan, N. A.; Jhanjhi, N. Z.; Brohi, S. N.; Almazroi, A. A.; Almazroi, A. A. A secure communication protocol for unmanned aerial vehicles. CMC-Computers Materials & Continua 2022, 70(1), 601–618. [Google Scholar]
- Muzafar, S.; Jhanjhi, N. Z. Success stories of ICT implementation in Saudi Arabia. In Employing Recent Technologies for Improved Digital Governance; IGI Global Scientific Publishing, 2020; pp. 151–163. [Google Scholar]
- Jabeen, T.; Jabeen, I.; Ashraf, H.; Jhanjhi, N. Z.; Yassine, A.; Hossain, M. S. An intelligent healthcare system using IoT in wireless sensor network. Sensors 2023, 23(11), 5055. [Google Scholar] [CrossRef] [PubMed]
- Shah, I. A.; Jhanjhi, N. Z.; Laraib, A. Cybersecurity and blockchain usage in contemporary business. In Handbook of Research on Cybersecurity Issues and Challenges for Business and FinTech Applications; IGI Global, 2023; pp. 49–64. [Google Scholar]
- Shahnazari, K.; Ayyoubzadeh, S. M. Who Are You Behind the Screen? Implicit MBTI and Gender Detection Using Artificial Intelligence. arXiv 2025, arXiv:2503.09853. [Google Scholar] [CrossRef]
- Hanif, M.; Ashraf, H.; Jalil, Z.; Jhanjhi, N. Z.; Humayun, M.; Saeed, S.; Almuhaideb, A. M. AI-based wormhole attack detection techniques in wireless sensor networks. Electronics 2022, 11(15), 2324. [Google Scholar] [CrossRef]
- Shah, I. A.; Jhanjhi, N. Z.; Amsaad, F.; Razaque, A. The role of cutting-edge technologies in industry 4.0. In Cyber Security Applications for Industry; Chapman and Hall/CRC, 2022; Volume 4.0, pp. 97–109. [Google Scholar]
- Naz, A.; Khan, H. U.; Bukhari, A.; Alshemaimri, B.; Daud, A.; Ramzan, M. Machine and deep learning for personality traits detection: a comprehensive survey and open research challenges. Artificial Intelligence Review 2025, 58(8), 239. [Google Scholar] [CrossRef]
- Stracqualursi, L.; Agati, P. Predicting MBTI personality of YouTube users. Scientific Reports 2025, 15(1), 7221. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.; Almufareh, M. F.; Jhanjhi, N. Z. Autonomous traffic system for emergency vehicles. Electronics 2022, 11(4), 510. [Google Scholar] [CrossRef]
- Muzammal, S. M.; Murugesan, R. K.; Jhanjhi, N. Z.; Jung, L. T. SMTrust: Proposing trust-based secure routing protocol for RPL attacks for IoT applications. In 2020 International Conference on Computational Intelligence (ICCI); IEEE, October 2020; pp. 305–310. [Google Scholar]
- Brohi, S. N.; Jhanjhi, N. Z.; Brohi, N. N.; Brohi, M. N. Key applications of state-of-the-art technologies to mitigate and eliminate COVID-19; Authorea Preprints, 2023. [Google Scholar]
- Kiel, L.; Lind, M.; Bo, S.; Jørgensen, C. R.; Bøye, R.; Frederiksen, C. K.; Spindler, H. Associations between pathological personality traits, functional impairment, and personality disorder: Controlling for basic personality traits and identity disturbance. In Personality Disorders: Theory, Research, and Treatment; 2025. [Google Scholar]
- Khalil, M. I.; Humayun, M.; Jhanjhi, N. Z.; Talib, M. N.; Tabbakh, T. A. Multi-class segmentation of organ at risk from abdominal ct images: A deep learning approach. In Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2021; Singapore; Springer Nature Singapore, 2021; pp. 425–434. [Google Scholar]
- Humayun, M.; Jhanjhi, N. Z.; Niazi, M.; Amsaad, F.; Masood, I. Securing drug distribution systems from tampering using blockchain. Electronics 2022, 11(8), 1195. [Google Scholar] [CrossRef]
- Imran, N.; Zhang, J.; Yang, Z.; Ali, J. mm-FERP: An effective method for human personality prediction via mm-wave radar using facial sensing. Information Processing & Management 2025, 62(1), 103919. [Google Scholar]


| Feature | Description |
| Age | Age of the person |
| Gender | Gender of the person (e.g., Male, Female) |
| Education | Indicates whether the person is educated or not |
| Introversion | Level of activity or engagement on social media |
| Sensing Score | Measures how practical or detail-oriented a person is |
| Thinking Score | Reflects the person’s logical reasoning ability |
| Judging Score | Indicates preference for planning and organization |
| Interest | Person’s areas of interest or hobbies |
| Algorithms | Accuracy |
|---|---|
| Gradient boosting | 87.41% |
| Decision Tree | 87.55% |
| Random Forest | 87.64% |
| Naive Bayes | 72.32% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
