Submitted:
11 November 2025
Posted:
12 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Preparation Method of Fucoidan
2.1. Traditional Extraction Method
2.2. Alternative Extraction Method
2.2.1. Enzymatic Extraction
2.2.2. Ultrasonic-Assisted Extraction Method
2.2.3. Microwave-Assisted Extraction
2.2.4. Subcritical Water Extraction
3. Physiological Activities of Fucoidan
3.1. Immune Regulation
3.2. Anti-Inflammatory
3.3. Antitumor
3.4. Antioxidant
3.5. Anticoagulant
3.6. Lower Blood Lipids and Lower Blood Sugar
3.7. Antiviral
4. High-Value Applications of Fucoidan
4.1. Pharmaceuticals
4.1.1. Drug Carrier
4.1.2. Organizational Engineering
4.2. Cosmetic Field
4.2.1. UV Resistance
4.2.2. Anti-Aging
4.3. Food Field
4.3.1. Immunomodulatory Supplements
4.3.2. Gut Healthy Foods
4.3.3. Edible Packaging Film
4.4. Animal Health
4.4.1. Aquaculture
4.4.2. Animal Husbandry
5. Conclusion and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statenment
Conflicts of Interest
References
- Mirzadeh M, Arianejad MR, Khedmat L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydrate Polymers 2020;229:115421. [CrossRef]
- Kylin, H. Zur Biochemie der Meeresalgen. 1913;83:171–97. [CrossRef]
- Ale MT, Mikkelsen JD, Meyer AS. Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds. Marine Drugs 2011;9:2106–30. [CrossRef]
- Mensah EO, Kanwugu ON, Panda PK, Adadi P. Marine fucoidans: structural, extraction, biological activities and their applications in the food industry. Food Hydrocolloids 2023;142:1–25. [CrossRef]
- Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, Dragović-Uzelac V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Marine Drugs 2020;18:168. [CrossRef]
- Sun Y, Hou S, Song S, Zhang B, Ai C, Chen X, Liu N. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides. International Journal of Biological Macromolecules 2018;112:985–95. [CrossRef]
- January GG, Naidoo RK, Kirby-McCullough B, Bauer R. Assessing methodologies for fucoidan extraction from South African brown algae. Algal Research 2019;40:101517. [CrossRef]
- Roy D, Sobuj MKA, Islam MS, Haque MM, Islam MA, Islam MM, Ali MZ, Rafiquzzaman SM. Compositional, structural, and functional characterization of fucoidan extracted from Sargassum polycystum collected from Saint Martin’s Island, Bangladesh. Algal Res 2024;80:103542. [CrossRef]
- Lomartire S, Gonçalves AMM. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications—A Review. Foods 2022;11:2654. [CrossRef]
- Hans N, Pattnaik F, Malik A, Naik S. Comparison of different green extraction techniques and their influence on chemical characteristics of sulfated polysaccharide (fucoidan) from Padina tetrastromatica and Turbinaria conoides. Algal Res 2023;74:103199. [CrossRef]
- Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydrate Polymers 2024;343:122457. [CrossRef]
- Nguyen TT, Mikkelsen MD, Tran VHN, Trang VTD, Rhein-Knudsen N, Holck J, Rasin AB, Cao HTT, Van TTT, Meyer AS. Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Marine Drugs 2020;18:296. [CrossRef]
- Wu T, Liu Y, Ai X, Wang S, Hou A, Zheng F, Yue H, Dai Y. Fucoidan JHCF4s from Hizikia fusiformis against ethanol-induced damage in vitro and in vivo. Food Sci Biotechnol 2025. [CrossRef]
- Gomez LP, Alvarez C, Zhao M, Tiwari U, Curtin J, Garcia-Vaquero M, Tiwari BK. Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr Polym 2020;248:116784. [CrossRef]
- Liu Y, Liu X, Cui Y, Yuan W. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrasonics Sonochemistry 2022;87:106054. [CrossRef]
- Mapholi Z, Goosen NJ. Optimization of fucoidan recovery by ultrasound-assisted enzymatic extraction from South African kelp, Ecklonia maxima. Ultrason Sonochem 2023;101:106710. [CrossRef]
- Ummat V, Sivagnanam SP, Rai DK, O’Donnell C, Conway GE, Heffernan SM, Fitzpatrick S, Lyons H, Curtin J, Tiwari BK. Conventional extraction of fucoidan from Irish brown seaweed Fucus vesiculosus followed by ultrasound-assisted depolymerization. Sci Rep 2024;14:6214. [CrossRef]
- Wang T, Zhao H, Bi Y, Fan X. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme. Journal of Food Science 2021;86:977–86. [CrossRef]
- Lee J-H, Kim J-H, Kim S-M, Kim J-Y, Kim J-H, Eom S-J, Kang M-C, Song K-M. The Antioxidant Activity of Undaria pinnatifida Sporophyll Extract Obtained Using Ultrasonication: A Focus on Crude Polysaccharide Extraction Using Ethanol Precipitation. Antioxidants 2023;12:1904. [CrossRef]
- Yao Y, Pan Y, Liu S. Power ultrasound and its applications: A state-of-the-art review. Ultrasonics Sonochemistry 2020;62:104722. [CrossRef]
- Alboofetileh M, Rezaei M, Tabarsa M, Ritta M, Donalisio M, Mariatti F, You S, Lembo D, Cravotto G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int J Biol Macromol 2019;124:131–7. [CrossRef]
- Praveen MA, Parvathy KRK, Balasubramanian P, Jayabalan R. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends in Food Science & Technology 2019;92:46–64. [CrossRef]
- Dobrinčić A, Pedisić S, Zorić Z, Jurin M, Roje M, Čož-Rakovac R, Dragović-Uzelac V. Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata. Foods 2021;10:1481. [CrossRef]
- Sasaki C, Tamura S, Suzuki M, Etomi K, Nii N, Hayashi J, Kanemaru K. Continuous microwave-assisted step-by-step extraction of bioactive water-soluble materials and fucoidan from brown seaweed Undaria pinnatifida waste. Biomass Conv Bioref 2024;14:7673–82. [CrossRef]
- Ummat V, Sivagnanam SP, Rajauria G, O’Donnell C, Tiwari BK. Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends in Food Science & Technology 2021;110:90–106. [CrossRef]
- Essien SO, Young B, Baroutian S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science & Technology 2020;97:156–69. [CrossRef]
- Alboofetileh M, Rezaei M, Tabarsa M, You S, Mariatti F, Cravotto G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. International Journal of Biological Macromolecules 2019;128:244–53. [CrossRef]
- Zhang R, Zhang X, Tang Y, Mao J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydrate Polymers 2020;228:115381. [CrossRef]
- Geng L, Zhang Q, Li Q, Zhang Q, Wang C, Song N, Xin W. Fucoidan from the cell wall of Silvetia siliquosa with immunomodulatory effect on RAW 264.7 cells. Carbohydrate Polymers 2024;332:121883. [CrossRef]
- Yang F, Nagahawatta DP, Yang H-W, Ryu B, Lee H-G, Je J-G, Heo M-S, Jeon Y-J. In vitro and in vivo immuno-enhancing effect of fucoidan isolated from non-edible brown seaweed Sargassum thunbergii. International Journal of Biological Macromolecules 2023;253:127212. [CrossRef]
- Jiang S, Yin H, Li R, Shi W, Mou J, Yang J. The activation effects of fucoidan from sea cucumber Stichopus chloronotus on RAW264.7 cells via TLR2/4-NF-κB pathway and its structure-activity relationship. Carbohydr Polym 2021;270:118353. [CrossRef]
- Qin L, Xu H, He Y, Liang C, Wang K, Cao J, Qu C, Miao J. Purification, Chemical Characterization and Immunomodulatory Activity of a Sulfated Polysaccharide from Marine Brown Algae Durvillaea antarctica. Mar Drugs 2022;20:223. [CrossRef]
- Nam J, Kim A, Kim K, Moon JH, Baig J, Phoo M, Moon JJ, Son S. Engineered polysaccharides for controlling innate and adaptive immune responses. Nat Rev Bioeng 2024;2:733–51. [CrossRef]
- Dubey A, Dasgupta T, Devaraji V, Ramasamy T, Sivaraman J. Investigating anti-inflammatory and apoptotic actions of fucoidan concentrating on computational and therapeutic applications. 3 Biotech 2023;13:355. [CrossRef]
- Kirsten N, Ohmes J, Mikkelsen MD, Nguyen TT, Bluemel M, Wang F, Tasdemir D, Seekamp A, Meyer AS, Fuchs S. Impact of Enzymatically Extracted High Molecular Weight Fucoidan on Lipopolysaccharide-Induced Endothelial Activation and Leukocyte Adhesion. Mar Drugs 2023;21:339. [CrossRef]
- Kirindage KGIS, Jayasinghe AMK, Han E-J, Jee Y, Kim H-J, Do SG, Fernando IPS, Ahn G. Fucosterol Isolated from Dietary Brown Alga Sargassum horneri Protects TNF-α/IFN-γ-Stimulated Human Dermal Fibroblasts via Regulating Nrf2/HO-1 and NF-κB/MAPK Pathways. Antioxidants (Basel) 2022;11:1429. [CrossRef]
- Shu H, Zhang X, Pu Y, Zhang Y, Huang S, Ma J, Cao L, Zhou X. Fucoidan improving spinal cord injury recovery: Modulating microenvironment and promoting remyelination. CNS Neurosci Ther 2024;30:e14903. [CrossRef]
- Wang Y, Guo X, Huang C, Shi C, Xiang X. Biomedical potency and mechanisms of marine polysaccharides and oligosaccharides: A review. International Journal of Biological Macromolecules 2024;265:131007. [CrossRef]
- P A, K A, L S, M M, K M. Anticancer effect of fucoidan on cell proliferation, cell cycle progression, genetic damage and apoptotic cell death in HepG2 cancer cells. Toxicol Rep 2019;6:556–63. [CrossRef]
- Chen L-M, Yang P-P, Al Haq AT, Hwang P-A, Lai Y-C, Weng Y-S, Chen MA, Hsu H-L. Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. Journal of Biomedical Science 2022;29:70. [CrossRef]
- Bai X, Wang Y, Hu B, Cao Q, Xing M, Song S, Ji A. Fucoidan Induces Apoptosis of HT-29 Cells via the Activation of DR4 and Mitochondrial Pathway. Marine Drugs 2020;18:220. [CrossRef]
- Kim MJ, Sook CH. Effects of Fucoidan, a Sulfur-Containing Polysaccharide, on Cytotoxicity and Apoptosis in HT-29 Human Colorectal Cancer Cells. The Korean Journal of Food and Nutrition 2022;35:204–12.
- Alwarsamy M, Gooneratne R, Ravichandran R. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells. Carbohydrate Polymers 2016;152:207–13. [CrossRef]
- Park HS, Kim G, Nam T, Deuk Kim N, Hyun Choi Y. Antiproliferative Activity of Fucoidan Was Associated with the Induction of Apoptosis and Autophagy in AGS Human Gastric Cancer Cells. Journal of Food Science 2011;76. [CrossRef]
- Ferdushi R, Kim D, Sriramulu DK, Hwang Y, Park K, Key J. Computational insights into fucoidan–receptor binding: Implications for fucoidan-based targeted drug delivery. Drug Discovery Today 2025;30:104315. [CrossRef]
- Wu C-J, Yeh T-P, Wang Y-J, Hu H-F, Tsay S-L, Liu L-C. Effectiveness of Fucoidan on Supplemental Therapy in Cancer Patients: A Systematic Review. Healthcare 2022;10:923. [CrossRef]
- Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L, Wu N. Opportunities and challenges of fucoidan for tumors therapy. Carbohydrate Polymers 2024;324:121555. [CrossRef]
- Etman SM, Elnaggar YSR, Abdallah OY. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int J Biol Macromol 2020;147:799–808. [CrossRef]
- Jayasinghe AMK, Kirindage KGIS, Fernando IPS, Kim K-N, Oh J-Y, Ahn G. The Anti-Inflammatory Effect of Low Molecular Weight Fucoidan from Sargassum siliquastrum in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via Inhibiting NF-κB/MAPK Signaling Pathways. Mar Drugs 2023;21:347. [CrossRef]
- El-Sheekh MM, Ward F, Deyab MA, Al-Zahrani M, Touliabah HE. Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma. Molecules 2023;28:7175. [CrossRef]
- Yu J, Li Q, Wu J, Yang X, Yang S, Zhu W, Liu Y, Tang W, Nie S, Hassouna A, White WL, Zhao Y, Lu J. Fucoidan Extracted From Sporophyll of Undaria pinnatifida Grown in Weihai, China - Chemical Composition and Comparison of Antioxidant Activity of Different Molecular Weight Fractions. Front Nutr 2021;8:636930. [CrossRef]
- Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydrate Polymers 2021;270:118347. [CrossRef]
- Shang F, Mou R, Zhang Z, Gao N, Lin L, Li Z, Wu M, Zhao J. Structural analysis and anticoagulant activities of three highly regular fucan sulfates as novel intrinsic factor Xase inhibitors. Carbohydrate Polymers 2018;195:257–66. [CrossRef]
- Mauray S, Sternberg C, Theveniaux J, Millet J, Sinquin C, Tapon-Bretaudiére J, Fischer A-M. Venous Antithrombotic and Anticoagulant Activities of a Fucoïdan Fraction. Thrombosis and Haemostasis 2018;74:1280–5. [CrossRef]
- Garcia-Zamora GM, Munoz-Ochoa M, Arvizu-Higuera DL, Rodriguez-Montesinos YE, Lopez-Vivas JM. Anticoagulant activity of sulfated polysaccharides obtained from the brown seaweed Stephanocystis dioica. Hidrobiologica 2025;35:49–56. [CrossRef]
- Shin D, Shim SR, Wu Y, Hong G, Jeon H, Kim C-G, Lee KJ. How Do Brown Seaweeds Work on Biomarkers of Dyslipidemia? A Systematic Review with Meta-Analysis and Meta-Regression. Mar Drugs 2023;21:220. [CrossRef]
- Wang K, Xu X, Wei Q, Yang Q, Zhao J, Wang Y, Li X, Ji K, Song S. Application of fucoidan as treatment for cardiovascular and cerebrovascular diseases. Ther Adv Chronic Dis 2022;13:20406223221076891. [CrossRef]
- Haggag YA, Abd Elrahman AA, Ulber R, Zayed A. Fucoidan in Pharmaceutical Formulations: A Comprehensive Review for Smart Drug Delivery Systems. Mar Drugs 2023;21:112. [CrossRef]
- Mirza Z, Al-Saedi DA, Saddeek S, Almowallad S, Almassabi RF, Huwait E. Atheroprotective Effect of Fucoidan in THP-1 Macrophages by Potential Upregulation of ABCA1. Biomedicines 2023;11:2929. [CrossRef]
- Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020;16:377–90. [CrossRef]
- Mabate B, Daub CD, Malgas S, Edkins AL, Pletschke BI. Fucoidan Structure and Its Impact on Glucose Metabolism: Implications for Diabetes and Cancer Therapy. Mar Drugs 2021;19:30. [CrossRef]
- Mabate B, Daub CD, Malgas S, Pletschke BI. Characterisation of Sargassum elegans fucoidans extracted using different technologies: Linking their structure to α-glucosidase inhibition. Algal Res 2025;85:103885. [CrossRef]
- Shan X, Wang X, Jiang H, Cai C, Hao J, Yu G. Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na+/Glucose Cotransporter 1 Activity. Marine Drugs 2020;18:485. [CrossRef]
- Li C, Liu Y, Yang M, Huang H, Tang L, Miao Y, Li W, Li X. Fucoidan ameliorates diabetic skeletal muscle atrophy through PI3K/ Akt pathway. J Funct Food 2024;114:106076. [CrossRef]
- Sun Q-L, Li Y, Ni L-Q, Li Y-X, Cui Y-S, Jiang S-L, Xie E-Y, Du J, Deng F, Dong C-X. Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydrate Polymers 2020;229:115487. [CrossRef]
- Kwon PS, Oh H, Kwon S-J, Jin W, Zhang F, Fraser K, Hong JJ, Linhardt RJ, Dordick JS. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov 2020;6:1–4. [CrossRef]
- Song S, Peng H, Wang Q, Liu Z, Dong X, Wen C, Ai C, Zhang Y, Wang Z, Zhu B. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct 2020;11:7415–20. [CrossRef]
- Hans N, Gupta S, Patel AK, Naik S, Malik A. Deciphering the role of fucoidan from brown macroalgae in inhibiting SARS-CoV-2 by targeting its main protease and receptor binding domain: Invitro and insilico approach. Int J Biol Macromol 2023;248:125950. [CrossRef]
- Pradhan B, Nayak R, Patra S, Bhuyan PP, Behera PK, Mandal AK, Behera C, Ki J-S, Adhikary SP, MubarakAli D, Jena M. A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections. Carbohydr Polym 2022;291:119551. [CrossRef]
- Synytsya A, Bleha R, Synytsya A, Pohl R, Hayashi K, Yoshinaga K, Nakano T, Hayashi T. Mekabu fucoidan: structural complexity and defensive effects against avian influenza A viruses. Carbohydr Polym 2014;111:633–44. [CrossRef]
- Abbas MF, Karim DK, Kareem HR, Kamil MM, Al-Musawi MH, Asker MH, Ghanami M, Shahriari-Khalaji M, Sattar M, Mirhaj M, Sharifianjazi F, Tavamaishvili K, Mohabbatkhah M, Soheily A, Noory P, Tavakoli M. Fucoidan and its derivatives: From extraction to cutting-edge biomedical applications. Carbohydr Polym 2025;357:123468. [CrossRef]
- Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery – A review of their properties and fates. Carbohydrate Polymers 2022;277:118784. [CrossRef]
- Zhang X, Wei Z, Xue C. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit Rev Food Sci Nutr 2022;62:8935–53. [CrossRef]
- Rao SS, Venkatesan J, Yuvarajan S, Rekha P-D. Self-assembled polyelectrolyte complexes of chitosan and fucoidan for sustained growth factor release from PRP enhance proliferation and collagen deposition in diabetic mice. Drug Deliv Transl Res 2022;12:2838–55. [CrossRef]
- Jiang Y, Zhao Y, Liu Z, Fang JK-H, Lai KP, Li R. Roles and mechanisms of fucoidan against dermatitis: A review. Int J Biol Macromol 2024;279:135268. [CrossRef]
- Tylawsky DE, Kiguchi H, Vaynshteyn J, Gerwin J, Shah J, Islam T, Boyer JA, Boué DR, Snuderl M, Greenblatt MB, Shamay Y, Raju GP, Heller DA. P-selectin-targeted nanocarriers induce active crossing of the blood–brain barrier via caveolin-1-dependent transcytosis. Nat Mater 2023;22:391–9. [CrossRef]
- Fan L, Lu Y, Ouyang X, Ling J. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation. International Journal of Biological Macromolecules 2021;169:194–205. [CrossRef]
- Kim BS, Kang H-J, Park J-Y, Lee J. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells. Exp Mol Med 2015;47:e128. [CrossRef]
- Zhao Z, Xia X, Liu J, Hou M, Liu Y, Zhou Z, Xu Y, He F, Yang H, Zhang Y, Ruan C, Zhu X. Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging. Bioactive Materials 2024;32:319–32. [CrossRef]
- Piñeiro-Ramil M, Flórez-Fernández N, Ramil-Gómez O, Torres MD, Dominguez H, Blanco FJ, Meijide-Faílde R, Vaamonde-García C. Antifibrotic effect of brown algae-derived fucoidans on osteoarthritic fibroblast-like synoviocytes. Carbohydr Polym 2022;282:119134. [CrossRef]
- Li Y, Tian X, He W, Jin C, Yang C, Pan Z, Xu Y, Yang H, Liu H, Liu T, He F. Fucoidan-functionalized gelatin methacryloyl microspheres ameliorate intervertebral disc degeneration by restoring redox and matrix homeostasis of nucleus pulposus. Int J Biol Macromol 2023;250:126166. [CrossRef]
- Cruz AM, Gonçalves MC, Marques MS, Veiga F, Paiva-Santos AC, Pires PC. In Vitro Models for Anti-Aging Efficacy Assessment: A Critical Update in Dermocosmetic Research. Cosmetics 2023;10:66. [CrossRef]
- Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Heo S-J, Ahn G. Fucoidan Fractionated from Sargassum coreanum via Step-Gradient Ethanol Precipitation Indicate Promising UVB-Protective Effects in Human Keratinocytes. Antioxidants 2021;10:347. [CrossRef]
- Wang L, Oh J-Y, Lee W, Jeon Y-J. Fucoidan isolated from Hizikia fusiforme suppresses ultraviolet B-induced photodamage by down-regulating the expressions of matrix metalloproteinases and pro-inflammatory cytokines via inhibiting NF-κB, AP-1, and MAPK signaling pathways. Int J Biol Macromol 2021;166:751–9. [CrossRef]
- Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Jeon Y-J, Ahn G. Fucoidan refined by Sargassum confusum indicate protective effects suppressing photo-oxidative stress and skin barrier perturbation in UVB-induced human keratinocytes. International Journal of Biological Macromolecules 2020;164:149–61. [CrossRef]
- Kang J-W, Hyun SH, Kim H-M, Park S-Y, Lee J-A, Lee I-C, Bae J-S. The effects of fucoidan-rich polysaccharides extracted from Sargassum horneri on enhancing collagen-related skin barrier function as a potential cosmetic product. Journal of Cosmetic Dermatology 2024;23:1365–73. [CrossRef]
- Pereira, L. Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics 2018;5:68. [CrossRef]
- Li S, Qian Q, Xie Y, Wu Z, Yang H, Yin Y, Cui Y, Li X. Ameliorated Effects of Fucoidan on Dextran Sulfate Sodium-Induced Ulcerative Colitis and Accompanying Anxiety and Depressive Behaviors in Aged C57BL/6 Mice. J Agric Food Chem 2024;72:14199–215. [CrossRef]
- Al Monla R, Dassouki Z, Sari-Chmayssem N, Mawlawi H, Gali-Muhtasib H. Fucoidan and Alginate from the Brown Algae Colpomenia sinuosa and Their Combination with Vitamin C Trigger Apoptosis in Colon Cancer. Molecules 2022;27:358. [CrossRef]
- Turrini E, Maffei F, Fimognari C. Ten Years of Research on Fucoidan and Cancer: Focus on Its Antiangiogenic and Antimetastatic Effects. Mar Drugs 2023;21:307. [CrossRef]
- Tran PHL, Lee B-J, Tran TTD. Current developments in the oral drug delivery of fucoidan. International Journal of Pharmaceutics 2021;598:120371. [CrossRef]
- Chang Y, McClements DJ. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocolloids 2016;61:92–101. [CrossRef]
- Carina D, Sharma S, Jaiswal AK, Jaiswal S. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends in Food Science & Technology 2021;110:559–72. [CrossRef]
- Liang F, Liu C, Geng J, Chen N, Lai W, Mo H, Liu K. Chitosan–fucoidan encapsulating cinnamaldehyde composite coating films: Preparation, pH-responsive release, antibacterial activity and preservation for litchi. Carbohydrate Polymers 2024;333:121968. [CrossRef]
- Muncke J, Andersson A-M, Backhaus T, Boucher JM, Carney Almroth B, Castillo Castillo A, Chevrier J, Demeneix BA, Emmanuel JA, Fini J-B, Gee D, Geueke B, Groh K, Heindel JJ, Houlihan J, Kassotis CD, Kwiatkowski CF, Lefferts LY, Maffini MV, Martin OV, Myers JP, Nadal A, Nerin C, Pelch KE, Fernández SR, Sargis RM, Soto AM, Trasande L, Vandenberg LN, Wagner M, Wu C, Zoeller RT, Scheringer M. Impacts of food contact chemicals on human health: a consensus statement. Environ Health 2020;19:25. [CrossRef]
- Ngoepe TK, Okpeku,Moses, Mbokane, Esau Matthews, Madibana, Molatelo Junior, Maulu,Sahya, Mphalo, Selaelo Jaqueline, Nemakhavhani, Ronewa Lieborn, and Ndlela SZ. Potential of Ecklonia maxima as a feed supplement in aquafeed: a review. Cogent Food & Agriculture 2024;10:2435586. [CrossRef]
- Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020;26:37. [CrossRef]
- Li Y, Zhao W, Wang L, Chen Y, Zhang H, Wang T, Yang X, Xing F, Yan J, Fang X. Protective Effects of Fucoidan against Hydrogen Peroxide-Induced Oxidative Damage in Porcine Intestinal Epithelial Cells. Animals 2019;9:1108. [CrossRef]
- Yang W, Chen J, Guo G, Wang S, Peng S, Gao Z, Zhao Z, Lan R, Yin F. The Effects of Fucoidan Dietary Supplementation on Growth Performance, Serum Antioxidant Capacity, Immune Function Indices and Intestinal Morphology in Weaned Kids. Animals 2022;12:574. [CrossRef]
- Lan Y, Qin K, Wu S. The physiological activities of fucoidan and its application in animal breeding. Fish Shellfish Immunol 2024;147:109458. [CrossRef]




| Types of algae | Extract the solvent | Solid-liquid ratio(g/ml) |
Ultrasonic power (W) |
Extraction time (min) |
Extract temperature (℃) |
Ultrasonic frequency (k HZ) |
Yield of fucoidan (%) |
References |
| Kelp | Distilled water | 1:1 | 200 | 240 | 40-65 | 24 | 7.9 | [16] |
| Chlorophytum comosum | 0.1M HCL | 1:10 | - | 30 | 30 | 20 | 22.95 | [17] |
| Sargassum amansii | 90% ethanol | 1:50 | 200 | 130 | 70 | - | 25.8 | [18] |
| Wakame | Distilled water | 1:100 | 1080 | - | 30 | 20 | 31.9 | [19] |
| Serial number | Research subjects | Laboratory model | Administration route/dosage | Cell cycle arrest | Mechanism of action | Key results | References |
| 1 | Human hepatocellular carcinoma cell line HepG2 | In vitro cell experiments | 200μg/ml, 24-48h | G0/G1 | ROS-mediated oxidative stress and cross-regulation of the PI3K/Akt-JNK/p38 MAPK signaling pathways | Approximately 50% of HepG2 cancer cell proliferation was inhibited by fucoidan. | [39] |
| 2 | Mouse breast cancer cell line MDA-MB-231 | In vivo cell experiments | 400μg/ml ,24-48h | G1 or G2/M |
Immunocompetent and anti-tumor M1 macrophages | Upregulating CD24 and downregulating CD44 and Snail expression while targeting the transmembrane glycoprotein EpCAM on cancer stem cells | [40] |
| 3 | Human colorectal cancer cell line HT-29 | In vitro cell experiments | 50–400μg/mL,24–72h | G2/M | Synergistically regulating the cell cycle and MAPK signaling via the ROS-mitochondrial pathway core axis to induce apoptosis and inhibit cell proliferation | The cell viability was only approximately 50%. | [41,42] |
| 4 | Human lung cancer cell line A549 | In vitro cell experiments | 500-1000μg/m,48h | G0/G1 | Triggering apoptosis signaling molecules on cancer cells to induce cancer cell apoptosis | Regulating the PI3K/Akt and MAPK pathways, activating the mitochondrial apoptosis pathway, and inhibiting EMT and MMP activity | [43] |
| 5 | Human gastric cancer cell line AGS | In vitro cell experiments | 50μg/mL,48h | - | Inducing apoptosis by activating the endogenous mitochondrial pathway along with the caspase-8-activated exogenous pathway | The percentage of Annexin V-positive cells in AGS cells significantly increased. | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
