Submitted:
07 November 2025
Posted:
07 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cumulative Residual Inaccuracy Measure
3. Properties and the Bounds to the Measure
- 1.
-
whereProof.From (1.6), we can write:Therefore from (2.2) and (3.1), we get:□Remark 1.If for a fixed k, is a decreasing function of n, that is, is an increasing function of n, then . From the previous result, we can see that is an increasing function of n.
- 2.
-
Consider two random variables X and Y with survival functions and respectively such that where is a strictly increasing function and differentiable almost everywhere with , thenProof.From (2.2), we can write:Now ⇒ and . Also .By setting all these values into (3.3), the result is obvious. □Remark 2.In particular, ⇒. Therefore (3.2) becomes:
- 3.
-
If , where is an integer grater than 1, and and are the survival function of X and Y respectively, thenProof.We know that□
- 4.
-
Consider thenProof.
- 5.
-
Let X denote an absolutely continuous non-negative random variable, thenwhere is given by (1.3).Proof.This result can be proven directly from (3.4) by taking . Also if we set into this becomes the cumulative residual entropy given as:This proves the result. □
4. Some Results on Stochastic Ordering
5. Cumulative Inaccuracy For Some Specific Distributions
6. Application to Extremal Quantum Uncertainty
6.1. Relation to Entropic Uncertainty and the Logarithmic Schrödinger Equation.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CRE | Cumulative Residual Entropy |
| CRI | Cumulative Residual Innacuracy |
| DCI | Dynamic Cumulative Innacuracy |
| MDPI | Multidisciplinary Digital Publishing Institute |
| probability function |
References
- Taneja, H.C.; Kumar, V. On dynamic cumulative residual inaccuracy measure. In Proceedings of the Proc. World Congress of Engineering (WCE), Vol. I, London, U.K., 2012. July 6–8.
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–432. [Google Scholar] [CrossRef]
- Kerridge, D.F. Inaccuracy and inference. J. R. Stat. Soc., Ser. B 1961, 23, 184–194. [Google Scholar] [CrossRef]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Asadi, M.; Zohrevand, Y. On the dynamic cumulative residual entropy. J. Stat. Plann. Inference 2007, 137, 1931–1941. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Longobardi, M. On cumulative entropies. J. Stat. Plann. Inference 2009, 139, 4072–4087. [Google Scholar] [CrossRef]
- Sunoj, S.M.; Linu, M.N. Dynamic cumulative residual Rényi’s entropy. Statistics 2012, 46, 41–56. [Google Scholar] [CrossRef]
- Dziubdziela, W.; Kopocinski, B. Limiting properties of the kth record values. Appl. Math. 1976, 15, 187–190. [Google Scholar] [CrossRef]
- Kamps, U. A concept of generalized order statistics. J. Stat. Plann. Inference 1995, 48, 1–23. [Google Scholar] [CrossRef]
- Berred, M. k-Record values and the extreme-value index. J. Stat. Plann. Inference 1995, 45, 49–63. [Google Scholar] [CrossRef]
- Fashandi, M.; Ahmadi, J. Characterizations of symmetric distributions based on Rényi entropy. Stat. Probab. Lett. 2012, 82, 798–804. [Google Scholar] [CrossRef]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. Records; Wiley: New York, 1998. [Google Scholar]
- Psarrakos, G.; Navarro, J. Generalized cumulative residual entropy and record values. Metrika 2013, 76, 623–640. [Google Scholar] [CrossRef]
- Krakowski, M. The relevation transform and a generalization of the gamma distribution function. RAIRO - Operations Research - Recherche Opérationnelle 1973, 7, 107–120. [Google Scholar] [CrossRef]
- Sankaran, P.G.; Dileep Kumar, M. Reliability properties of proportional hazards relevation transform. Metrika 2019, 82, 441–456. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Eskandarzadeh, M. Generalized cumulative entropy based on kth lower record values. Stat. Probab. Lett. 2017, 126, 164–172. [Google Scholar] [CrossRef]
- Goel, R.; Taneja, H.C.; Kumar, V. Measure of entropy for past lifetime and record statistics. Physica A 2018, 503, 623–631. [Google Scholar] [CrossRef]
- Weisstein, E.W. Hazard Function. https://mathworld.wolfram.com/HazardFunction.html, 2025. From MathWorld - A Worlfram Resource.
- Liberto, D. Hazard Rate: Definition, How to Calculate, and Example. https://www.investopedia.com/terms/h/hazard-rate.asp, 2025.
- Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Goel, R.; Taneja, H.C.; Kumar, V. Measure of inaccuracy and k-record statistics. Bull. Calcutta Math. Soc. 2018, 110, 151–166. [Google Scholar]
- Dannan, F.M.; Neff, P.; Thiel, C. On the sum of squared logarithms inequality and related inequalities. J. Math. Inequal. 2016, 10, 1–17. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Preface. In Microeconometrics; Cambridge University Press: Cambridge, 2005; pp. xxi–xxii. [Google Scholar]
- Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer: New York, 2007. [Google Scholar]
- Bernardin, L.; Chin, P.; DeMarco, P.; Geddes, K.O.; Hare, D.E.G.; Heal, K.M.; Labahn, G.; May, J.P.; McCarron, J.; Monagan, M.B.; et al. Maple Programming Guide; Maplesoft, a division of Waterloo Maple, Inc.: Toronto, 2012. [Google Scholar]
- Kribs, D.W.; Pasieka, A.; Życzkowski, K. Entropy of a Quantum Error Correction Code; World Scientific, 2008.
- Nielsen, M.A. Information-Theoretic Approach to Quantum Error Correction. Proceedings of the Royal Society A 1998, 454, 277–304. [Google Scholar] [CrossRef]
- Cafaro, C. An Entropic Analysis of Approximate Quantum Error Correction. Physica A 2014, 408, 1–18. [Google Scholar] [CrossRef]
- Bueno, V.D.C.; Balakrishnan, N. A Cumulative Residual Inaccuracy Measure for Coherent Systems; Cambridge University Press, 2020.
- Choi, S.; et al. Quantum Error Correction in Scrambling Dynamics and Open Systems. Physical Review Letters 2020, 125, 030505. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Statistical Mechanics of Quantum Error Correcting Codes. Physical Review B 2021, 103, 104306. [Google Scholar] [CrossRef]
- Onorati, E. Fitting Quantum Noise Models to Tomography Data. Quantum Journal 2023, 7, 1197. [Google Scholar] [CrossRef]
- Barrios, R.; et al. Exponentiated Weibull Fading Channel Model in Free-Space Optics. IEEE Transactions on Communications 2013, 61, 2594–2602. [Google Scholar]
- Preskill, J. Quantum Error Correction. Caltech Lecture Notes on Quantum Computation, Chapter 7, n.d.
- Golse, F.; Jin, S.; Liu, N. Quantum Algorithms for Uncertainty Quantification, 2022, [arXiv:2209.11220].
- Wirsching, G. Quantum-Inspired Uncertainty Quantification. Frontiers in Computer Science 2022, 4, 662632. [Google Scholar] [CrossRef]
- Engineering and Physical Sciences Research Council. Quantum Uncertainty Quantification (QUQ) Project Overview, University of Exeter, 2025.
- Halpern, N.; Hayden, P. Entropic uncertainty relations in quantum information theory. arXiv preprint arXiv:1909.08438 2019. [CrossRef]
- Berta, M.; Christandl, M.; Colbeck, R.; Renes, J.M.; Renner, R. The uncertainty principle in the presence of quantum memory. Nature Physics 2010, 6, 659–662. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic uncertainty relations—a survey. New Journal of Physics 2010, 12, 025009. [Google Scholar] [CrossRef]
- Hirschman, I.I. A Note on Entropy. American Journal of Mathematics 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier Analysis. Annals of Mathematics 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Communications in Mathematical Physics 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Nonlinear wave mechanics. Annals of Physics 1976, 100, 62–93. [Google Scholar] [CrossRef]
- Everett, H. Generalized Lagrange Multipliers in the Problem of Boltzmann’s Entropy. Annals of Mathematics 1957, 66, 591–600. [Google Scholar]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.Y.; Yang, H.; Wang, D.; Yuan, H.; Yang, J.; Ye, L. Experimental investigation of entropic uncertainty relations and coherence uncertainty relations. Phys. Rev. A 2020, 101, 032101. [Google Scholar] [CrossRef]
- Dzhunushaliev, V.; Zloshchastiev, K. Singularity-free model of electric charge in physical vacuum: non-zero spatial extent and mass generation. Open Physics 2013, 11, 325–335. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Origins of logarithmic nonlinearity in the theory of fluids and beyond. International Journal of Modern Physics B 2025, 39, 2530008. [Google Scholar] [CrossRef]
- Scott, T.C.; Glasser, M.L. Kink Soliton Solutions in the Logarithmic Schrödinger Equation. Mathematics 2025, 13. [Google Scholar] [CrossRef]
- Australia, A. Australian Para Athletics Records, 2025.
- Field, U.T.. Record Applications.
- Teegavarapu, R. Statistical Analysis of Hydrologic Variables. Technical report, Tufts University, 2019.
- Vogel, R.M. The value of streamflow record augmentation procedures for estimating low-flow statistics. Journal of Hydrology 1991, 127, 15–23. [Google Scholar]
- Dey, R. Weather forecasting using Convex Hull & K-Means clustering, 2015.
- Balakrishnan, N.; et al. Dispersion indices based on Kerridge inaccuracy measure and applications. Computational Statistics 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
