Submitted:
04 November 2025
Posted:
06 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Basics of LPWAN Technologies
2.1. LoRa and LoRaWAN
2.2. Sigfox
2.3. NB-IoT
2.4. LTE-M
3. Literature Review
3.1. Power Consumption and Energy Efficiency
3.2. Working Range
3.3. Data Rate
3.4. Security and Privacy
3.5. Scalability
3.6. Network Availability and Stability
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| 3GPP | 3rd Generation Partnership Project |
| ADR | Adaptive Data Rate |
| AES | Advanced Encryption Standard |
| CMAC | Cipher-based Message Authentication Code |
| CSS | Chirp Spread Spectrum |
| CTR | Counter Mode |
| DBPSK | Differential Binary Phase Shift Keying |
| DL | Downlink |
| DoS | Denial of Service |
| ECL | Extended Coverage Level |
| eDRX | Extended Discontinuous Reception |
| eMTC | Enhanced Machine Type Communication |
| EPS-AKA | Evolved Packet System Authentication and Key Agreement |
| FDD | Frequency Division Duplex |
| FSK | Frequency Shift Keying |
| GFSK | Gaussian Frequency Shift Keying |
| GSM | Global System for Mobile Communications |
| IoT | Internet of Things |
| ISM | Industrial, Scientific and Medical |
| KPI | Key Performance Indicator |
| LOS | Line of Sight |
| LoRa | Long Range |
| LoRaWAN | Long Range Wide Area Network |
| LPWAN | Low Power Wide Area Network |
| LTE | Long Term Evolution |
| LTE-M | Long Term Evolution for Machines |
| M2M | Machine-to-Machine |
| MAC | Medium Access Control |
| MCL | Maximum Coupling Loss |
| NB-IoT | Narrowband Internet of Things |
| OFDM | Orthogonal Frequency Division Multiplexing |
| PDR | Packet Delivery Ratio |
| PHY | Physical Layer |
| PSM | Power Saving Mode |
| QAM | Quadrature Amplitude Modulation |
| QoS | Quality of Service |
| RRC | Radio Resource Control |
| RSRP | Reference Signal Received Power |
| RSSI | Received Signal Strength Indicator |
| SC-FDMA | Single Carrier Frequency Division Multiple Access |
| SDK | Software Development Kit |
| SF | Spreading Factor |
| SIG | Special Interest Group |
| SRD | Short Range Device |
| TDD | Time Division Duplex |
| UE | User Equipment |
| UL | Uplink |
| UNB | Ultra Narrow Band |
| VoLTE | Voice over LTE |
References
- Lavrinovica, I.; Judvaitis, J.; Laksis, D.; Skromule, M.; Ozols, K. A Comprehensive Review of Sensor-Based Smart Building Monitoring and Data Gathering Techniques. Applied Sciences 2024, 14, 10057. [Google Scholar] [CrossRef]
- Zabasta, A.; Kunicina, N.; Vitols, K.; Duritis, I.; Grunde, U.; Judvaitis, J.; Greitans, M.; Sematovica, I.; Malniece, A.; Galkins, I. Low-power wireless sensor network system for early diagnostic of subacute rumen acidosis in cows. In Proceedings of the 2019 IEEE 7th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE). IEEE; 2019; pp. 1–6. [Google Scholar]
- Deniša, M.; Ude, A.; Simonič, M.; Kaarlela, T.; Pitkäaho, T.; Pieskä, S.; Arents, J.; Judvaitis, J.; Ozols, K.; Raj, L.; et al. Technology modules providing solutions for agile manufacturing. Machines 2023, 11, 877. [Google Scholar] [CrossRef]
- Judvaitis, J.; Balass, R.; Greitans, M. Mobile iot-edge-cloud continuum based and devops enabled software framework. Journal of Sensor and Actuator Networks 2021, 10, 62. [Google Scholar] [CrossRef]
- Vermesan, O.; Walde, K.V.; Bahr, R.; Conrady, C.; Judvaitis, J.; Gaigals, G.; Karlsen, T.; Coppola, M.; Sand, H.E. Edge AI LoRa Mesh Technologies. In Advancing Edge Artificial Intelligence; River Publishers, 2024; pp. 1–42.
- Salmins, A.; Judvaitis, J.; Balass, R.; Nesenbergs, K. Mobile wireless sensor network TestBed. In Proceedings of the 2017 25th Telecommunication Forum (TELFOR). IEEE; 2017; pp. 1–4. [Google Scholar]
- Sinha, S.; Lueth, K.L. LPWAN market 2024: Licensed technologies boost their share among global 1.3 billion connections as LoRa leads outside China. Market Report, 2024. Global LPWAN Tracker and Forecast 2015–2027 (updated Q1 2024).
- Industries, T.T. The Things Industries reaches 1 million of connected devices to their LoRaWAN® Network Management Infrastructure. https://www.thethingsindustries.com/news/1-million-connected-lorawan-devices/, 2023. Accessed: 2025-05-26.
- Mobile IoT In The 5G Future NB-IoT and LTE-M in the context of 5G. Technical report, GSMA, 2018.
- GSA. NB-IoT & LTE-M April-2024 – Summary Report. https://gsacom.com/paper/nb-iot-lte-m-april-2024-summary-report/, 2024. Accessed: 2025-05-26.
- Ericsson. Cellular IoT connections reached 3.4 billion in 2023. https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/iot-connections-outlook, 2023. Accessed: 2025-05-26.
- Newsroom, O. AT&T, KPN, Orange and Swisscom activate LTE-M roaming across North America and Europe. https://newsroom.orange.com/tt-kpn-orange-and-swisscom-activate-lte-m-roaming-across-north-america-and-europe/, 2019. Accessed: 2025-05-28.
- Telekom, D. Space with a globe covered by a magenta network. Global IoT-Connectivity with Deutsche Telekom. https://iot.telekom.com/en, 2025. Accessed: 2025-05-28.
- Hammer, M. Deutsche Telekom leads NarrowBand IoT deployment across Europe. https://www.telekom.com/en/media/media-information/archive/telekom-leads-narrowband-iot-deployment-across-europe-512414#comments, 2018. Accessed: 2025-05-28.
- Vodafone. Preparing Vodafone networks for multi-vendor NB-IoT deployments. https://www.vodafone.com/news/technology/multi-vendor-nbiot, 2017. Accessed: 2025-05-28.
- Sigfox. 0G NETWORK COVERAGE. https://sigfox.com/coverage/, 2025. Accessed: 2025-05-26.
- LoRa Alliance. LoRaWAN 1.0.4 End Device Certification Requirements for All Regions Version 1.0. Specification, LoRa Alliance, Fremont, CA, USA, 2020. Available at: https://resources.lora-alliance.org/certification/lorawan-1-0-4-end-device-certification-requirements-for-all-regions-v1-0.
- Corporation, S. LoRaMac-node: LoRaWAN end-device stack implementation and example projects. https://github.com/Lora-net/LoRaMac-node, 2025. Accessed: 2025-05-28.
- Corporation, S. SWL2001: LoRa Basic Modem. https://github.com/Lora-net/SWL2001, 2025. Accessed: 2025-05-28.
- GSMA. Mobile IoT Deployment Guide. Technical report, GSMA, 2022. Available at: https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/wp-content/uploads/2022/10/Mobile-IoT-Deployment-Guidelines-Oct-2022.pdf.
- UnaBiz. Sigfox Build: Learn & build your IoT product. https://build.sigfox.com/, 2025. Accessed: 2025-05-28.
- u blox. What 3GPP Release 14 means for NB-IoT and LTE-M, 2019. Accessed: 2025-05-28.
- LoRa Alliance. LoRaWAN for Developers, 2022. Accessed: 2025-05-28.
- Sigfox. Sigfox Technical Overview. Technical report, Sigfox, 2017. Available at: https://my.avnet.com/wcm/connect/03aebfe2-98f7-4c28-be5f-90638c898009/sigfox-technical-overview.pdf?MOD=AJPERES&CVID=magVa.N.
- Wi-SUN Alliance. Wi-SUN Technology Provides the Platform for City of London Smart City Initiative, 2020. Available at: https://wi-sun.org/blog/wi-sun-technology-provides-the-platform-for-city-of-london-smart-city-initiative/.
- IT Brief, UK. Exclusive: Wi-SUN Alliance continues to adapt and improve, 2024. Available at: https://itbrief.co.uk/story/exclusive-wi-sun-alliance-continues-to-adapt-and-improve.
- Silicon Laboratories. AN1330: Silicon Labs Wi-SUN Mesh Network Performance. Technical report, Silicon Laboratories Inc., 2023. Accessed: 2025-05-28.
- Quispe, A.A.; Riella, R.J.; Iantorno, L.M.; Mariani, L.S.; Fernandez, E.M.G. Analysis of Wi-SUN FAN network formation time. Sensors 2024, 24, 1142. [Google Scholar] [CrossRef]
- Sigfox. UnaBiz opens Sigfox 0G technology device library to drive Technology Convergence and Massive IoT, 2023. Available at: https://sigfox.com/unabiz-opens-sigfox-0g-technology-device-library-to-drive-technology-convergence-and-massive-iot/.
- LoRa Alliance. LoRa Alliance® Releases 2024 Annual Report, 2025. Available at: https://lora-alliance.org/lora-alliance-press-release/lorawan-expanded-market-leadership-with-strong-global-traction/.
- STMicroelectronics. STMicroelectronics Joins ZETA Alliance to Promote Emerging Long-Range IoT Connectivity Standard, 2021. Available at: https://newsroom.st.com/media-center/press-item.html/t4328.html.
- Sensing Labs. ZiFiSense is expanding to Europe to promote ZETA as a new generation of LPWA technology, 2021. Available at: https://sensing-labs.com/zifisense-en/.
- ZETA Alliance. ZETA Alliance Official Website, 2025. Available at: https://zeta-alliance.org/.
- Europe, M. Weightless-N IoT network deployed in Denmark, 2015. Available at: https://www.mobileeurope.co.uk/weightless-n-iot-network-deployed-in-denmark/.
- AT&T quits NB-IoT – sales stopped ahead of Q1 network shut-down. https://www.rcrwireless.com/20241120/internet-of-things-4/att-quits-nb-iot, 2024. Accessed: 2025-05-28.
- Saelens, M.; Hoebeke, J.; Shahid, A.; Poorter, E.D. Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs: An overview and future challenges. EURASIP Journal on Wireless Communications and Networking 2019, 2019, 1–32. [Google Scholar] [CrossRef]
- Strzoda, A.; Grochla, K. A Nature-Inspired Approach to Energy-Efficient Relay Selection in Low-Power Wide-Area Networks (LPWAN). Sensors 2024, 24, 3348. [Google Scholar] [CrossRef] [PubMed]
- Amazon Web Services. Comparing LPWAN Connectivity Technologies, 2021. Available at: https://docs.aws.amazon.com/whitepapers/latest/implementing-lpwan-solutions-with-aws/comparing-lpwan-connectivity-technologies.html.
- Semtech Corporation. Company Overview, 2025. Available at: https://www.semtech.com/company.
- LoRa Alliance Technical Committee. LoRaWAN 1.1 Specification. https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/, 2017. Chairs: N. Sornin (Semtech), A. Yegin (Actility).
- Sigfox. What is Sigfox 0G Technology, 2025. Available at: https://sigfox.com/what-is-sigfox/.
- Sigfox. Qualification, 2025. Available at: https://build.sigfox.com/study#understand-the-strategic-business-advantage-of-iot.
- Sigfox. Radio Configurations, 2025. Available at: https://build.sigfox.com/sigfox-radio-configurations-rc.
- Sigfox. Sigfox Protocol Library for devices (Legacy), 2025. Available at: https://build.sigfox.com/sigfox-library-for-devices.
- 3GPP. Standardization of NB-IOT completed), 2016. Available at: https://www.3gpp.org/news-events/3gpp-news/nb-iot-complete.
- Reininger, P. 3GPP Standards for the Internet-of-Things. https://www.3gpp.org/images/presentations/2016_11_3gpp_standards_for_iot.pdf, 2016. Smart Summit Singapore, November 2016, 3GPP.
- Mwakwata, C.B.; Malik, H.; Mahtab Alam, M.; Le Moullec, Y.; Parand, S.; Mumtaz, S. Narrowband Internet of Things (NB-IoT): From physical (PHY) and media access control (MAC) layers perspectives. Sensors 2019, 19, 2613. [Google Scholar] [CrossRef]
- Rastogi, E.; Saxena, N.; Roy, A.; Shin, D.R. Narrowband internet of things: A comprehensive study. Computer networks 2020, 173, 107209. [Google Scholar] [CrossRef]
- GSMA. 3GPP Low Power Wide Area Technologies. Technical report, 2016. White Paper, October 2016.
- World, R.W. LTE-M Tutorial: Network Architecture, Frequency Bands, and Stack, 2025. Available at: https://www.rfwireless-world.com/tutorials/lte-m-tutorial-network-architecture-frequency-bands-stack.
- ublox. u-blox announces first LTE-M VoLTE call on European network infrastructure, 2019. Available at: https://www.u-blox.com/en/press-releases/u-blox-announces-first-lte-m-volte-call-european-network-infrastructure.
- RF, E. What is LTE Cat-M2?, 2025. Available at: https://www.everythingrf.com/community/what-is-lte-cat-m2.
- LoRa Alliance. LoRaWAN 1.0.3 Specification, 2018. Technical Specification.
- Sigfox. Sigfox Technical Overview. Technical report, 2017. Technical White Paper.
- Rohde & Schwarz. Narrowband Internet of Things Whitepaper. Technical report, 2016. Technical White Paper.
- Sony Altair. Coverage Analysis of LTE-M Category-M1. Technical report, 2017. Technical White Paper.
- 3GPP. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification. Technical Report TS 36.331 V13.12.0 Release 13, 3rd Generation Partnership Project, 2019.
- LoRa Alliance. LoRaWAN 1.0.3 Regional Parameters, 2018. Technical Specification.
- GSMA. LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS. Technical report, 2019. Technical Guide.
- GSMA. NB-IOT DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS. Technical report, 2019. Technical Guide.
- Sony Altair. Evaluation of LTE-M towards 5G IoT requirements for Category-M1 Devices. Technical report, 2019. Technical White Paper.
- Sigfox. Sigfox RF & Protocol Specifications for RC2-UDL-ENC. Technical report, 2019. Technical Specification.
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A survey of LoRaWAN for IoT: From technology to application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef]
- Kufakunesu, R.; Hancke, G.P.; Abu-Mahfouz, A.M. A survey on adaptive data rate optimization in lorawan: Recent solutions and major challenges. Sensors 2020, 20, 5044. [Google Scholar] [CrossRef]
- Pérez, M.; Sierra-Sánchez, F.E.; Chaparro, F.; Chaves, D.M.; Paez-Rueda, C.I.; Galindo, G.P.; Fajardo, A. Coverage and energy-efficiency experimental test performance for a comparative evaluation of unlicensed lpwan: Lorawan and sigfox. IEEE Access 2022, 10, 97183–97196. [Google Scholar] [CrossRef]
- Iqbal, M.; Abdullah, A.Y.M.; Shabnam, F. An application based comparative study of LPWAN technologies for IoT environment. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP). IEEE; 2020; pp. 1857–1860. [Google Scholar]
- Singh, R.K.; Puluckul, P.P.; Berkvens, R.; Weyn, M. Energy consumption analysis of LPWAN technologies and lifetime estimation for IoT application. Sensors 2020, 20, 4794. [Google Scholar] [CrossRef]
- Martinez, B.; Adelantado, F.; Bartoli, A.; Vilajosana, X. Exploring the performance boundaries of NB-IoT. IEEE Internet of Things Journal 2019, 6, 5702–5712. [Google Scholar] [CrossRef]
- Basford, P.J.; Bulot, F.M.; Apetroaie-Cristea, M.; Cox, S.J.; Ossont, S.J. LoRaWAN for smart city IoT deployments: A long term evaluation. Sensors 2020, 20, 648. [Google Scholar] [CrossRef]
- Wild, T.A.; van Schalkwyk, L.; Viljoen, P.; Heine, G.; Richter, N.; Vorneweg, B.; Koblitz, J.C.; Dechmann, D.K.; Rogers, W.; Partecke, J.; et al. A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network. Animal Biotelemetry 2023, 11, 13. [Google Scholar] [CrossRef]
- Saavedra, E.; Del Campo, G.; Santamaria, A. Smart metering for challenging scenarios: A low-cost, self-powered and non-intrusive IoT device. Sensors 2020, 20, 7133. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.; Veras, J.C.; Vidal, R.; Casals, L.; Paradells, J. A sigfox energy consumption model. Sensors 2019, 19, 681. [Google Scholar] [CrossRef] [PubMed]
- Vomhoff, V.; Raffeck, S.; Gebert, S.; Geissler, S.; Hossfeld, T. Nb-iot vs. In lte-m: Measurement study of the energy consumption of lpwan technologies. In Proceedings of the 2023 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE; 2023; pp. 403–408. [Google Scholar]
- Boiano, A.; Spasic, M.; Redondi, A.E.C. eMTC vs. In NB-IoT: An Empirical Comparison of Uplink Performance. In Proceedings of the 2024 9th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE; 2024; pp. 1–6. [Google Scholar]
- Labdaoui, N.; Nouvel, F.; Dutertre, S. Energy-efficient IoT Communications: A comparative study of Long-Term Evolution for Machines (LTE-M) and narrowband internet of things (NB-IoT) technologies. In Proceedings of the 2023 IEEE Symposium on Computers and Communications (ISCC). IEEE Computer Society; 2023; pp. 823–830. [Google Scholar]
- Harinda, E.; Wixted, A.J.; Qureshi, A.U.H.; Larijani, H.; Gibson, R.M. Performance of a live multi-gateway LoRaWAN and interference measurement across indoor and outdoor localities. Computers 2022, 11, 25. [Google Scholar] [CrossRef]
- Pous, C.; Meléndez, J.; Casas, R.; Trigo, J. Technology Assessment for LoRaWAN-based Time-limited Smart Parking. A Case Study. IEEE Access 2024. [Google Scholar]
- Malik, H.; Khan, S.Z.; Sarmiento, J.L.R.; Kuusik, A.; Alam, M.M.; Le Moullec, Y.; Pärand, S. NB-IoT network field trial: Indoor, outdoor and underground coverage campaign. In Proceedings of the 2019 15th International Wireless Communications &, 2019, Mobile Computing Conference (IWCMC). IEEE; pp. 537–542.
- Ferreira, B.; Gaspar, B.; Paiva, S.; Santos, A.; Cabral, J. Coverage and deployment analysis of nb-iot technology under various environment scenarios. In Proceedings of the 2020 2nd International Conference on Societal Automation (SA). IEEE; 2021; pp. 1–7. [Google Scholar]
- Pospisil, O.; Fujdiak, R.; Mikhaylov, K.; Ruotsalainen, H.; Misurec, J. Testbed for LoRaWAN security: design and validation through man-in-the-middle attacks study. Applied Sciences 2021, 11, 7642. [Google Scholar] [CrossRef]
- Coman, F.L.; Malarski, K.M.; Petersen, M.N.; Ruepp, S. Security issues in internet of things: Vulnerability analysis of LoRaWAN, sigfox and NB-IoT. In Proceedings of the 2019 Global IoT Summit (GIoTS). IEEE; 2019; pp. 1–6. [Google Scholar]
- Wang, S.; Xie, T.; Chen, M.Y.; Tu, G.H.; Li, C.Y.; Lei, X.; Chou, P.Y.; Hsieh, F.; Hu, Y.; Xiao, L.; et al. Dissecting operational cellular iot service security: Attacks and defenses. IEEE/ACM Transactions on Networking 2023, 32, 1229–1244. [Google Scholar] [CrossRef]
- Monogoto. Design Essentials for Low Power Cellular IoT, 2023. Accessed: 2025-07-29.
- u-blox, AG. What 3GPP Release 14 means for NB-IoT and LTE-M, 2019. Accessed: 2025-07-29.
- Haltian. NB-IoT 3GPP Release 14: What are the new features?, 2024. Accessed: 2025-07-29.
- LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification. Technical Report ETSI TS 136 331 V14.2.2, 3GPP, 2017. Release 14.
- Basu, S.S.; Sultania, A.K.; Famaey, J.; Hoebeke, J. Experimental performance evaluation of nb-iot. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE; 2019; pp. 1–6. [Google Scholar]
- Zuniga, J.C.; Ponsard, B. Sigfox system description. LPWAN@ IETF97, Nov. 14th 2016, 25, 14. [Google Scholar]
- Wistuba La-Torre, D.S.; Céspedes, S.; Bustos-Jiménez, J. Modeling SCHC ACK-on-Error Fragment Delivery over Sigfox. In Proceedings of the Proceedings of the 18th ACM International Symposium on QoS and Security for Wireless and Mobile Networks, New York, NY, USA, 2022. [CrossRef]
- Vodafone Group. Narrowband-IoT: Pushing the Boundaries of IoT. White paper, Vodafone Group, Newbury, United Kingdom, 2017. Accessed 2025-07-28.
- Vodafone Limited. Low Power Wide Area (LPWA) Network Technologies, 2025.
- TEKTELIC Communications Inc.. LoRaWAN Network Deployment Cost and Importance of Carrier-Grade Gateways, 2023.
- IoT-Shop. Tektelic KONA Photon LoRaWAN Gateway, 2025.
| Technology | LoRaWAN | Sigfox | NB-IoT | LTE-M |
|---|---|---|---|---|
| Range | 15–20 km (rural), 2–5 km (urban) [53] | 40 km (rural), 10 km (urban) [54] | 10 km (rural), 1 km (urban) [55] | 10 km (rural), 1 km (urban) [56] |
| Data Rate | 0.3–50 kbps [53] | 100–600 bps [54] | 250 kbps (DL), 20–250 kbps (UL) [57] | 1 Mbps (peak) [56] |
| Bandwidth | 125, 250 or 500 kHz [58] | 100 Hz [54] | 180 kHz [55] | 1.4–5 MHz (Cat-M1/M2) [59] |
| Battery Life | up to 10 years (Class A) [53] | up to 10 years [54] | 10 years (200B UL daily) [60] | 10 years (200B UL daily) [61] |
| Max Payload | 11–242 B [58] | 12B UL / 8B DL [62] | 1280B* [57] | 1280B* [59] |
| Carrier Frequency | 868/915/433 MHz (ISM) [58] | 862–928 MHz (ISM) [54] | Licensed LTE bands [57] | Licensed LTE bands [59] |
| Latency | Class A: seconds, Class B: up to 128 s, Class C: near real-time [53] | seconds [54] | 1.6–10 s [55] | 10–15 ms (normal coverage) [61] |
| Modulation | CSS (LoRa) or FSK [53] | UNB [54] | SC-FDMA UL / OFDM DL [57] | SC-FDMA UL / OFDM DL (+16-QAM) [59] |
| Security and Privacy | AES-128 [53] | AES-128 [54] | AES-128 [57] | AES-128 [59] |
| KPI | LoRaWAN | Sigfox | NB-IoT | LTE-M |
|---|---|---|---|---|
| Energy eff. | [63,64,65,66,67,68,69] | [65,66,67,70,71,72] | [66,67,68,73,74,75] | [73,74,75] |
| Range | [63,65,66,68,69,76,77] | [65,66,70] | [66,68,74,78,79] | [74,75] |
| Data rate | [64,66,68] | [66,70,72] | [66,68,74,75] | [74,75] |
| Security | [80,81] | [81] | [81,82] | [82] |
| Scalability | [63,64,69] | [70] | ||
| Availability | [64,65,66,68,69,76,77] | [65,67,70,71] | [66,67,68,74,75,78,79] | [74,75] |
| Stability | [64,66,68,69,76] | [70] | [66,68,73,74,75,78,79] | [73,74,75] |
| LoRaWAN | Sigfox | |
|---|---|---|
| Energy eff. | Laboratory: up to ∼2+ years on a 2400 mAh cell at 10 min intervals; field: ∼7 months. ADR tuning is critical, misconfiguration can halve battery life. | Analytical: 1.5–2.5 years on 2400 mAh at 10 min intervals. Field prototype: 118 days on 2200 mAh, ∼6 months on 10000 mAh. |
| Range | Urban: ∼3 km at –110 dBm (80% PDR); rural: ∼11 km (80% PDR); city deployments ∼2 km (72–96% PDR). | Tens of km urban; record LOS 280 km (68.3% PDR flying), 195 km terrestrial (54.1% PDR). |
| Data rate | SF7–SF12: 0.3–5.5 kbps; typical SF10: 980 bps (72.4% PDR of 135000 msgs). | 100 bps uplink; up to 600 bps downlink for under 12B payloads. |
| Security | AES-128 CTR & AES-CMAC; distinct NwkSKey & AppSKey for authentification. | Pre-shared 128-bit AES; vulnerable to replay/DoS attacks. |
| Scalability | ∼1000 devices/gateway before PDR drops under 90% due to ALOHA collisions & duty-cycle limits. | 140 uplinks & 4 downlinks per day per device; PDR drops when over ∼200 dev/km2 (trial (312 tags) show average PDR 56.2%) |
| Availability | Global availability. Indoor 99.95%; outdoor under 95% PDR. | Avaialble Europe, Overseas France, Middle East and Africa, Brazil, Canada, Mexico, Puerto Rico, USA, Japan, Latin America, Asia Pacific, South Korea, India, Russia. Urban 96.7%, dense forest under 19.8%; indoor proven 100% PDR |
| NB-IoT | LTE-M | |
|---|---|---|
| Energy eff. | ∼7 years on 10000 mAh with hourly 64 B payload (121 µW mean). Idle connected draws lower than LTE-M. | Peak bursts equal NB-IoT (1.75 W) but average ∼200 mW higher. Shorter airtime, more efficient for frequent uploads. |
| Range | Outdoor up to 700 m (95%+ PDR at –110 dBm; 1/20 failures). Indoor/garage/underground up to 1.4 km with up to 96% PDR at –127 dBm. | Roughly the same as NB-IoT but only reliable to –93 dBm (0% loss); fails at –113 dBm where NB-IoT holds. Strong urban/in building but reduced deep-indoor comparing to NB-IoT. |
| Data Rate | 11 kbps UL, 17 kbps DL at –100 dBm observed; over 20 kbps under good conditions; falls to low kbps with latency raising under coverage extensions | 348 kbps DL, 145 kbps UL observed |
| Security | 3GPP EPS-AKA; 128-EEA2/AES encryption & integrity; strong cryptography. | Inherits 3GPP security as NB-IoT; proper deployment required to avoid highly unlikely billing/drain exploits. |
| Scalability | 3GPP target 52500 devices/cell; up to 200000 devices under ideal scheduling. Random-access collisions are the bottleneck. | Up to 10000 devices/cell. |
| Availability | Availability depends on telecommunications operator. 96–100% PDR at –127 dBm, deep indoor and underground coverage& peak hour network congestion increases latency. Better coverage than LTE. | Availability depends on telecommunications operator. 100% PDR at good signal; drops completely beyond –113 dBm. Sub-200 ms latency. Same coverage as LTE. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
