Submitted:
31 October 2025
Posted:
03 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Field Observations
3.1.1. Spatter and Scoria Cones

3.1.2. Lava Flows
3.1.3. Ash Plains
3.2. Volcanic Hazard Types
- 1)
- Pāhoehoe lava flow outpour
- 2)
- Transitional lava flow outpouring
- 3)
- Lava spatter cone formation, lava fountaining
- 4)
- Scoria (cinder) cone birth and growth
- 5)
- Ballistic impact
- 6)
- Cone collapse, cone rafting
- 7)
- Sub-Plinian explosive eruption and associated ash fall
- 8)
- Volcanic degassing, vog formation
3.3. Eruption Scenario Simulations
3.3.1. Well-Localized Eruption Point Development
3.3.2. Localized Fissure Eruption
3.4. Lava Flow Inundation Hazard Zonation
3.5. Lava Flow Volume Estimate
3.6. Ash Fall Hazards
4. Discussion

5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Németh, K. Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. Special Paper of the Geological Society of America 2010, 470, 43–66. [Google Scholar] [CrossRef]
- Smith, I.E.M.; Németh, K. Source to surface model of monogenetic volcanism: A critical review. In Geological Society Special Publication; 2017; Volume 446, pp. 1-28.
- Németh, K.; Kereszturi, G. Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences 2015, 104, 2131–2146. [Google Scholar] [CrossRef]
- Kshirsagar, P.; Aviles, R.M.; de Puy y Alquiza, M.J.; Chako Tchamabe, B.; Dominguez, A.J.C. Case study of a cluster of simple and complex monogenetic volcanoes in the north-east part of the Michoacan–Guanajuato Volcanic Field, Central Mexico: Nomenclature implications. Geological Journal 2024, 59, 2750–2771. [Google Scholar] [CrossRef]
- Chako Tchamabe, B.; Youmen, D.; Owona, S.; Ohba, T.; Németh, K.; Ngapna, M.N.; Asaah, A.N.E.; Aka, F.T.; Tanyileke, G.; Hell, J.V. Eruptive history of the Barombi Mbo Maar, Cameroon volcanic line, Central Africa: Constraints from volcanic facies analysis. Central European Journal of Geosciences 2013, 5, 480–496. [Google Scholar] [CrossRef]
- Le Corvec, N.; Bebbington, M.S.; Lindsay, J.M.; McGee, L.E. Age, distance, and geochemical evolution within a monogenetic volcanic field: Analyzing patterns in the Auckland Volcanic Field eruption sequence. Geochemistry, Geophysics, Geosystems 2013, 14, 3648–3665. [Google Scholar] [CrossRef]
- Le Corvec, N.; Spörli, K.B.; Rowland, J.; Lindsay, J. Spatial distribution and alignments of volcanic centers: Clues to the formation of monogenetic volcanic fields. Earth-Science Reviews 2013, 124, 96–114. [Google Scholar] [CrossRef]
- Lore, C.; Lee, H.S.; Pallant, A.; Connor, C.; Chao, J. Integrating Computational Thinking into Geoscientific Inquiry About Volcanic Eruption Hazards and Risks. International Journal of Science and Mathematics Education 2024, 22, 1173–1195. [Google Scholar] [CrossRef]
- Németh, K.; Martin, U. Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in "soft-rock" environment. Journal of Volcanology and Geothermal Research 2007, 159, 138–152. [Google Scholar] [CrossRef]
- Bertin, D.; Lindsay, J.M.; Cronin, S.J.; de Silva, S.L.; Connor, C.; Caffe, P.J.; Grosse, P.; Baez, W.; Bustos, E.; Constantinescu, R. Probabilistic Volcanic Hazard Assessment of the 22.5–28°S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science 2022, 10. [Google Scholar] [CrossRef]
- Hastings, M.S.; Connor, C.; Wetmore, P.; Malservisi, R.; Connor, L.J.; Rodgers, M.; la Femina, P.C. Large-Volume and Shallow Magma Intrusions in the Blackfoot Reservoir Volcanic Field (Idaho, USA). Journal of Geophysical Research: Solid Earth 2021, 126. [Google Scholar] [CrossRef]
- Gallant, E.; Cole, L.; Connor, C.; Donovan, A.; Molisee, D.; Morin, J.; Walshe, R.; Wetmore, P. Modelling eruptive event sources in distributed volcanic fields. Volcanica 2021, 4, 325–343. [Google Scholar] [CrossRef]
- Deng, F.; Connor, C.; Malservisi, R.; Connor, L.J.; White, J.T.; Germa, A.; Wetmore, P. A Geophysical Model for the Origin of Volcano Vent Clusters in a Colorado Plateau Volcanic Field. Journal of Geophysical Research: Solid Earth 2017, 122, 8910–8924. [Google Scholar] [CrossRef]
- Malaguti, A.B.; Corradino, C.; la Spina, A.; Branca, S.; Del Negro, C. Machine Learning Insights into the Last 400 Years of Etna Lateral Eruptions from Historical Volcanological Data. Geosciences (Switzerland) 2024, 14. [Google Scholar] [CrossRef]
- Abdulfarraj, M.; Abraham, E.; Alqahtani, F.; Aboud, E. Advancements in Geohazard Investigations: Developing a Machine Learning Framework for the Prediction of Vents at Volcanic Fields Using Magnetic Data. Geosciences (Switzerland) 2024, 14. [Google Scholar] [CrossRef]
- Uslular, G.; Le Corvec, N.; Mazzarini, F.; Legrand, D.; Gençalioğlu-Kuşcu, G. Morphological and multivariate statistical analysis of quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey): Implications for the volcano-tectonic evolution. Journal of Volcanology and Geothermal Research 2021, 416. [Google Scholar] [CrossRef]
- Nicotra, E.; Viccaro, M.; Donato, P.; Acocella, V.; De Rosa, R. Catching the Main Ethiopian Rift evolving towards plate divergence. Scientific Reports 2021, 11. [Google Scholar] [CrossRef]
- Németh, K.; Moufti, M.R. Geoheritage Values of a Mature Monogenetic Volcanic Field in Intra-continental Settings: Harrat Khaybar, Kingdom of Saudi Arabia. Geoheritage 2017, 9, 311–328. [Google Scholar] [CrossRef]
- Toro, A.; Murcia, H.; Sánchez-Torres, L. Magmatic evolution of basaltic rear-arc monogenetic volcanism in southern Colombia. Journal of Volcanology and Geothermal Research 2025, 462. [Google Scholar] [CrossRef]
- Scheinost, A.; Ureta, G.; Aguilera, F. Torta domes as part of a new morphological and rheological classification based on the distribution of Quaternary domes in the Central Volcanic Zone of the Andes, northern Chile. Geomorphology 2025, 489. [Google Scholar] [CrossRef]
- Monsalve-Bustamante, M.L.; Avila-Vallejo, H.; Ortiz-Martin, I.D.; Osorio-Ocampo, S. Characterization and space–time distribution of Plio-Quaternary volcanism NE of Caldas, Colombia. In Geological Society Special Publication; 2025; Volume 558.
- Cavazos-Alvarez, J.A.; Carrasco-Núñez, G.; Sosa-Ceballos, G.; Lucci, F. Evolution of a large Quaternary monogenetic field; the multifaceted volcanism of the Serdán-oriental basin, México. Journal of Volcanology and Geothermal Research 2024, 446. [Google Scholar] [CrossRef]
- Avellán, D.R.; Cardona-Melchor, S.; Gómez-Vasconcelos, M.G.; Macías, J.L.; Layer, P.W.; Sosa-Ceballos, G.; Ruíz, M.C.; Benowitz, J.; Cisneros-Máximo, G.; Murcia, H.; et al. The Nieve volcanic cluster: A Pliocene - Pleistocene lava dome cluster in the Michoacán-Guanajuato volcanic field (México). Journal of Volcanology and Geothermal Research 2024, 450. [Google Scholar] [CrossRef]
- Gałaś, A.; Lewińska, P.; Aguilar, R.; Nowak, Ł. Remote sensing data applied to the reconstruction of volcanic activity in the Valley of the Volcanoes, Central Volcanic Zone, Peru. Journal of Geodynamics 2023, 156. [Google Scholar] [CrossRef]
- Ureta, G.; Németh, K.; Aguilera, F.; Kósik, S.; González, R.; Menzies, A.; González, C.; James, D. Evolution of a magmatic to a phreatomagmatic volcanic system: The birth of a monogenetic volcanic field, Tilocálar volcanoes, northern Chile. Journal of Volcanology and Geothermal Research 2021, 414. [Google Scholar] [CrossRef]
- Murcia, H.; Borrero, C.; Németh, K. Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes' volcanic province. Journal of Volcanology and Geothermal Research 2019, 383, 77–87. [Google Scholar] [CrossRef]
- Runge, M.G.; Bebbington, M.S.; Cronin, S.J.; Lindsay, J.M.; Moufti, M.R. Integrating geological and geophysical data to improve probabilistic hazard forecasting of Arabian Shield volcanism. Journal of Volcanology and Geothermal Research 2016, 311, 41–59. [Google Scholar] [CrossRef]
- Runge, M.G.; Bebbington, M.S.; Cronin, S.J.; Lindsay, J.M.; Kenedi, C.L.; Moufti, M.R.H. Vents to events: Determining an eruption event record from volcanic vent structures for the Harrat Rahat, Saudi Arabia. Bulletin of Volcanology 2014, 76, 1–16. [Google Scholar] [CrossRef]
- Martí, J.; Ricci, J.; Planagumà, L.; Aguirre-Díaz, G.J. The Quaternary La Garrotxa volcanic field (NE of Iberia): A geochronological approach. Quaternary Science Advances 2025, 17. [Google Scholar] [CrossRef]
- Zimmerer, M.J. A temporal dissection of late Quaternary volcanism and related hazards within the Rio Grande rift and along the Jemez lineament of New Mexico, USA. Geosphere 2024, 20, 505–546. [Google Scholar] [CrossRef]
- Zarazúa-Carbajal, M.C.; Mendoza-Rosas, A.T.; Caballero-Jiménez, G.V.; Gómez-Vázquez, Á.; De la Cruz-Reyna, S. The spatiotemporal evolution of monogenetic scoria cones in the Paricutin-Tancítaro region, Mexico: Results from a Morpho-chronological analysis and its consequences on the distributed volcanic hazard. Journal of Volcanology and Geothermal Research 2024, 451. [Google Scholar] [CrossRef]
- Vilches, M.; Ureta, G.; Grosse, P.; Németh, K.; Aguilera, F.; Aguilera, M. Effusion rate estimation based on solidified lava flows: Implications for volcanic hazard assessment in the Negros de Aras monogenetic volcanic field, northern Chile. Journal of Volcanology and Geothermal Research 2022, 422. [Google Scholar] [CrossRef]
- Schmidt, C.; Laag, C.; Whitehead, M.; Profe, J.; Tongwa Aka, F.; Hasegawa, T.; Kereszturi, G. The complexities of assessing volcanic hazards along the Cameroon Volcanic Line using spatial distribution of monogenetic volcanoes. Journal of Volcanology and Geothermal Research 2022, 427. [Google Scholar] [CrossRef]
- Foote, A.; Németh, K.; Handley, H. The interplay between environmental and magmatic conditions in eruption style transitions within a fissure-aligned monogenetic volcanic system of Auckland, New Zealand. Journal of Volcanology and Geothermal Research 2022, 431. [Google Scholar] [CrossRef]
- Meliksetian, K.; Neill, I.; Barfod, D.N.; Milne, E.J.M.; Waters, E.C.; Navasardyan, G.; Grigoryan, E.; Olive, V.; Odling, N.; Karakhanian, A. Pleistocene - Holocene volcanism at the Karkar geothermal prospect, Armenia. Quaternary Geochronology 2021, 66. [Google Scholar] [CrossRef]
- Pedrazzi, D.; Kereszturi, G.; Lobo, A.; Geyer, A.; Calle, J. Geomorphology of the post-caldera monogenetic volcanoes at Deception Island, Antarctica — Implications for landform recognition and volcanic hazard assessment. Journal of Volcanology and Geothermal Research 2020, 402. [Google Scholar] [CrossRef]
- Ang, P.S.; Bebbington, M.S.; Lindsay, J.M.; Jenkins, S.F. From eruption scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research 2020, 397. [Google Scholar] [CrossRef]
- Nieto-Torres, A.N.; Martin-Del-Pozzo, A.L. Spatio-temporal hazard assessment of a monogenetic volcanic field, near México City. Journal of Volcanology and Geothermal Research 2019, 371, 46–58. [Google Scholar] [CrossRef]
- Marrero, J.M.; García, A.; Berrocoso, M.; Llinares, Á.; Rodríguez-Losada, A.; Ortiz, R. Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: The example of la Palma (Canary Islands). Journal of Applied Volcanology 2019, 8. [Google Scholar] [CrossRef]
- Osorio-Ocampo, S.; Macías-Vázquez, J.L.; Pola, A.; Cardona-Melchor, S.; Sosa-Ceballos, G.; Garduño-Monroy, V.H.; Layer, P.; García-Sánchez, L.; Perton, M.; Benowitz, J. The eruptive history of the Pátzcuaro Lake area in the Michoacán Guanajuato Volcanic Field, central México: Field mapping, C-14 and 40Ar/39Ar geochronology. Journal of Volcanology and Geothermal Research 2018, 358, 307–328. [Google Scholar] [CrossRef]
- Kereszturi, G.; Bebbington, M.; Németh, K. Forecasting transitions in monogenetic eruptions using the geologic record. Geology 2017, 45, 283–286. [Google Scholar] [CrossRef]
- Bebbington, M.S. Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field. Journal of Volcanology and Geothermal Research 2013, 252, 14–28. [Google Scholar] [CrossRef]
- Cronin, S.J.; Neall, V.E. Impacts of volcanism on pre-European inhabitants of Taveuni, Fiji. Bulletin of Volcanology 2000, 62, 199–213. [Google Scholar] [CrossRef]
- Tchouamou Njoya, E.T.; Kassem, A.; Ragab, A.M.; Ahmed, T.S.A.; Nassr, A. Economic and Environmental Implications of Tourism Growth in Saudi Arabia: Insights from a CGE Model. African and Asian Studies 2025. [Google Scholar]
- Sultan, W.A.M.; Alsenosy, A.; Jaharadak, A.A.B. Examining The Influence of Various Big Data Capabilities on Tourism Firms in Saudi Arabia. International Journal of Accounting and Economics Studies 2025, 12, 104–114. [Google Scholar] [CrossRef]
- Sourp, L.; Fayad, A.; Gascoin, S. Impact of climate change on snow supply in Trojena, Saudi Arabia. Environmental Research Communications 2025, 7. [Google Scholar] [CrossRef]
- Sobaih, A.E.E.; Abdou, A.H.; Alshamayleh, H.Z.; Alshebami, A.S.; Abu Elnasr, A.E. Greening minds before businesses: navigating SDGs hurdles for micro and small hotels in Saudi Arabia. Cogent Business and Management 2025, 12. [Google Scholar] [CrossRef]
- Sampieri, S.; Bagader, M. Heritage Conservation and Tourism Development in Saudi Arabia: The Case of Historic Jeddah. In Proceedings of the Advances in Science, Technology and Innovation, 2025; pp. 49-58.
- Reda, F.M. Building the Future Heritage, Tourism and Media. In Proceedings of the Advances in Science, Technology and Innovation, 2025; pp. 145-161.
- Özerdem, C. Heritage and Identity: Neoliberal Mega-Projects in Mecca. International Journal of Islamic Architecture 2025, 14, 157–178. [Google Scholar] [CrossRef]
- Mukhametov, A.; Moreva, E.; Bayramli, M.; Smirnov, A.; Egorov, I. Alternative Strategies for the Development Vector of the Arabian Peninsula Countries. International Journal of Sustainable Development and Planning 2025, 20, 1535–1552. [Google Scholar] [CrossRef]
- Moscatelli, M.; Albrahim, N.; Aldawood, R. Biophilic Urbanism for Sustainable and Resilient Neighborhood. The Case of Al Murabba, Riyadh. In Proceedings of the Lecture Notes in Civil Engineering, 2025; pp. 80-89.
- Manal, A. The Role of Renewable Energy in Driving Economic Transformation and Sustainable Development in Saudi Arabia. International Journal of Energy Economics and Policy 2025, 15, 364–373. [Google Scholar] [CrossRef]
- Kassem, A.; Tchouamou Njoya, E.T.; Ragab, A.M.; Nassr, A.; Adelazim Ahmed, T.S. Tourism Expansion, Water Scarcity, and Economic Implications in Saudi Arabia: Insights from a CGE Analysis. African and Asian Studies 2025. [Google Scholar]
- Kashef, M.; Balkhy, D. Heritage Tourism and Societal Transformations: Al-Ula World Heritage Site. Heritage and Society 2025. [Google Scholar] [CrossRef]
- Iqbal, T.; Aftab, F. Exploring Tourism's Contribution to Saudi Arabia's Vision 2030: Aligning with UN SDG 8 for Sustainable Growth. International Journal of Sustainable Development and Planning 2025, 20, 1283–1289. [Google Scholar] [CrossRef]
- Aldalbahi, S.M.M. Environmental Carrying Capacity Assessment for Environmental Planning, and Sustainable Management of National Parks in Saudi Arabia. Environment and Ecology Research 2025, 13, 120–130. [Google Scholar] [CrossRef]
- Thompson, M.C.; Quilliam, N. Saudi vision 2030: Repurposing ministries and creating new institutions. 2024; pp. 327-358.
- Sen, S.; Abouelresh, M.O.; Santra, A.; Al-Musabeh, A.H.; Al-Ismail, F.S. Geoheritage Assessment of the Geosites in Tuwaiq Mountain, Saudi Arabia: in the Perspective of Geoethics, Geotourism, and Geoconservation. Geoheritage 2024, 16. [Google Scholar] [CrossRef]
- Sen, S.; Abouelresh, M.O.; Joydas, T.V.; Almusabeh, A.; Al-Ismail, F.S.; Pulido, B. Geoheritage and Geotourism Potential of NEOM, Saudi Arabia: Linking Geoethics, Geoconservation, and Geotourism. Geoheritage 2024, 16. [Google Scholar] [CrossRef]
- Sen, S.; Abouelresh, M.O.; Al-Musabeh, A.H.; Al-Ismail, F.S. Potential Geoheritage resources in Saudi Arabia for geotourism development: In the context of IUCN theme. International Journal of Geoheritage and Parks 2024, 12, 98–112. [Google Scholar] [CrossRef]
- Sen, S.; Almusabeh, A.; Abouelresh, M.O. Geoheritage and Geotourism Potential of Tuwaiq Mountain, Saudi Arabia. Geoheritage 2023, 15. [Google Scholar] [CrossRef]
- Al Mohaya, J.; Elassal, M. Assessment of Geosites and Geotouristic Sites for Mapping Geotourism: A Case Study of Al-Soudah, Asir Region, Saudi Arabia. Geoheritage 2023, 15. [Google Scholar] [CrossRef]
- Abd El-Aal, A.; Abdullah, G.M.S.; Al-Metwaly, W.M.; AbdelMaksoud, K.M. Geological and archeological heritage resources assessment of the Najran Province; towards the 2030 vision of Saudi Arabia. Resources Policy 2023, 85. [Google Scholar] [CrossRef]
- Moufti, M.R.; Németh, K. Geoheritage of volcanic harrats in Saudi Arabia; Springer: Heidelberg, 2016; pp. 1–194. [Google Scholar]
- Turki, H.Z.; Khan, H.A.; Sen, S. Geoheritage and Geotourism Potential of the North Riyadh UNESCO Global Geopark, Saudi Arabia. Geoheritage 2025, 17. [Google Scholar] [CrossRef]
- Filippi, L.D.; Mazzetto, S. Comparing AlUla and The Red Sea Saudi Arabia’s Giga Projects on Tourism towards a Sustainable Change in Destination Development. Sustainability (Switzerland) 2024, 16. [Google Scholar] [CrossRef]
- Amal, M.O.T.; Sahide, A.; Bustami, M.R. Saudi arabia's diversification strategy through the red sea project in facing the international petroleum competition. Jurisdictie: Jurnal Hukum dan Syariah 2024, 15, 380–411. [Google Scholar] [CrossRef]
- Robitzch, V.; Kattan, A.; Dunne, A.; Coker, D.J. Saudi Arabia Case Study: The Development of Saudi Arabia’s Red Sea Coastline: Challenges Facing Sustainable Resource Use. 2023; pp. 73-93.
- Alyusuf, A. Sustainable tourism development in the red sea of the kingdom of saudi arabia: Threats and opportunities. In Proceedings of the Proceedings of the International Conference on Tourism Research, 2021; pp. 36-43.
- Németh, K., Sowaigh, A., Toni, M., Sokolov, V., Moqeem, F. Volcanic hazard assessment of northern Harrat Lunayyir, Kingdom of Saudi Arabia: Volume 5 of 5. Saudi Geological Survey Project Contract Report 2025, SGS-PCR-2024-2 (Volume 5 of 5), 68.
- Németh, K.; Toni, M.; Sokolov, V.; Sowaigh, A.; Ashor, M.; Moqeem, F. Eruption Scenarios of a Monogenetic Volcanic Field Formed within a Structurally Controlled Basement Terrain: Harrat Lunayyir, Saudi Arabia. In A Comprehensive Study of Volcanic Phenomena, Németh, K., Ed.; IntechOpen: Rijeka, 2024.
- Geologic map of the Arabian Peninsula; 270A; 1963.
- Mukhopadhyay, M.; Mukhopadhyay, B.; Mogren, S.; Nandi, B.K.; Ibrahim, E. Regional significance of crustal and sub-crustal rheological heterogeneities beneath the Harrat Lunayyir and their continuity into the neighboring harrats, Western Saudi Arabia – Perspectives of the Afar plume activity. Journal of African Earth Sciences 2022, 186. [Google Scholar] [CrossRef]
- Saibi, H.; Mogren, S.; Mukhopadhyay, M.; Ibrahim, E. Subsurface imaging of the Harrat Lunayyir 2007–2009 earthquake swarm zone, western Saudi Arabia, using potential field methods. Journal of Asian Earth Sciences 2019, 169, 79–92. [Google Scholar] [CrossRef]
- Alamri, A.; Duncan, R.; Kent, A.; Alfouzan, F. Geochemical and Geophysical Evolution of Regional Mantle Flow Beneath Volcanic Harrats in the West Arabian Shield (Saudi Arabia). In Advances in Science, Technology and Innovation; 2019; pp. 9-11.
- Al Shehri, A.; Gudmundsson, A. Thermal mapping of the 2009 dyke emplacement at Harrat Lunayyir, Saudi Arabia. Arabian Journal of Geosciences 2019, 12. [Google Scholar] [CrossRef]
- Vigliotti, L.; Cai, M.Y.; Rasul, N.M.A.; Al-Nomani, S.M.S. Palaeomagnetism and geochronology of the Harrats Lunayyir and Khaybar Lava Fields, Saudi Arabia. In Geological Setting, Palaeoenvironment and Archaeology of the Red Sea; 2018; pp. 417-435.
- Sanfilippo, A.; Cai, M.Y.; Jácome, A.P.G.; Ligi, M. Geochemistry of the lunayyir and khaybar volcanic fields (Saudi Arabia): Insights into the origin of cenozoic arabian volcanism. In Geological Setting, Palaeoenvironment and Archaeology of the Red Sea; 2018; pp. 389-415.
- Zahran, H.M.; El-Hady, S.M.; Abuelnaga, H.S. Aeromagnetic data over Harrat Lunayyir and surrounding areas, western Saudi Arabia. Arabian Journal of Geosciences 2017, 10. [Google Scholar] [CrossRef]
- Zahran, H.M.; El-Hady, S.M. Seismic hazard assessment for Harrat Lunayyir – A lava field in western Saudi Arabia. Soil Dynamics and Earthquake Engineering 2017, 100, 428–444. [Google Scholar] [CrossRef]
- Mogren, S.; Saibi, H.; Mukhopadhyay, M.; Gottsmann, J.; Ibrahim, E.K.H. Analyze the spatial distribution of lava flows in Al-Ays Volcanic Area, Saudi Arabia, using remote sensing. Arabian Journal of Geosciences 2017, 10. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Mogren, S.; Mukhopadhyay, M.; Dasgupta, S. Incipient status of dyke intrusion in top crust - evidences from the Al-Ays 2009 earthquake swarm, Harrat Lunayyir, SW Saudi Arabia. Geomatics, Natural Hazards and Risk 2013, 4, 30–48. [Google Scholar] [CrossRef]
- Duncan, R.A.; Al-Amri, A.M. Timing and composition of volcanic activity at Harrat Lunayyir, western Saudi Arabia. Journal of Volcanology and Geothermal Research 2013, 260, 103–116. [Google Scholar] [CrossRef]
- Pallister, J.S.; McCausland, W.A.; Jónsson, S.; Lu, Z.; Zahran, H.M.; El Hadidy, S.; Aburukbah, A.; Stewart, I.C.F.; Lundgren, P.R.; White, R.A.; et al. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nature Geoscience 2010, 3, 705–712. [Google Scholar] [CrossRef]
- al Shehri, A.A. Volcanic Geomorphology and Morphometry Classification of Cinder Cone in Harrat Lunayyir Saudi Arabia by Using GIS and Remote Sensing. Journal of Environmental and Earth Sciences 2025, 7, 304–318. [Google Scholar] [CrossRef]
- Németh, K.; Sowaigh, A.; Zakharovskyi, V.; Toni, M.; Ashor, M.; Sokolov, V.; Moqeem, F.; Abdulhafaz, K.; Hablil, T.; Sehli, T.; et al. The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues. Heritage 2025, 8. [Google Scholar] [CrossRef]
- Robinson, J.E.; Downs, D.T. Overview of the Cenozoic Geology of the Northern Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia. US Geological Survey Professional Paper 2023, 2023. [Google Scholar] [CrossRef]
- Mossoux, S.; Saey, M.; Bartolini, S.; Poppe, S.; Canters, F.; Kervyn, M. Q-LAVHA: A flexible GIS plugin to simulate lava flows. Computers and Geosciences 2016, 97, 98–109. [Google Scholar] [CrossRef]
- Becerril, L.; Larrea, P.; Salinas, S.; Mossoux, S.; Ferrés, D.; Widom, E.; Siebe, C.; Martí, J. The historical case of Paricutin volcano (Michoacán, México): challenges of simulating lava flows on a gentle slope during a long-lasting eruption. Natural Hazards 2021, 107, 809–829. [Google Scholar] [CrossRef]
- Németh, K.; Moufti, M.R. Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia. Land 2023, 12. [Google Scholar] [CrossRef]
- Chiba, T.; S., K.; Suzuki, Y. Red relief image map: new visualization method for three dimensional data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008 2008, 1071-1076.
- Chiba, T.; Kaneta, S.; Ohashi, M. Digital Terrain Representation Methods and Red Relief Image Map, A New Visualization Approach. Proceedings of the International Cartographic Association, 2, 2019., 29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. 2019. [CrossRef]
- Ulusoy, İ.; Diker, C.; Şen, E.; Aydın, E.; Akkaş, E.; Gümüş, E.; Çubukçu, H.E.; Erkut, V. Surface expressions of morphostructural features at Hasandağ stratovolcano on DEM datasets. Mediterranean Geoscience Reviews 2021, 3, 175–191. [Google Scholar] [CrossRef]
- Karátson, D.; Yepes, J.; Favalli, M.; Rodríguez-Peces, M.J.; Fornaciai, A. Reconstructing eroded paleovolcanoes on Gran Canaria, Canary Islands, using advanced geomorphometry. Geomorphology 2016, 253, 123–134. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A. Visualization and comparison of DEM-derived parameters. Application to volcanic areas. Geomorphology 2017, 290, 69–84. [Google Scholar] [CrossRef]
- Özpolat, E.; Yildirim, C.; Görüm, T. The Quaternary landforms of the Büyük Menderes Graben System: the southern Menderes Massif, western Anatolia, Turkey. Journal of Maps 2020, 16, 405–419. [Google Scholar] [CrossRef]
- Giordano, G.; Cas, R.; Wright, J.V. Explosive Eruption Styles, Columns, and Pyroclastic Fallout Deposits. In Volcanology: Processes, Deposits, Geology and Resources, Cas, R., Giordano, G., Wright, J.V., Eds.; Springer International Publishing: Cham, 2024; pp. 519-691.
- Taddeucci, J.; Edmonds, M.; Houghton, B.; James, M.R.; Vergniolle, S. Chapter 27 - Hawaiian and Strombolian Eruptions. In The Encyclopedia of Volcanoes (Second Edition), Sigurdsson, H., Ed.; Academic Press: Amsterdam, 2015; pp. 485-503.
- Houghton, B.F.; Wilson, C.J.N.; Smith, I.E.M. Shallow-seated controls on styles of explosive basaltic volcanism: A case study from New Zealand. Journal of Volcanology and Geothermal Research 1999, 91, 97–120. [Google Scholar] [CrossRef]
- Houghton, B.F.; Gonnermann, H.M. Basaltic explosive volcanism: Constraints from deposits and models. Geochemistry 2008, 68, 117–140. [Google Scholar] [CrossRef]
- Németh, K.; Kereszturi, G. Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation. In Updates in Volcanology - New Advances in Understanding Volcanic Systems, Németh, K., Ed.; IntechOpen: London, 2012.
- Cas, R.; Wright, J.V.; Giordano, G. Basaltic and Other Low-Viscosity Lavas. In Volcanology: Processes, Deposits, Geology and Resources, Cas, R., Giordano, G., Wright, J.V., Eds.; Springer International Publishing: Cham, 2024; pp. 229-309.
- Harris, A.; Latutrie, B.; Van Wyk de Vries, B.; Saubin, É.; Foucher, M.; Gurioli, L.; Zanella, E.; Médard, E.; Nauret, F. Emplacement of monogenetic lava flows on eroded terrain, Part II: The case of the Artière valley (Grave Noire, France). Journal of Volcanology and Geothermal Research 2023, 438. [Google Scholar] [CrossRef]
- Latutrie, B.; Harris, A.; Van Wyk de Vries, B.; Gurioli, L.; Médard, E. Emplacement of lava flows on eroded terrain, part I: The case of the Tiretaine valley (Chaîne des Puys, France). Journal of Volcanology and Geothermal Research 2023, 438, 107808. [Google Scholar] [CrossRef]
- Murcia, H.; Németh, K.; Moufti, M.R.; Lindsay, J.M.; El-Masry, N.; Cronin, S.J.; Qaddah, A.; Smith, I.E.M. Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields. Journal of Asian Earth Sciences 2014, 84, 131–145. [Google Scholar] [CrossRef]
- Brown, C.; Bryan, S.E.; Gust, D.A.; Dalton, H. Insights into the development of small-volume long lava flows: A case study of the Coalstoun Lakes Volcanic Field, southeast Queensland, Australia. Journal of Volcanology and Geothermal Research 2024, 451. [Google Scholar] [CrossRef]
- Self, S.; Keszthelyi, L.; Thordarson, T. The importance of pāhoehoe. Annual Review of Earth and Planetary Sciences 1998, 26, 81–110. [Google Scholar] [CrossRef]
- Self, S.; Thordarson, T.; Keszthelyi, L. Emplacement of continental flood basalt lava flows. In Geophysical Monograph Series; 1997; Volume 100, pp. 381-410.
- Pioli, L.; Erlund, E.; Johnson, E.; Cashman, K.; Wallace, P.; Rosi, M.; Delgado Granados, H. Explosive dynamics of violent Strombolian eruptions: The eruption of Parícutin Volcano 1943-1952 (Mexico). Earth and Planetary Science Letters 2008, 271, 359–368. [Google Scholar] [CrossRef]
- Foshag, W.F.; Gonzalez, R.J. Birth and development of Paricutin volcano. U.S. Geol. Surv. Bull. 1956, 965 D, 355–489. [Google Scholar]
- Walker, G.P.L. Explosive volcanic eruptions — a new classification scheme. Geologische Rundschau 1973, 62, 431–446. [Google Scholar] [CrossRef]
- Valentine, G.A.; Gregg, T.K.P. Continental basaltic volcanoes - Processes and problems. Journal of Volcanology and Geothermal Research 2008, 177, 857–873. [Google Scholar] [CrossRef]
- Self, S.; Sparks, S.; Booth, B.; Walker, G.P.L. The 1973 Heimaey Strombolian Scoria deposit, Iceland. Geological Magazine 1974, 111, 539–548. [Google Scholar] [CrossRef]
- Thorarinsson, S.; Steinthórsson, S.; Einarsson, T.; Kristmannsdöttir, H.; Öskarsson, N. The eruption on Heimaey, Iceland. Nature 1973, 241, 372–375. [Google Scholar] [CrossRef]
- Larrea, P.; Salinas, S.; Widom, E.; Siebe, C.; Abbitt, R.J.F. Compositional and volumetric development of a monogenetic lava flow field: The historical case of Paricutin (Michoacán, Mexico). Journal of Volcanology and Geothermal Research 2017, 348, 36–48. [Google Scholar] [CrossRef]
- Kawabata, E.; Cronin, S.J.; Bebbington, M.S.; Moufti, M.R.H.; El-Masry, N.; Wang, T. Identifying multiple eruption phases from a compound tephra blanket: an example of the AD1256 Al-Madinah eruption, Saudi Arabia. Bulletin of Volcanology 2015, 77. [Google Scholar] [CrossRef] [PubMed]
- Camp, V.E.; Hooper, P.R.; Roobol, M.J.; White, D.L. The Madinah eruption, Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types. Bulletin of Volcanology 1987, 49, 489–508. [Google Scholar] [CrossRef]
- Bebbington, M.S. Spatio-volumetric hazard estimation in the Auckland volcanic field. Bulletin of Volcanology 2015, 77. [Google Scholar] [CrossRef]
- Hayes, J.L.; Wilson, T.M.; Deligne, N.I.; Lindsay, J.M.; Leonard, G.S.; Tsang, S.W.R.; Fitzgerald, R.H. Developing a suite of multi-hazard volcanic eruption scenarios using an interdisciplinary approach. Journal of Volcanology and Geothermal Research 2020, 392. [Google Scholar] [CrossRef]
- Hopkins, J.L.; Smid, E.R.; Eccles, J.D.; Hayes, J.L.; Hayward, B.W.; McGee, L.E.; van Wijk, K.; Wilson, T.M.; Cronin, S.J.; Leonard, G.S.; et al. Auckland Volcanic Field magmatism, volcanism, and hazard: a review. New Zealand Journal of Geology and Geophysics 2021, 64, 213–234. [Google Scholar] [CrossRef]
- Valentine, G.A.; Perry, F.V. Volcanic risk assessment at Yucca Mountain, NV, USA: Integration of geophysics, geology and modeling. In Volcanic and Tectonic Hazard Assessment for Nuclear Facilities; 2009; Volume 9780521887977, pp. 452-480.
- Wetmore, P.H.; Hughes, S.S.; Connor, L.J.; Caplinger, M.L. Spatial distribution of eruptive centers about the Idaho National Laboratory. In Volcanic and Tectonic Hazard Assessment for Nuclear Facilities; 2009; Volume 9780521887977, pp. 385-405.
- Sugden, P.; Meliksetian, K.; Savov, I.P.; Barfod, D.; Wilson, M.; Connor, C.; Navasardyan, G.; Grigoryan, E.; Manucharyan, D. Post-collisional shift from polygenetic to monogenetic volcanism revealed by new 40Ar/39Ar ages in the southern Lesser Caucasus (Armenia). Journal of Volcanology and Geothermal Research 2021, 412. [Google Scholar] [CrossRef]
- Connor, L.J.; Connor, C.B.; Meliksetian, K.; Savov, I. Probabilistic approach to modeling lava flow inundation: A lava flow hazard assessment for a nuclear facility in Armenia. Journal of Applied Volcanology 2012, 1. [Google Scholar] [CrossRef]





























| Chain of volcanic hazards / cascading hazards if an eruption starts |
Likelihood Ranking | Estimated Duration |
|---|---|---|
| Fissure opening – Lava fountaining – Pāhoehoe lava outpour – Transitional flow field development – Inflation/deflation zone development – Scoria cone edifice growth – Ballistic bombardments – Small scale rafting -Lava outpour repetition – Sub-Plinian/violent Strombolian explosive event with moderate ash dispersal – Cone regrowth – slight lateral fissure shifting – Major paroxysmal sub-Plinian explosive event – Major ash dispersal – Longitudinal fissure rupture – Additional vent formations through the entire length of the fissure – Paired eruptions and compound volcanic edifice formation – Major rafting and collapse events |
LOW |
DAYS to YEARS |
| Fissure opening – Lava fountaining – Pāhoehoe lava outpour – Transitional flow field development – Inflation/deflation zone development – Scoria cone edifice growth – Ballistic bombardments – Small scale rafting -Lava outpour repetition – Sub-Plinian/violent Strombolian explosive event with moderate ash dispersal – Cone regrowth – slight lateral fissure shifting |
MODERATE |
DAYS to MONTH |
| Fissure opening – Lava fountaining – Pāhoehoe lava outpour – Transitional Flow field development – Inflation/deflation zone development – Scoria cone edifice growth – Ballistic bombardments – Small scale rafting |
HIGH |
DAYS to MONTH |
| Fissure opening – Lava fountaining – Pāhoehoe lava outpour – Transitional Flow field development – Inflation/deflation zone development |
CERTAIN |
DAYS to WEEKS |
| Category 1 (likelihood / expectation during lifetime of project) | Category 2 (likelihood / expectation during lifetime of project) | Category 3 (likelihood / expectation during lifetime of project) | |
|---|---|---|---|
| Example/s | Ash fall / dispersion in distal areas in comparison to vent opening position | Lava inundation of medial to distal regions from volcanic eruption site(s) | Complex eruption scenario of proximal regions where volcanic edifice grows, proximal lava outpouring, and heavy ash fall can be accompanied by volcanic edifice instability (rafting and collapse) |
| Severity / Impact | (x) Manageable | (x) Manageable | (x) Unmanageable, built environment suffers irreparable and unrecoverable damage |
| Mitigation Through Design | 1- Design buildings and roofs to support 1 – 2 meters of ash accumulation. 2- Design accessibility and escape routes to exit the hazard zone. |
1- Install detection systems and monitoring services that alert all people in the development vicinity to prepare for evacuation. (Warning signs before any risk to humans can be potentially ensured) 2- Design escape routes. 3- Accept potential loss of assets and design to limit asset loss as much as possible. |
Mitigation should focus on quick evacuation, minimizing delays in complete access, and the rapid removal of valuable items from the premises. This latter process must be pre-designed to achieve maximum efficiency of the rescue operation. |
| Information | Ash zonation modeling | Lava flow modeling | Model scenario of events |
| Volcanic hazard | Low risk | Moderate risk | High risk |
|---|---|---|---|
| Areas may experience ashfall that is 1 cm or less thick. | Lava flow zones beyond vent areas | Potential vent zones are identified by analyzing the combination of structural elements, vent alignments, and age constraints. | |
| Pāhoehoe lava flow | Use fire-resistant materials and avoid flammable items. Ensure the building design does not encourage accidental lava diversion; avoid holes, tunnels, or underground chambers. | Use fire-resistant exterior materials, minimize the use of materials prone to accidental ignition and capable of transferring fire into the building, and design clear escape routes with procedures to ensure evacuation within 24 hours. | Use fire-resistant materials in construction. Strengthen the building frame to endure mechanical pressure and include a survival chamber stocked with at least 24 hours of supplies for the typical number of occupants. |
| Transitional lava flow | Ensure the exterior is structurally sound and mostly perpendicular, capable of resisting lava flow and withstanding pressure from up to 2 meters of lava, even with some overhang. | Use durable, sloped exterior materials to divert incoming lava. Design a complex outer structure to split lava flow for cooling and natural barrier formation. Build stone fences to slow down and disperse lava into smaller, more manageable areas. | Construct a durable, insulated structure with a sealed environment and life support systems—including gas and air filters, as well as a water supply for the expected number of occupants—so that they can endure at least 24 hours if trapped. Incorporate helipads or elevated, lava-safe landing zones for rescue within the first 24 hours. |
| Lava spatter eruption | All precautions relevant to lava flows are deemed suitable for handling lava spattering events. | Ensure the building includes shelters built to withstand heat and protect against incoming debris weighing several kilograms and impacting at speeds of several tens of meters per second. | Design buildings with simple geometry to minimize spatter buildup and secondary flow inside the structure. |
| Scoria cone formation and growth | In low-risk zones, the likelihood of scoria cone formation is very low, and no preventive measures are recommended aside from being prepared to handle possible ashfall. | Scoria cones could develop in this area; follow ash fall safety measures. | Scoria cone formation is anticipated in this area, so all recommendations regarding roof reinforcement are relevant. |
| Ballistic impact | In areas marked as low-risk on the map, the chance of ballistic impact is minimal. | In regions with moderate risk, the chance of a ballistic impact is low; it is advisable to use reinforced roof structures that may include elastic components capable of absorbing impact energy and decreasing the likelihood of fracturing. | Ballistic impacts are likely in the red zone due to the vent locations. Buildings here must have reinforced walls and windows capable of withstanding 100 kg projectiles moving at up to 100 m/s. |
| Scoria cone collapse and rafting | No need specific measure | No specific measures are needed; an adaptive mitigation strategy has been implemented. | In this area, proximity to scoria cones and major lava outflow sites poses a moderate to high risk of cone collapse. It is advisable to build structures on a continuous, reinforced foundation designed to move as a unit in the event of a nearby gravity-induced collapse, helping the structure stay intact and be transported atop the collapsing material along the lava flow surface. |
| Sub-Plinian to violent Strombolian eruption style | In these areas, a sub-Plinian eruption may cause fine ash fallout. Air filters and air conditioning systems should be ready to handle this, and facilities must be prepared for quick fine ash cleaning and disposal. | Sub-Plinian eruptions are likely to occur in this zone, with moderate ash accumulation expected. Facilities must have real-time ash cleanup plans and accessible tools. Roofs should be able to support up to 10 m of ash. | There is a high likelihood that this intense phase of volcanic activity will occur once an eruption begins. This area may experience significant ash fall; therefore, roof structures should be designed to support approximately 50 cm of ash buildup, with maximum levels potentially reaching up to 2 meters within 1 km of the source. Building designs must ensure that controlled roof collapse does not endanger human life, while also maintaining the building’s functionality and keeping external access points available for emergency response. |
| Volcanic degassing, vog formation | This area is away from the lava field, and vog levels depend on wind conditions. Buildings should have personal air filter kits available in case of high gas concentrations. | The risk of vog exposure is considered moderate to high. Intensive vog formation is expected in areas where lava gathers, such as in depressions or behind physical barriers. | There is a high risk of vog, which can be dangerous. All visitors are required to carry their own personal breathing equipment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).