Submitted:
30 October 2025
Posted:
03 November 2025
You are already at the latest version
Abstract
Keywords:
Introduction

Definition and Conceptual Framework
Foundational Conceptualization
Theoretical Foundations
Relationship with Cybernetics and Cognitive Sciences
Historical Contextualization
Contemporary Integration
Concrete Examples and Applications
The DIKW Hierarchical Model: Expanded Analysis
Foundational Architecture
Hybrid Wisdom as Meta-Level Integration
Neuro-Symbolic AI: Combining Symbolic and Machine Learning
Theoretical Integration
Practical Implementation and Implications
Advantages, Challenges, and Future Trajectories of Hybrid Wisdom
Multifaceted Advantages
Substantive Challenges and Implementation Obstacles
Future Trajectories and Emerging Opportunities
Conclusion
References
- Besharatim, M.R.; Izadi, M. DD-KARB: data-driven compliance to quality by rule based benchmarking. J. Big Data 2022, 9, 103. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Serpa, S. Society 5.0 and social development. Manag. Organ. Stud. 2018, 5, 26–31. [Google Scholar] [CrossRef]
- Jafari, N.; Besharati, M.R.; Hourali, M. SELM: Software Engineering of Machine Learning Models. In New Trends in Intelligent Software Methodologies, Tools and Techniques; IOS Press: Amsterdam, The Netherlands, 2021; pp. 48–54. [Google Scholar]
- BourBour, S.; Besharati, M.R. Wise and Complex Enterprise Architecture for FMIS. Preprints 2025, 2025091272. [Google Scholar] [CrossRef]
- Schoenegger, P.; Tuminauskaite, I.; Park, P.S.; Bastos, R.V.S.; Tetlock, P.E. Wisdom of the silicon crowd: LLM ensemble prediction capabilities rival human crowd accuracy. Sci. Adv. 2024, 10, eadp1528. [Google Scholar] [CrossRef]
- Mestre, A. Towards a Hybrid Intelligence Paradigm: Systematic Integration of Human and Artificial Capabilities. In International Conference on Research Challenges in Information Science; Springer Nature: Cham, Switzerland, 2024; pp. 149–156. [Google Scholar]
- Dellermann, D.; Ebel, P.; Söllner, M.; Leimeister, J.M. Hybrid intelligence. Bus. Inf. Syst. Eng. 2019, 61, 637–643. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, L.; Liu, J.; Mao, J.; Qiao, L.; Ruan, F. The World of Dual-Brain; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Agrawal, A.; Gans, J.S.; Goldfarb, A. Exploring the impact of artificial intelligence: Prediction versus judgment. Inf. Econ. Policy 2019, 47, 1–6. [Google Scholar] [CrossRef]
- Noor, A.K. Potential of cognitive computing and cognitive systems. Open Eng. 2015, 5, 75–88. [Google Scholar] [CrossRef]
- Besharati, M.R.; Izadi, M. Langar: An Approach to Evaluate Reo Programming Language. arXiv 2021, arXiv:2103.04648. [Google Scholar] [CrossRef]
- Ameli, S.R., Quranic Strategies and Artificial Intelligence Innovations: Strengthening or Weakening Humanity, The Long View, Quarterly Magazine, Volume 7, Issue 2, 2025.
- Besharati, M.R.; Izadi, M. Semantics Based Compliance Solving. Ph.D. Thesis, Sharif University of Technology, Tehran, Iran, 2024. [Google Scholar]
- Mahini, M. AI-Driven Crypto Trading & Insights. Available online: https://wisdomise.com/en, 2025.
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. Adv. Neural Inf. Process. Syst. 2017, 30, 3859–3869. [Google Scholar]
- Younesi, A.; Ansari, M.; Fazli, M.; Ejlali, A.; Shafique, M.; Henkel, J. A comprehensive survey of convolutions in deep learning: Applications, challenges, and future trends. IEEE Access 2024, 12, 41180–41218. [Google Scholar] [CrossRef]
- Jarrahi, M.H.; Lutz, C.; Newlands, G. Artificial intelligence, human intelligence and hybrid intelligence based on mutual augmentation. Big Data Soc. 2022, 9, 20539517221142824. [Google Scholar] [CrossRef]
- Passerini, A.; Gema, A.; Minervini, P.; Sayin, B.; Tentori, K. Fostering effective hybrid human-LLM reasoning and decision making. Front. Artif. Intell. 2025, 7, 1464690. [Google Scholar] [CrossRef] [PubMed]
- Mogaji, R.I.; Motadegbe, A.O. The Synergy of Minds and Machines: Rethinking the AI-HI Relationship through Dialectical Reconstruction. Àgídìgbo ABUAD J. Humanit. 2025, 13, 265–280. [Google Scholar] [CrossRef]
- Wu, J.; Mei, X.; Mao, R.; He, K.; Cambria, E. TAKECare: A temporal-hierarchical framework with knowledge fusion for personalized clinical predictive modeling. Inf. Fusion 2025, 126, 103620. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, W.; Han, Q.-L.; Zhou, W.; Zhu, X.; Wen, S.; Xiang, Y. Exploring DeepSeek: A Survey on Advances, Applications, Challenges and Future Directions. IEEE/CAA J. Autom. Sin. 2025, 12, 872–893. [Google Scholar] [CrossRef]
- Heruka.Ai. Ai. Heruka.Ai—Ethics & Sovereignty For Ai Cognitive Computing; Heruka.Ai: Luxembourg, 2025. [Google Scholar]
- Spence, E.H. Wisdom in the Age of Intelligent Machines. Springer: Cham, Switzerland, 2025.
- Jeste, D.V.; Graham, S.A.; Nguyen, T.T.; Depp, C.A.; Lee, E.E.; Kim, H.-C. Beyond artificial intelligence: exploring artificial wisdom. Int. Psychogeriatr. 2020, 32, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Ströbel, P.B.; Maier, F.K. Re-Experiencing History: A Platform for the Re-Enactment of Historical Events with Multimodal Large Language Models; University of Zurich: Zurich, Switzerland, 2025; pp. 510–511. [Google Scholar]
- Ströbel, P.B.; Guo, Z.; Karagöz, Ü.; Willi, E.M.; Maier, F.K. Bringing Rome to life: evaluating historical image generation. In Proceedings of the CEUR Workshop Proceedings, Djerba, Tunisia, 15–18 October 2024; pp. 113–126, CEUR-WS. [Google Scholar]
- Peterson, B.; Liang, W. AI-Augmented Autonomous Research: Enhancing Novel Idea Generation through Real-World Data Integration. (2025).
- Mischie, I. PoV hybrid storytelling in virtual reality and its axiological implications (Case study: The AI Comrade). Cinematogr. Art Doc. 2017, 20, 40–48. [Google Scholar]
- Kharrazi, S.K. The future of governance must not only be digital, but also fair, compassionate, and productive. https://www.isna.ir/news/1403112417938/, 2025.
- Besharati, M.R.; Mohammad, I.; Alireza, T.; Nafiseh, J. A Hypothesis on the Etiology of Polar T3 Syndrome and Related Polar Syndromes: The Role of Atmospheric/Oceanic Iodine in Human Hormonal Cycles in Polar Regions. 2025. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
