Preprint
Article

This version is not peer-reviewed.

Detection of Microplastics in Coastal Environments Based on Semantic Segmentation

Submitted:

30 October 2025

Posted:

03 November 2025

You are already at the latest version

Abstract
Microplastics represent an emerging threat to marine ecosystems, human health, and coastal aesthetics, with increasing concern about their accumulation on beaches due to ocean currents, wave action, and accidental spills. Despite their environmental impact, current methods for detecting and quantifying microplastics remain largely manual, time-consuming, and spatially limited. In this study, we propose a deep learning-based approach for the semantic segmentation of microplastics on sandy beaches, enabling pixel-level localization of small particles under real-world conditions. Twelve segmentation models were evaluated, including U-Net and its variants (Attention U-Net, ResUNet), as well as state-of-the-art architectures such as LinkNet, PAN, PSPNet, and YOLOv11 with segmentation heads. Models were trained and tested on augmented data patches, and their performance was assessed using Intersection over Union (IoU) and Dice coefficient metrics. LinkNet achieved the best performance with a Dice coefficient of 80% and an IoU of 72.6% on the test set, showing superior capability in segmenting microplastics even in the presence of visual clutter such as debris or sand variation. Qualitative results support the quantitative findings, highlighting the robustness of the model in complex scenes.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated