Preprint
Article

This version is not peer-reviewed.

Finite Sample Performance of the Robust Stein Estimator in the Presence of Multicollinearity and Outliers

Submitted:

29 October 2025

Posted:

30 October 2025

You are already at the latest version

Abstract
Multicollinearity and outliers are common challenges in multiple linear regression, often adversely affecting the properties of least squares estimators. To address these issues, several robust estimators have been developed to handle multicollinearity and outliers individually or simultaneously. More recently, [35] introduced the robust Stein estimator (RSE), which integrates shrinkage and robustness to effectively mitigate the impact of both multicollinearity and outliers. Despite its theoretical advantages, the finite-sample performance of this approach under multicollinearity and outliers remains underexplored. Firstly, outliers in the y direction have been the main focus of earlier research on the RSE, not considering outliers in the x direction could substantially impact regression results. This study addresses this gap by considering outliers in both the y and x directions, providing a more thorough assessment of RSE robustness. Lastly, to extend the limited existing benchmark, we compare and evaluate the RSE performance with a wide range of robust and classical estimators. This extends existing benchmarking, which is limited in the current literature. Several Monte Carlo (MC) simulations were conducted, considering both normal and heavy-tailed error distributions, with sample sizes, multicollinearity levels, and outlier proportions varied. Performance was evaluated using bootstrap estimates of root mean squared error (RMSE) and bias. The MC simulation results indicated that the RSE outperformed other estimators under several scenarios where both multicollinearity and outliers are present. Finally, real data studies confirm the MC simulation results.
Keywords: 
;  ;  ;  ;  

1. Introduction

Linear regression analysis is an important statistical tool that helps to model a relationship between the response variable ( y ) and the predictors ( X ), and it is often applied in all fields of study. A linear model has the form
y = X β + ε ,
where y is an n × 1 vector of observed values of the dependent variable, X = [ x 1 , x 2 , , x n ] T is an n × p matrix with a row vector x i = [ x i 1 , x i 2 , , x i p ] of components x i j of the regressors, i = 1 , 2 , 3 , , p , β is a vector p × 1 of unknown parameters and ε is an n × 1 vector of errors. Under classical assumptions that the errors have zero mean, constant variance, and are uncorrelated, then the ordinary least-squares (OLS) estimate β ^ is the best linear unbiased estimator (BLUE) of β according to the Gauss-Markov theorem. The OLS estimate is BLUE even without assuming normally distributed residuals, and minimizes the sum of squared residuals. If an error term ( ε ) follows a normal ε N ( 0 , σ 2 I ) distribution, this assumption of normality is essential for performing hypothesis tests and constructing confidence intervals. If there is more than one predictor variable, then the analysis is referred to as multiple linear regression analysis [2]. A multiple regression model could be used to describe this relationship is
y = β 0 + β 1 x 1 + β 2 x 2 + + β p x p + ε .
Applying the ordinary least squares estimator (OLSE) in simple or multiple linear regression always requires some assumptions, that is, normality of the error terms, equal variance of the error terms, absence of outliers, leverage points, and multicollinearity. Therefore, the OLS estimate is the best method in regression analysis if the assumptions are met. However, if these assumptions are not satisfied, the results can easily be affected [3].
Various problems can occur in the estimation of the model parameters, one of which is if the assumption of normality is not fulfilled, or due to outliers in the data [4]. According to [5,6], the normality of error distributions is based on the central limit theorem, which is a limit theorem based on approximations. Hampel and Huber [5] critically challenged the prevailing assumption that the OLSE remains approximately optimal under conditions of approximate normality. This is because it has been shown that typical error distributions of real-world datasets usually deviate slightly from normality and, in most cases, are tailed. Additionally, outliers in the dependent variable lead to large residual values, which further result in the failure of the normality assumption of the error terms. According to [7], the data that come from the regression line is an outlier. Outliers are data that have different characteristics from other non-outlier data. There exist several statistical methods used to detect outliers, such as the Cook distance index plot and the potential residual plot (see, for example, [8]). The existence of outliers can affect the process of data analysis and errors in making conclusions, but the existence of outliers can be overcome by several methods, which include robust regression [9]. Several robust regression estimators have been provided to address the problem of outliers in different regression models; these include the Huber maximum estimator (HME), the modified maximum likelihood estimator (MME), the least trimmed squares estimator (LTSE), the least median of squares estimator (LMSE), S estimator (SE) [10].
In addition, multicollinearity is another pressing challenge in linear regression models that occurs when predictor variables have a high degree of correlation. This problem causes maximum likelihood estimates to be unstable and inefficient. Therefore, many biased estimators have been provided to address this problem in different regression models [11,12]. However, both multicollinearity and outliers can exist simultaneously in a model. To address both issues, various estimators have been combined for robust estimation in order to handle multicollinearity and outliers [1,13,14]. Recently, the Stein estimator has gained popularity as an alternative to OLSE and performs well in handling correlated regressors. However, it is sensitive to outliers in the y-direction [1]. In this study, we examine a robust version of the Stein estimator, which is the combination of the HME and the James-Stein estimator (JSE), which was originally proposed by [1] and can handle both multicollinearity and outliers simultaneously. This estimator’s performance is assessed and compared with that of other robust regression methods utilizing different simulation scenarios and real data applications.

2. Materials and Methods

In this section, attention will be on the robust methods considered in this study and their properties. The selected estimators were chosen for their theoretical significance as well as their easy implementation and computational viability due to their availability in R. Effective analysis is possible without adding a great deal of computational complexity by using these traditional methods. Because these estimators are available in R, the study is more accessible and reproducible, which makes it useful for other researchers. This decision guarantees an effective combination of computational effectiveness and strong statistical characteristics.

2.1. Review on Robust Estimators

When the data are contaminated by one or a few outliers, the issue of detecting such observations becomes challenging. In general, however, datasets often contain multiple outliers or clusters of influential observations, and they may also exhibit multicollinearity among their variables. These two factors provide additional insight into the co-occurrence of both outliers and multicollinearity, which complicates regression analysis, with biased and unstable parameter estimates as a common result. Alma [15] points out that robust estimation is an important method for analyzing data contaminated by outliers. It is an approach to regression analysis that aims to get past some of the limitations of classical parametric and nonparametric approaches. Well-performing estimates are robust estimates designed to become less sensitive to outliers. Here, we present a review of existing robust estimators used in linear regression.

2.1.1. The Huber Maximum Likelihood Estimator (HME)

The most common general robust method is M-estimates, introduced by [6]. The M in M- estimates stands for maximum likelihood type. The M-estimator minimizes the objective function.
i = 1 n ρ ( r i ) = i = 1 n ρ e i ( β ) σ ,
where r i = e i ( β ) σ are called scaled residuals. Differentiating with respect to β , assuming σ is fixed, and setting the partial derivatives to zero, we obtain the normal
equations
i = 1 n ψ e i ( β ) σ x i = 0 .
Let X = [ 1 n X ˙ ] denote the n × ( p + 1 ) design matrix, where 1 n is the intercept column and X ˙ contains the p predictors. The ith observation can be written as x i = ( 1 , x i 1 , x i 2 , , x i p ) , where i = 1 , 2 , , n (observations) and j = 1 , 2 , , p (predictors). We consider the spectral decomposition T ( X X ) T = Λ = diag ( λ j ) , j = 1 , 2 , , p * , ( p * = p + 1 ) .
Following [1], the model in Eq. (1) is transformed as follows
y i = j = 1 p * α j h i j + ε i , i = 1 , 2 , , n
where λ 1 λ 2 λ p * , and T is a ( p * × p * ) orthogonal matrix whose columns are eigenvectors corresponding to these eigenvalues. The transformation is defined as H = X ˙ T , α = T β , and T ( X X ) T = H H = Λ . Therefore, the OLS of α is written as follows:
α ^ L S = Λ 1 H y .
The M-estimator of α is
α ^ M = min i = 1 n ρ ε i σ = min i = 1 n ρ y i j = 1 p * α j h i j σ .
where ρ is a robust function and σ is a scale parameter. The estimator α ^ M is obtained as the solution to the M-estimating equations (3) and (4).

2.1.2. James Stein Estimator (JSE)

As a remedy to the problem of multicollinearity, the James-Stein estimator (JSE), originally proposed by [16] and [17], applies shrinkage to the ordinary least squares estimator to improve estimation efficiency under correlated regressors. In the standard regression context, the JSE is given by
β ^ JSE = 1 ( p 2 ) σ ^ 2 β ^ OLS X X β ^ OLS β ^ OLS , for p > 2 ,
where β ^ OLS is the ordinary least squares estimator and σ ^ 2 is the estimated error variance.
In the transformed α -space defined in Eq. (5), following [1], the JSE can be expressed as
α ^ JSE = c α ^ LS ,
where the shrinkage factor c is given by
c = α ^ LS α ^ LS α ^ LS α ^ LS + σ 2 tr ( X X ) 1 = j = 1 p * λ j α ^ j 2 σ 2 + λ j α ^ j 2 .
The equivalence between the two forms in Eq. (10) follows from the spectral decomposition, noting that tr ( ( X X ) 1 ) = j = 1 p * λ j 1 and the canonical transformation diagonalizes the covariance structure into independent components along the eigenvector directions.

2.1.3. The Robust Stein Estimator (RSE)

The robust Stein estimator was first introduced by [1] as an alternative method to the Stein and ridge estimators to improve the accuracy of the estimation. However, both methods are non-robust to outliers. In the author’s study, it was indicated that the Stein estimator is sensitive to outliers in the y-direction. Thus, there is a need to propose the robust Stein estimator [1], which is defined as follows
α ^ M - J S E = c * α ^ M ,
where, α ^ M is the M-estimate of α , The shrinkage factor c * in the Robust Stein (M–Stein) estimator is often defined using the following components
c * = j = 1 p * λ j α M 2 Ψ j j + λ j α M 2 ,
where,
  • λ j are the ordered eigenvalues of the design information matrix (e.g., X X in linear models),
  • α M , j are the components of the robust estimator α ^ M ,
  • Ψ j j are the diagonal entries of the variance-covariance matrix Var ( α ^ M ) .
The robust covariance matrix Ψ is estimated using the sandwich estimator [6]
Ψ ^ = A ^ 2 B ^ , where A ^ 2 = 1 n p * i = 1 n ψ e i σ ^ 2 , B ^ = σ ^ 2 ( n p * ) 2 i = 1 n ψ e i σ ^ 2 ,
and σ ^ is a robust scale estimate. The approximate covariance of α ^ M - JSE is
Cov α ^ M - JSE c * Cov α ^ M ( c * ) = c * Ψ ( X X ) 1 ( c * ) .
The approximate bias is
Bias α ^ M - JSE E c * α ^ M α = ( c * 1 ) α .
The matrix mean squared error (MMSE) is approximately
MMSE ( α ^ M - J S E ) c * Ψ ( X X ) 1 ( c * ) + Bias ( α ^ M - J S E ) Bias ( α ^ M - J S E ) .
The scalar mean squared error (SMSE) is approximately
SMSE ( α ^ M - J S E ) ( c * ) 2 j = 1 p * Ψ j j λ j + ( c * 1 ) 2 j = 1 p * α j 2 ,
which can also be expressed as
SMSE ( α ^ M - J S E ) j = 1 p * Ψ j j λ j α j 4 ( Ψ j j + λ j α j 2 ) 2 + j = 1 p * Ψ j j 2 α j 2 ( Ψ j j + λ j α j 2 ) 2 .

2.1.4. The Least Median of Squares Estimator (LMSE)

Since M-estimators are not robust to high-leverage outliers, we want to find some methods that can have high BP. [18] defined the least median of squares (LMS) estimator as
β ^ L M S = argmin β med { e i 2 } ,
which replaces the sum by the median in the LSE.

2.1.5. The Least Trimmed Squares Estimator (LTSE)

Another regression estimator that has a breakdown point (BP) of nearly 50% is the least trimmed square (LTS) estimator proposed by [19]. Traditional OLS methods are highly sensitive to outliers, meaning a few extreme data points can dramatically affect the estimated model. LTSE is designed to be more robust to these outliers by focusing on a subset of the data with the smallest residuals. The estimator chooses the regression coefficients β to minimize the sum of the smallest h of the squared residuals and is defined as
β ^ L T S = argmin β i = 1 h e ( i ) 2 ( β ) ,
where, e ( i ) 2 ( β ) represents the i-th ordered squared residuals e ( 1 ) 2 e ( n ) 2 and h is called the trimming constant which must satisfy n / 2 < h n . The constant h determines the BP of the LTS estimator. Typically, h = n / 2 + ( p + 1 ) / 2 can attain the maximum, where · denotes the floor function (rounding down to the next smallest integer). When h = n , LTS is exactly equivalent to the LS estimator whose BP is zero.

2.1.6. The S-Estimator (SE)

To find a simple high-breakdown regression estimator that shares the flexibility and nice asymptotic properties of the M-estimator, [20] introduced the S-estimate. The SE was developed as a robust alternative to traditional estimators like OLSE, particularly when dealing with data containing outliers or high-leverage points. They called it the S-estimate because it is derived from the M-scale estimate equation
1 n i = 1 n ρ e i ( β ) σ ^ = δ .
In M-estimates, when σ is unknown, we use Eq. (21) to obtain the scale parameter and regression estimates simultaneously. Let δ = E ϕ [ ρ ( x ) ] , where ϕ represents the standard normal density, and let
d ( e ) = # { i : 1 i n , e i = 0 } n .
When d ( e ) < 1 δ / a (where a is the upper bound of ρ and a ( 0 , ) ), the scale has a unique positive solution. If d ( e ) = 1 δ / a , it may have infinite solutions including σ = 0 , and if d ( e ) > 1 δ / a , then no solution exists.
To avoid such indeterminacies, we define that whenever d ( e ) 1 δ / a , we set σ ( e ) = 0 .
To define the S-estimator, we let ρ satisfy the following condition
(A1)
ρ is symmetric, continuously differentiable, and ρ ( 0 ) = 0 ;
(A1)
There exists c > 0 such that ρ is strictly increasing on [ 0 , c ] and constant on [ c , ] .
For each vector β , using Eq (21), we can calculate the dispersion of residuals σ ^ ( e 1 ( β ) , , e n ( β ) ) , where ρ satisfies (A1). Then the S-estimator β ^ is defined by
β ^ = arg min β σ ^ ( e 1 ( β ) , , e n ( β ) ) .

2.1.7. The Modified Maximum Likelihood Estimator (MME)

The MM estimation is a special type of M-estimation developed by [21], and is particularly useful when dealing with non-normal data or outliers. MM estimation is a combination of high breakdown value estimation and efficient estimation. MM estimator was the first estimator with both a high breakdown point and high efficiency under normal error. The MM-estimator follows a three-stage procedure

Stage 1:

Compute an initial consistent robust estimate β ^ 0 with high breakdown point (BP), possibly 50%, but not necessarily efficient.

Stage 2:

Compute the M-scale σ ^ of the residuals e i ( β ^ 0 ) using Eq (21), with a function ρ 0 satisfying (A1) and choosing a constant δ such that δ / a = 0.5 , where a = sup ρ 0 ( e ) . Thus, the asymptotic BP of σ ^ is 0.5 [22].

Stage 3:

Let ρ 1 be another ρ -function satisfying (A1) such that
sup ρ 1 ( e ) = sup ρ 0 ( e ) = a ,
and
ρ 1 ( e ) ρ 0 ( e ) .
Let ψ 1 = ρ 1 and define the objective function
L ( β ) = i = 1 n ρ 1 e i ( β ) σ ^ , with ρ 1 ( 0 / 0 ) = 0 .
Then the MM-estimate β ^ 1 is defined as any solution to
i = 1 n ψ 1 e i ( β ) σ ^ x i = 0 ,
that also satisfies
L ( β ^ 1 ) L ( β ^ 0 ) .
Yohai [21] showed that any value of β satisfying Eq. (26) and (27), for example a local minimum, will have the same efficiency as the global minimum, and its BP is no less than that of β ^ 0 . Thus, although the absolute minimum of L ( β ) exists, it is not necessary to find it.
In the first stage, the robust initial estimate β ^ 0 should satisfy regression, scale, and affine equivariance and have a high BP. LMS, LTS, and S-estimates are possible candidates.
For Stage 2, one way of choosing ρ 0 and ρ 1 is as follows: Let ρ be a function satisfying (A1), and define
ρ 0 ( e ) = ρ e k 0 , ρ 1 ( e ) = ρ e k 1 .
In order to satisfy Eq. (23), we must have 0 < k 0 < k 1 . The value of k 0 should be chosen such that δ / a = 0.5 holds.

2.2. Criteria for Assessing the Estimator’s Performance

Following a study by [23], two typical measures of accuracy for the estimator θ ^ are the RMSE and the Bias. These measures can be estimated using bootstrap resampling. Specifically, given B bootstrap samples, the bootstrap estimate of Bias and RMSE is as follows

2.2.1. Bias Under the Bootstrap

Bias ^ = 1 B b = 1 B θ ^ b * θ ^ = θ ^ ¯ * θ ^ .
where θ ^ b * are bootstrap copies of θ ^ .

2.2.2. RMSE Under the Bootstrap

RMSE ^ = 1 B b = 1 B θ ^ b * θ ^ 2 .

3. Monte Carlo Simulation Study

3.1. Simulation Procedure

The data generation process that follows was adapted from [24] and [25]. We generate n samples from the model using R studio
y i = β 0 + β 1 X i 1 + β 2 X i 2 + β 3 X i 3 + ε i , i = 1 , 2 , , n
where the error terms are generated as ε i N ( 0 , 1 ) , and the explanatory variables are generated using the following equation
X i j = Z i j 1 ρ 2 + ρ Z i j , i = 1 , 2 , , n , j = 1 , 2 , 3 , . . . , p
where Z i j are independent standard normal random numbers that are held fixed for a given sample of size n, and ρ is the degree of multicollinearity between predictors. In this study, we consider three values of ρ = 0.10, 0.50, and 0.98. The past study [1] mainly examined the RSE under high correlation; we extend the analysis to low and moderate levels to better understand its performance across varying degrees of multicollinearity.
The true values of the regression parameters are chosen as β 0 = β 1 = = β p 1 = 1 , which is a common restriction in simulation studies (see, for example, [1,13] and [26]). Additionally, the performance of the RSE is also evaluated for heavy-tailed error distributions, such as t-distributions and the Cauchy distribution.
Five different sample sizes are considered n { 25 , 50 , 100 , 150 , 200 } , with the number of predictors fixed at p = 3 , and different proportions of outliers are evaluated π = 0.00 % , 10 % , 25 % , 50 % . In each simulation setting, we perform N = 5 , 000 MC replications, which is chosen as a compromise between achieving a low MC error and keeping the computation time reasonable.
To introduce outliers in the data, we consider two types, that is, y direction outliers and x direction outliers. For y direction outliers, we first generate the clean data according to equations (30) and (31) then randomly select n × π observations and replace their response values by adding a large constant, that is, y i outlier = y i + 10 × σ ε , where σ ε is the standard deviation of the error term. For x direction outliers, we randomly select n × π observations and replace their predictor values with X i j outlier = X i j + 10 × SD ( X j ) , where SD ( X j ) is the standard deviation of the j-th predictor.
A summary of the simulation scenarios is provided in Table 1. In addition, we evaluate the performance of the proposed estimators under the following ten cases
  • Case I:  ε i N ( 0 , 1 ) - Standard normal distribution with 0.10, 0.50, and 0.98 multicollinearity and 0.00% outliers.
  • Case II:  ε i t 7 — Student’s t-distribution with 7 degrees of freedom with 0.10, 0.50, and 0.98 multicollinearity and 0.00% outliers.
  • Case III:  ε i t 2 — Student’s t-distribution with 2 degrees of freedom, 0.10, 0.50, and 0.98 multicollinearity and 0.00% outliers.
  • Case IV:  ε i C ( 0 , 1 ) — Cauchy distribution errors with 0.10, 0.50, and 0.98 multicollinearity and 0.00% outliers.
  • Case V:  ε i N ( 0 , 1 ) — Standard normal distribution with 10%, 25%, and 50% outliers with no multicollinearity.
  • Case VI:  ε i t 2 — Student’s t-distribution with 2 degrees of freedom, 10%, 25%, and 50% outliers with no multicollinearity.
  • Case VII:  ε i N ( 0 , 1 ) — 10%, 25%, and 50% outliers in the y-direction with 0.10, 0.50, and 0.98 multicollinearity.
  • Case VIII:  ε i N ( 0 , 1 ) — 10%, 25%, and 50% outliers in the x-direction with 0.10, 0.50, and 0.98 multicollinearity.
  • Case IX:  ε i t 2 (Student’s t-distribution with 2 degrees of freedom), with multicollinearity levels of 0.10, 0.50, and 0.98, and outliers in the y-direction at 10%, 25%, and 50%.
  • Case X:  ε i t 2 (Student’s t-distribution with 2 degrees of freedom), with multicollinearity levels of 0.10, 0.50, and 0.98, and outliers in the x-direction at 10%, 25%, and 50%.
Table 1. Summary of Simulation Parameters Considered.
Table 1. Summary of Simulation Parameters Considered.
Sample size (n) Multicollinearity ( ρ ) Outlier ( π )
25 0.10 0.00
50 0.50 0.10
100 0.98 0.25
150 0.50
200

3.2. Simulation Study Findings

3.2.1. Performance Evaluation Findings Across the Cases

Case I (Table A3 and Figure 1): The JSE and RSE yield the smallest RMSE values across all sample sizes, consistent with their theoretical optimality properties. The MME, HME, OLSE, and LTSE also achieve RMSE values comparable to those of JSE and RSE only when ρ = 0.50 and 0.98. In contrast, the LMSE and SE display relatively higher RMSEs, reflecting their lower efficiency in the presence of multicollinearity. The JSE and RSE have achieved exactly zero bias for low multicollinearity ρ = 0.10 and 0.50 at sample sizes at n 100 , and LMSE shows the highest bias across nearly all scenarios. All estimators exhibit monotonic behavior, with RMSE values consistently decreasing as the sample size increases.
Case II (Table A4, and Figure 2): The RSE consistently achieves the lowest RMSE across all the conditions in this case. The JSE consistently achieves low bias across different sample sizes and multicollinearity levels. The LMSE has the overall worst performance across all the simulation scenarios.
Case III (Table A5 and Figure 3): In this case, the performance of the OLSE, JSE, and LMSE is substantially worse than that of any other robust estimators. The RSE, MME, and HME exhibit RMSE values that are almost similar, but the RSE is outperforming all the estimators in this case, as shown in Figure 3. The HME and MME consistently achieve low bias in almost all sample sizes and multicollinearity levels, and JSE has the highest bias at ρ = 0.50 and 0.98.
Case IV(Table A6, and Figure 4): Under Cauchy-distributed errors, OLSE and JSE demonstrate erratic RMSE behavior, with values escalating due to the heavy-tailed nature of the distribution. In contrast, robust estimators maintain lower RMSEs and a monotonic decrease with increasing sample size, highlighting their stability. Furthermore, as the correlation coefficient ( ρ ) increases, the performance of OLSE and JSE worsens further. The RSE is the best estimator under the Cauchy distribution as shown by Figure 4. HME and MME continue to maintain a consistently lowest bias across all scenarios at ρ = 0.98 and n = 200. OLSE and JSE are having the highest bias with values exceeding one.
Case V (Table A7, Table A8, and Figure 5, Figure 6): The MME performs the best under y direction, and LTSE performs the best under x direction. RSE yields a higher RMSE because it lacks robustness in both x and y directions. LTSE and SE maintain a small bias and low RMSE in the presence of x-outliers, whereas RSE, JSE, and OLSE break down due to high sensitivity, as shown in Figure 5 and Figure 6.
Case VI (Table A9, Table A10, and Figure 7, Figure 8):Table A9 and Figure 7 show that the MME, SE, HME, and LTSE consistently achieve the lowest RMSE and almost zero bias, making it the best performers, while the RSE, OLSE, and JSE perform the worst due to high RMSE values. Table A10 and Figure 8 indicate that the LTSE, MME, and SE are the most robust and accurate, while the RSE and JSE again show the poorest performance.
Case VII (Table A11, Table A12, Table A13, and Figure 9, Figure 10, Figure 11): When the data contains multicollinearity and outliers in the response direction, the performance of the OLSE, JSE, and LMSE worsens significantly, particularly as the percentage of outliers and the degree of multicollinearity increase as shown by Figure 9, Figure 10, and Figure 11. The following estimators, the LMSE, OLSE, and JSE in Figure 11, completely fail when 50% of the observations are contaminated. In contrast, the RSE, SE, HME, and MME demonstrate superior performance relative to OLSE, JSE, and LMSE under the same conditions. Moreover, the LTSE and SE exhibit even better robustness, maintaining substantially lower RMSE values compared to OLSE, JSE, and LMSE, particularly in the presence of low contamination, which is 10% in Figure 9. When there are 25% of outliers in Figure 10, we observe similar patterns with Figure 9. The RSE performs very well in cases of outliers and multicollinearity, followed by MME, HME, and LTSE.
Case VIII (Table A14, Table A15, Table A16, and Figure 12, Figure 13, Figure 14): The RSE is outperforming all the estimators in all scenarios when the data contains multicollinearity and the outliers in the x direction. The performance of LMSE, SE, LTSE, and OLSE worsens significantly as the percentage of outliers and multicollinearity increases, as shown by Figure 12, Figure 13, Figure 14. The bias is the smallest for SE and MME when π = 25 % and 50%.
Cases IX (Table A17, Table A18, Table A19, and Figure 15, Figure 16, Figure 17): The RSE consistently performs better than average performance among all the simulation scenarios. When 10% outliers and multicollinearity are present, the HME, MME, LTSE, and SE work with similar results as shown in Figure 15. The JSE and OLSE, in contrast, always give the poorest performance in all of these scenarios. LMSE shows less than ideal accuracy of performance as well, specifically under 10% contamination, over which it generates the largest bias values. Overall, the HME and MME are the most accurate estimators, with consistently lower bias compared to other methods.
Cases X (Table A20, Table A21, Table A22, and Figure 18, Figure 19, Figure 20): RMSE values are shown in Figure 18, Figure 19 and Figure 20 under different multicollinearity and x-outlier levels. The RMSE increases with both higher multicollinearity and larger proportions of x-outliers. RSE consistently provides the lowest RMSE, reflecting good stability, while OLSE and JSE perform the worst. In terms of bias, HME and MME both show the lowest bias in all scenarios, and JSE shows the highest bias. These findings also emphasize the better performance of RSE, and therefore its robustness and accuracy, and show the relative bias performance of the other estimators under challenging data conditions.
In summary, JSE and OLSE only work well when there are no outliers since it is very sensitive to outliers. The estimator’s bias and RMSE values were increased in the case of the multicollinearity degree ( ρ ) and outlier percentage ( π ), and decreased in the case of the sample size (n) being increased, when other factors were fixed. When only the multicollinearity problem existed in the model (as in Figure 1 and Figure 2, or when no outliers existed, i.e., π = 0.00 % ), the OLSE, JSE, HME, MME, and RSE were better than LMSE, LTSE, and SE. But in Figure 4, OLSE and JSE performed the worst, even though they had no outliers. When both problems existed (as in Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 or when outliers existed, i.e., π > 0.00 % ), the RSE, HME, and MME were better than the LMSE, LTSE, SE, JSE, and OLSE, respectively, for all π , ρ , and n values. Finally, the RSE achieved the best performance among all given estimators when outliers and multicollinearity exist.

4. Emprical Applications

In the previous section, we conducted an MC simulation study to compare the performance of the estimators. However, simulations are usually performed under some ideal conditions. In contrast to the MC simulation, this section considers three real linear regression datasets as an illustrative example in handling outliers and multicollinearity in linear regression. The datasets are the Milk dataset, the Real Estate Valuation dataset, and the Hawkins–Bradu–Kass dataset. We adopted a systematic trimming procedure in accordance with [27] to modify the outlier contamination levels in each dataset because real datasets frequently contain variable and uncontrollable levels of outliers. A direct comparison of theoretical, simulated, and real-data results is made possible by this method, which enables us to produce multiple versions of each dataset with particular outlier percentages that match our simulation study design. A summary of the datasets considered for this study is provided in Table A1.
Study 1: Milk Dataset
Milk dataset provided [28] is a composition of milk with 8 variables. The 8 variables are density, fat content, protein content, casein content, cheese dry substance measured in the factory, cheese dry substance measured in the laboratory, milk dry substance, and cheese produced. According to [28], the are 17 outliers in this dataset, which makes the percentage of outliers 20%. Observations (1st–3rd, 12th, 13th–17th, 27th, 41st, 44th, 47th, 70th, 74th, 75th and 77th) are outliers.

4.1. Exploratory Analysis for Milk Dataset

4.1.1. Multicollinearity Detection for Milk Dataset

Table A2 presents VIF for milk dataset, which is a crucial diagnostic tool for detecting multicollinearity in regression analysis. The VIF quantifies how much the variance of a regression coefficient increases due to collinearity with other predictor variables. A VIF value greater than 10 indicates high multicollinearity. It is noted that from the milk dataset, variables X 4 and X 5 exhibit high VIF. Moreover, the observed condition number (CN) of 164.0314 indicates that strong multicollinearity exists among the regressors. It is observed from the Table 2 that some regressors ( X 2 , X 3 , X 4 , X 5 ) are highly correlated.

4.1.2. Outlier Detection Using Cook’s Distance for Milk Dataset

The Cook’s distance plot for the Milk dataset, with a threshold value of 0.047, is displayed in Figure 21. It was discovered that two observations (70 and 74) greatly surpass this threshold, with observation 70 achieving a value above 2.0. These data points are considered to be very significant and deserving of more investigation. Their existence indicates the possibility of anomalies or leverage points that might influence model predictions.

4.1.3. Testing for Normality for Milk Dataset

For this study, both theoretical and graphical techniques will be used to assess the normality of the OLS residuals. The Shapiro-Wilk (SW) test will be used as a theoretical tool. Figure 22 shows a diagnostic plot to assess residual normality in milk data. Visual inspection of these plots reveals that the Milk data displays approximately normal residuals. The results of the theoretical test yielded a p-value of 0.1964 ( p > 0.05 ), indicating that the milk data follows a normal distribution.

4.1.4. Model Fit and Evaluation for Milk Dataset

To compare the performance of the methods, the regression model was fitted using the Milk dataset for each method, considering the sparsity of the models. The bias and RMSE were finally used to evaluate how well the methods performed. The results presented in Table 3 cover the bias and the RMSE of each estimation method for the Milk dataset. The results show that the RSE has outperformed all the estimates when there are both outliers and multicollinearity. When there is multicollinearity and 0% outliers, the JSE, OLSE, and other robust estimates have almost the same RMSE values, the same thing that was happening in our simulation study in chapter four. The next estimators with similar performance when multicollinearity and outliers exist are JSE, MME, and HME. Figure 23 was used to assess the bias and RMSE. It was observed that the OLSE bias (red line) increases with increasing outlier percentage. The RSE RMSE values (black line) decrease with increasing outlier percentage.
Study 2 : Real Estate Valuation Dataset
Real estate valuation was collected in 2018 from Sindian District, New Taipei City, Taiwan, and it was recently published by [29]. The response variable in this study is the house price of unit area, measured in 10,000 New Taiwan Dollars per Ping, where one Ping corresponds to 3.3 m 2 . The explanatory variables include the transaction date ( X 1 ), the house age in years ( X 2 ), the distance to the nearest MRT station in meters ( X 3 ), the number of convenience stores within walking distance ( X 4 ), the geographic coordinate latitude in degrees ( X 5 ), and the geographic coordinate longitude in degrees ( X 6 ).

4.2. Exploratory Analysis for Real Estate Valuation

4.2.1. Multicollinearity Detection for Real Estate Valuation

The real estate valuation dataset exhibits low VIF in all the predictors; therefore, the CN of 14.7723 indicates that moderate multicollinearity exists among the predictors, as shown in Table A2. It is observed from the Table 4 that some regressors ( X 3 , X 4 , X 5 , X 6 ) are highly correlated.

4.2.2. Outlier Detection Using Cook’s Distance for Real Estate Valuation Dataset

Figure 24 displays the Cook’s distance plot with a 0.01 threshold for the real estate valuation dataset. In comparison to the other points, observation 271 shows a significantly higher Cook’s D value, indicating a significant impact on the regression results. Data points 149, 221, and 313 show additional moderate influences.

4.2.3. Testing for Normality for Real Estate Valuation Dataset

Figure 25 shows clear departures from normality due to skewed residual distributions. Therefore, the theoretical test confirms that the data is not normally distributed as the p-value is less than 0.05 ( p < 0.0001 ).

4.2.4. Model Fit and Evaluation for eal Estate Valuation Dataset

Table 5 presents the estimated bias and RMSE of various estimators under increasing levels of outlier contamination and multicollinearity. The RSE demonstrates the most consistent performance in terms of RMSE across all contamination levels, particularly excelling at higher outlier percentages. While JSE shows the lowest RMSE under clean data, its performance deteriorates significantly with more outliers. HME and OLSE maintain relatively low bias at all levels, but often at the cost of higher RMSE. Figure 26 was used to assess bias and RMSE. It was observed that HME, OLSE, and RSE maintain consistently low bias across all outlier levels. The RSE and JSE are the clear top performers with the low RMSE values. Despite the fact that RSE outperforms all other estimators in terms of RMSE, it exhibits higher bias compared to some of them. This indicates that while RSE achieves the best overall predictive accuracy by effectively balancing bias and variance, it does not perform best in terms of bias alone. Therefore, the RSE is the most outperforming estimator as outlier percentage increases, suggesting it has strong abilities to detect and manage multicollinearity and outliers.

4.3. Exploratory Analysis for Hawkins Bradu Kass Dataset

4.3.1. Multicollinearity Detection for Hawkins Bradu Kass Dataset

It is noteworthy that all predictors exhibit exceptionally high VIF values in Hawkins Bradu Kass dataset as shown in Table A2, and the observed CN of 102.5294 indicates that strong multicollinearity exists among the regressors. It is observed from the Table 6 that some regressors ( X 2 , X 3 ) are highly correlated.

4.3.2. Outlier Detection Using Cook’s Distance for Hawkins Bradu Kass Dataset

The Cook’s distance plot for the Hawkins Bradu Kass dataset, with a threshold value of 0.053, is displayed in Figure 27. Cook’s D values in observations 12 and 14 significantly surpass the threshold, highlighting the fact that they are as highly significant outliers. If not appropriately addressed, these points might bias the parameter estimates and overall model performance.

4.3.3. Testing for Normality for Hawkins Bradu Kass Dataset

Figure 28 shows clear departures from normality due to skewed residual distributions. Therefore, the theoretical test confirms that the data is not normally distributed as the p-value is less than 0.05 ( p < 0.0001 ).

4.3.4. Model Fit and Evaluation for Hawkins Bradu Kass Dataset.

As shown in Table 7 and Figure 29, in the absence of outliers, the JSE achieved the lowest RMSE, while HME had the lowest bias. Under 18.67% outlier contamination with multicollinearity, SE produced the lowest bias, and RSE achieved the lowest RMSE. MME also performed well under contamination, demonstrating both low bias and RMSE. In contrast, OLSE experienced a significant increase in both bias and RMSE when exposed to outliers. Overall, robust estimators like RSE and MME display greater stability and resilience under data contamination.

5. Discussion

The outcomes are consistent with the current literature regarding robust regression estimators. RSE’s superior performance in the presence of simultaneous multicollinearity and outlier contamination is attributed to its dual-component structure, that is, the HME component reduces the influence of outliers, while the JSE component maintains estimates through shrinkage, thereby alleviating variance inflation [1].
The MME performed better when outliers only appeared in the y-direction and there was no multicollinearity. This pattern is consistent with the findings of [30] and [31], who found that MME was the most effective estimator for pure vertical contamination. The failure of OLSE and JSE in the presence of Cauchy-distributed errors corroborates the conclusions of [32] and [33], which indicate that heavy-tailed distributions lead to extreme observations dominating the sum of squared residuals. One basic trade-off in robust estimation is demonstrated by the failure of high-breakdown estimators (LMSE, LTSE, SE) under multicollinearity without outliers [20]. This study’s overall findings support the idea that no single estimator is always the best. MME maintains advantages in environments dominated by y-direction outliers without multicollinearity [30,31,34], whereas RSE performs best when both multicollinearity and outliers are present [1]. These results highlight how crucial diagnostic analysis is prior to deciding on an estimation technique.

6. Concluding Remarks

This study evaluates the performance of RSE, which combines the shrinkage factors of ME and JSE, in the presence of multicollinearity and outliers in both the x and y directions. We evaluate the efficiency of RSE in an extensive MC simulation study with bias and RMSE criteria. As it stands, the simulation study is performed under several distributional conditions (normally, t-distributions, and Cauchy distributed errors), sample sizes, levels of multicollinearity, and outliers in both the x and y directions separately.
When multicollinearity and outliers in x and y directions exist, the RSE outperforms the classical OLSE, JSE, HME, MME, LMSE, LTSE, and SE. Additionally, when comparing the RSE to other existing robust estimators, we see that in the majority of the simulation scenarios evaluated, the RSE performs better. Based on the simulation study and its application to real datasets, we find that the RSE is the best estimator under conditions of multicollinearity and outliers in both the x and y directions. Future research may extend this work by comparing the RSE through simulation studies using various distributions, such as the Weibull, Gamma, and Poisson distributions, across different sample sizes, levels of outlier contamination, and degrees of multicollinearity.

Author Contributions

Conceptaulization, L.D., C.S.M; methodology, L.D., C.S.M; software, L.D; validation, L.D., C.S.M; formal analysis, L.D; investigation, L.D, C.S.M; resources, L.D; writing original draft preparation, L.D; writing review and editing, L.D., C.S.M, and L.K; visualization, L.D., C.S.M, and L.K; supervisor, C.S.M; project administration, C.S.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by a fee waiver bursary from the University’s Research and Innovation Office, which also contributed partial funding for the article processing charges (APC).

Data Availability Statement

The data used to support the findings of this study are included within the article.

Acknowledgments

The authors would like to express their sincere gratitude to the reviewers and the editor for their insightful comments and constructive feedback, which significantly contributed in improving the quality of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Appendix A.1

Table A1. Summary of the Datasets.
Table A1. Summary of the Datasets.
Study No. Dataset n p No. of Outliers Outliers (%)
Milk dataset (original) 86 8 20 20%
1 Milk trimmed dataset 62 8 0 0%
Milk trimmed dataset 81 8 8 10%
Real Estate Valuation (original) 414 7 88 21.25%
2 Real Estate Valuation trimmed dataset 212 7 0 0%
Real Estate Valuation trimmed dataset 268 7 41 15.3%
Hawkins–Bradu–Kass dataset (original) 75 4 14 18.67%
3 Hawkins–Bradu–Kass trimmed dataset 61 4 0 0%
Table A2. Variance Inflation Factor (VIF) of Milk Dataset, Real Estate Dataset, and Hawkins Bradu Kass Dataset.
Table A2. Variance Inflation Factor (VIF) of Milk Dataset, Real Estate Dataset, and Hawkins Bradu Kass Dataset.
Dataset Variable VIF Variable VIF
Milk dataset X 1 2.2007 X 5 24.7561
X 2 8.2865 X 6 3.2919
X 3 7.2187 X 8 2.1834
X 4 24.2253
Real Estate Valuation dataset X 1 1.0147 X 5 1.6023
X 2 1.0143 X 6 2.9263
X 3 4.3230
X 4 1.6170
Hawkins Bradu Kass datase X 1 13.4320
X 2 23.8535
X 3 33.4325
Table A3. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Normal Distribution ε i N ( 0 , 1 ) .
Table A3. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Normal Distribution ε i N ( 0 , 1 ) .
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0048 0.7969 0.0071 0.5625 0.0080 2.1962
50 0.0031 0.5451 0.0064 0.3860 0.0173 1.5106
100 0.0016 0.3808 0.0025 0.2692 0.0096 1.0585
150 0.0019 0.3016 0.0010 0.2140 0.0036 0.8410
200 0.0008 0.2651 0.0014 0.1833 0.0153 0.7204
HME 25 0.0004 0.7367 0.0055 0.5905 0.0193 2.3061
50 0.0049 0.4955 0.0052 0.4067 0.0173 1.5944
100 0.0021 0.3392 0.0009 0.2817 0.0050 1.1043
150 0.0032 0.2705 0.0029 0.2245 0.0135 0.8834
200 0.0027 0.2369 0.0016 0.1924 0.0152 0.7554
MME 25 0.0048 0.7450 0.0065 0.6064 0.0160 2.3551
50 0.0034 0.4964 0.0064 0.4113 0.0191 1.6135
100 0.0029 0.3450 0.0010 0.2885 0.0080 1.1326
150 0.0032 0.2735 0.0029 0.2338 0.0181 0.9137
200 0.0033 0.2377 0.0005 0.2031 0.0184 0.7736
LMSE 25 0.0236 1.5696 0.0125 1.4520 0.0490 5.6943
50 0.0144 1.1159 0.0225 1.0589 0.0505 4.1858
100 0.0114 0.8152 0.0045 0.8262 0.0335 3.1939
150 0.0067 0.6859 0.0073 0.7339 0.0387 2.7792
200 0.0087 0.6201 0.0094 0.6494 0.0063 2.4765
LTSE 25 0.0076 0.9591 0.0033 0.8883 0.0473 3.3716
50 0.0038 0.5957 0.0080 0.5332 0.0150 2.0957
100 0.0036 0.3777 0.0057 0.3466 0.0162 1.3443
150 0.0043 0.3010 0.0013 0.2741 0.0124 1.0760
200 0.0027 0.2567 0.0034 0.2336 0.0170 0.9105
SE 25 0.0135 1.1950 0.0122 1.1329 0.0784 4.3873
50 0.0089 0.8378 0.0082 0.8368 0.0301 3.3277
100 0.0099 0.5921 0.0028 0.6184 0.0254 2.3643
150 0.0071 0.4814 0.0031 0.5198 0.0295 2.0266
200 0.0027 0.4170 0.0037 0.4561 0.0173 1.7737
JSE 25 0.0037 0.2250 0.0107 0.4773 0.0661 1.9841
50 0.0003 0.0370 0.0076 0.3276 0.0430 1.2924
100 0.0000 0.0000 0.0046 0.2253 0.0434 0.8524
150 0.0000 0.0000 0.0025 0.1809 0.0256 0.6505
200 0.0000 0.0000 0.0024 0.1535 0.0194 0.5438
RSE 25 0.0037 0.1838 0.0116 0.5022 0.0759 2.0991
50 0.0003 0.0235 0.0065 0.3444 0.0461 1.3762
100 0.0000 0.0000 0.0055 0.2366 0.0425 0.8949
150 0.0000 0.0000 0.0033 0.1896 0.0329 0.6874
200 0.0000 0.0000 0.0028 0.1611 0.0233 0.5744
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A4. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Student’s t-distribution with 7 Degrees of Freedom ε i t 7 .
Table A4. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Student’s t-distribution with 7 Degrees of Freedom ε i t 7 .
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0123 0.7426 0.0066 0.7806 0.0216 3.0798
50 0.0027 0.4939 0.0037 0.5268 0.0152 2.0303
100 0.0054 0.3541 0.0062 0.3753 0.0169 1.4894
150 0.0010 0.2870 0.0053 0.3012 0.0153 1.1769
200 0.0058 0.2611 0.0045 0.2817 0.0069 1.0910
HME 25 0.0061 0.6519 0.0154 0.6874 0.0306 2.7191
50 0.0035 0.4402 0.0072 0.4624 0.0192 1.7788
100 0.0039 0.3065 0.0040 0.3260 0.0102 1.2931
150 0.0018 0.2491 0.0035 0.2613 0.0236 1.0218
200 0.0019 0.2184 0.0017 0.2308 0.0067 0.9018
MME 25 0.0091 0.6554 0.0116 0.6922 0.0222 2.7395
50 0.0020 0.4447 0.0037 0.4656 0.0166 1.7988
100 0.0051 0.3109 0.0046 0.3317 0.0031 1.3056
150 0.0043 0.2569 0.0053 0.2669 0.0206 1.0457
200 0.0019 0.2233 0.0019 0.2338 0.0051 0.9262
LMSE 25 0.0018 1.4606 0.0085 1.5271 0.0909 6.0429
50 0.0074 1.0703 0.0124 1.1522 0.0852 4.4395
100 0.0114 0.8019 0.0070 0.8446 0.0392 3.3496
150 0.0104 0.7081 0.0064 0.7417 0.0163 2.9055
200 0.0085 0.6387 0.0037 0.6779 0.0252 2.6226
LTSE 25 0.0146 0.8923 0.0168 0.9548 0.0262 3.6888
50 0.0030 0.5645 0.0082 0.6011 0.0218 2.3083
100 0.0034 0.3680 0.0056 0.3962 0.0154 1.5443
150 0.0027 0.3054 0.0027 0.3190 0.0260 1.2319
200 0.0029 0.2662 0.0029 0.2745 0.0049 1.0743
SE 25 0.0149 1.0998 0.0063 1.1431 0.0280 4.6433
50 0.0047 0.7914 0.0065 0.8444 0.0129 3.2186
100 0.0058 0.5706 0.0094 0.6112 0.0277 2.3669
150 0.0090 0.4875 0.0083 0.5134 0.0304 2.0260
200 0.0046 0.4245 0.0056 0.4416 0.0107 1.7412
JSE 25 0.0234 0.6805 0.0246 0.6675 0.0777 2.8964
50 0.0116 0.4579 0.0152 0.4494 0.0745 1.8283
100 0.0063 0.3252 0.0068 0.3130 0.0524 1.2813
150 0.0080 0.2689 0.0044 0.2548 0.0417 0.9715
200 0.0027 0.2399 0.0010 0.2360 0.0345 0.9034
RSE 25 0.0157 0.5964 0.2093 0.5832 0.0781 2.5176
50 0.0120 0.4152 0.0123 0.3979 0.0585 1.5641
100 0.0049 0.2813 0.0055 0.2705 0.0484 1.0821
150 0.0042 0.2349 0.0032 0.2212 0.0290 0.8186
200 0.0014 0.2036 0.0008 0.1939 0.0286 0.7053
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A5. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Student’s t-distribution with 2 Degrees of Freedom ε i t 2 .
Table A5. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Student’s t-distribution with 2 Degrees of Freedom ε i t 2 .
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0108 1.9081 0.0363 1.5837 0.0343 6.3193
50 0.0083 0.9523 0.0063 0.9997 0.0226 3.9887
100 0.0097 0.6049 0.0029 0.7770 0.0326 2.9553
150 0.0068 0.5355 0.0029 0.5735 0.0283 2.2427
200 0.0060 0.4347 0.0077 0.5177 0.0298 2.0001
HME 25 0.0069 0.7556 0.0040 0.7981 0.0368 3.1272
50 0.0052 0.5005 0.0023 0.5157 0.0348 1.9727
100 0.0036 0.3357 0.0036 0.3515 0.0179 1.3784
150 0.0042 0.2731 0.0028 0.2860 0.0079 1.1151
200 0.0024 0.2306 0.0031 0.2437 0.0014 0.9518
MME 25 0.0048 0.7392 0.0075 0.7847 0.0241 3.0678
50 0.0067 0.4957 0.0030 0.5140 0.0348 1.9556
100 0.0029 0.3305 0.0040 0.3492 0.0150 1.3666
150 0.0026 0.2755 0.0019 0.2858 0.0109 1.1261
200 0.0030 0.2283 0.0021 0.2438 0.0070 0.9481
LMSE 25 0.0371 1.4968 0.0141 1.5585 0.0470 6.1612
50 0.0141 1.1147 0.0083 1.1513 0.0508 4.5106
100 0.0085 0.8248 0.0105 0.8907 0.0191 3.4257
150 0.0038 0.7199 0.0084 0.7672 0.0261 2.9467
200 0.0042 0.6274 0.0075 0.6625 0.0196 2.5748
LTSE 25 0.0174 0.9393 0.0158 1.0102 0.0448 3.8620
50 0.0033 0.6015 0.0092 0.6156 0.0173 2.3741
100 0.0056 0.3893 0.0054 0.4122 0.0229 1.6104
150 0.0054 0.3245 0.0042 0.3397 0.0138 1.3150
200 0.0011 0.2687 0.0034 0.2872 0.0095 1.1192
SE 25 0.0152 1.1244 0.0097 1.2179 0.0888 4.6215
50 0.0034 0.7851 0.0067 0.7939 0.0592 3.2794
100 0.0048 0.5736 0.0075 0.6120 0.0133 2.3900
150 0.0029 0.4841 0.0035 0.5061 0.0113 1.9832
200 0.0018 0.3995 0.0048 0.4249 0.0141 1.6467
JSE 25 0.0457 1.3759 0.0470 1.6786 0.0724 6.2188
50 0.0294 0.9000 0.0257 0.8909 0.0782 3.7598
100 0.0118 0.5776 0.0199 0.7118 0.0897 2.8167
150 0.0096 0.5067 0.0120 0.5562 0.0552 2.0879
200 0.0056 0.4034 0.0130 0.4802 0.0643 1.8965
RSE 25 0.0239 0.6831 0.0210 0.6786 0.0681 2.9392
50 0.0102 0.4820 0.0141 0.4488 0.0585 1.7551
100 0.0040 0.3145 0.0105 0.2950 0.0537 1.1619
150 0.0049 0.2565 0.0051 0.2422 0.0394 0.9057
200 0.0018 0.2153 0.0018 0.2044 0.0307 0.7498
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A6. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Cauchy Distribution ε i C ( 0 , 1 ) .
Table A6. Estimated Bias and RMSE Values with Multicollinearity and no Outliers for Cauchy Distribution ε i C ( 0 , 1 ) .
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 1.7105 410.0024 1.1075 458.8047 2.9021 1949.7800
50 7.4097 88.0969 8.0337 95.2352 32.8347 366.0479
100 1.1715 72.3916 1.2518 75.8250 5.6827 270.3350
150 1.1942 72.8678 1.2158 65.0286 4.0633 269.6116
200 1.0946 82.4840 1.3290 61.1405 5.1978 260.7603
HME 25 0.0202 1.0725 0.0131 1.1397 0.0682 4.4596
50 0.0027 0.6690 0.0040 0.7065 0.0227 2.7626
100 0.0043 0.4428 0.0035 0.4679 0.0198 1.8232
150 0.0043 0.3481 0.0047 0.3659 0.0224 1.4325
200 0.0026 0.2999 0.0017 0.3154 0.0026 1.2351
MME 25 0.0153 0.9846 0.0034 1.0397 0.0587 4.1478
50 0.0027 0.6136 0.0051 0.6459 0.0446 2.5230
100 0.0021 0.4140 0.0050 0.4379 0.0256 1.7081
150 0.0020 0.3261 0.0035 0.3471 0.0118 1.3298
200 0.0051 0.2766 0.0026 0.2908 0.0094 1.1309
LMSE 25 0.0167 1.6576 0.0167 1.7265 0.0770 6.7443
50 0.0102 1.1152 0.0102 1.1698 0.0990 4.5277
100 0.0073 0.7885 0.0113 0.8272 0.0224 3.3110
150 0.0041 0.6602 0.0030 0.6842 0.0299 2.6303
200 0.0044 0.5764 0.0022 0.6247 0.0366 2.4631
LTSE 25 0.0117 1.1359 0.0084 1.1692 0.0235 4.5503
50 0.0109 0.6670 0.0056 0.6998 0.0437 2.7133
100 0.0032 0.4465 0.0061 0.4661 0.0118 1.8315
150 0.0046 0.3569 0.0047 0.3711 0.0232 1.4465
200 0.0046 0.3029 0.0041 0.3189 0.0127 1.2497
SE 25 0.0097 1.2065 0.0132 1.2566 0.0738 4.9714
50 0.0149 0.7895 0.0098 0.8189 0.0270 3.1879
100 0.0067 0.5307 0.0087 0.5537 0.0319 2.1612
150 0.0102 0.4192 0.0070 0.4375 0.0333 1.7050
200 0.0039 0.3603 0.0058 0.3829 0.0182 1.4984
JSE 25 1.5931 409.9958 0.9673 458.8019 2.9194 1949.7800
50 7.3356 88.0764 7.9925 95.2344 32.7987 270.3315
100 1.1244 82.4731 1.2966 75.8101 5.7051 366.0451
150 1.1460 72.8492 1.1730 65.0195 4.0186 269.6087
200 1.0538 72.3765 1.3648 61.1171 5.2656 260.7565
RSE 25 0.0321 0.9482 0.0383 0.9908 0.0662 4.3078
50 0.0182 0.6170 0.0232 0.6077 0.0801 2.5756
100 0.0037 0.4146 0.0126 0.4003 0.0822 1.6125
150 0.0024 0.3266 0.0047 0.3100 0.0594 1.2199
200 0.0049 0.2803 0.0092 0.2658 0.0444 1.0249
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A7. Estimated Bias and RMSE Values for Normal Errors with Outliers in the y Direction and no Multicollinearity.
Table A7. Estimated Bias and RMSE Values for Normal Errors with Outliers in the y Direction and no Multicollinearity.
Method n π = 0.10 π = 0.25 π = 0.50
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0055 0.6950 0.0071 0.9077 0.0014 0.9806
50 0.0012 0.6690 0.0026 0.6134 0.0041 0.9072
100 0.0019 0.6467 0.0003 0.4100 0.0031 0.8761
150 0.0020 0.6210 0.0035 0.3268 0.0042 0.8328
200 0.0010 0.6007 0.0020 0.2863 0.0042 0.7854
HME 25 0.0031 0.2733 0.0035 0.3405 0.0041 0.3394
50 0.0009 0.1834 0.0007 0.2106 0.0002 0.2116
100 0.0021 0.1246 0.0004 0.1218 0.0012 0.1384
150 0.0005 0.0999 0.0001 0.1091 0.0002 0.1100
200 0.0004 0.0863 0.0010 0.0948 0.0003 0.0876
MME 25 0.0024 0.2521 0.0031 0.2543 0.0014 0.2838
50 0.0015 0.1675 0.0000 0.2099 0.0019 0.1807
100 0.0004 0.1143 0.0002 0.1180 0.0018 0.1213
150 0.0003 0.0917 0.0004 0.1001 0.0004 0.0974
200 0.0007 0.0795 0.0080 0.0846 0.0003 0.0734
LMSE 25 0.0024 0.5255 0.0004 0.5347 0.0013 0.5462
50 0.0004 0.3570 0.0012 0.3591 0.0078 0.3599
100 0.0007 0.2549 0.0005 0.2547 0.0026 0.2594
150 0.0016 0.2171 0.0007 0.2150 0.0013 0.2177
200 0.0028 0.1946 0.0017 0.1924 0.0009 0.1914
LTSE 25 0.0020 0.3909 0.0021 0.3222 0.0021 0.3264
50 0.0010 0.1966 0.0007 0.2367 0.0029 0.2000
100 0.0005 0.1268 0.0007 0.1674 0.0018 0.1309
150 0.0004 0.1008 0.0003 0.1388 0.0002 0.1033
200 0.0007 0.0865 0.0004 0.1094 0.0005 0.0906
SE 25 0.0020 0.3909 0.0008 0.3831 0.0020 0.3865
50 0.0006 0.2670 0.0015 0.2588 0.0049 0.2597
100 0.0005 0.1817 0.0017 0.1786 0.0007 0.1805
150 0.0004 0.1477 0.0009 0.1438 0.0006 0.1457
200 0.0013 0.1277 0.0003 0.1239 0.0007 0.1224
JSE 25 0.2602 0.6801 0.3516 0.7350 0.3477 0.7329
50 0.2062 0.6573 0.0263 0.5623 0.2685 0.7280
100 0.0123 0.6312 0.0168 0.4063 0.1634 0.7044
150 0.0004 0.6011 0.1233 0.3295 0.1242 0.6825
200 0.0672 0.5698 0.0981 0.2892 0.0957 0.6657
RSE 25 0.4704 0.6585 0.4667 0.8030 0.4757 0.6995
50 0.4905 0.6355 0.0487 0.5328 0.4881 0.6709
100 0.0495 0.5889 0.0493 0.3510 0.4898 0.6538
150 0.0493 0.5504 0.4951 0.2790 0.4943 0.6222
200 0.4947 0.5065 0.4935 0.2581 0.4974 0.6098
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A8. Estimated Bias and RMSE Values under Normal Errors with Outliers in the x Direction and no Multicollinearity.
Table A8. Estimated Bias and RMSE Values under Normal Errors with Outliers in the x Direction and no Multicollinearity.
Method n π = 0.10 π = 0.25 π = 0.50
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.1225 0.6138 0.3650 0.6569 0.5100 0.7285
50 0.2247 0.5014 0.3927 0.5589 0.5224 0.6899
100 0.2599 0.4067 0.4165 0.4371 0.5259 0.6514
150 0.2600 0.3993 0.4293 0.4270 0.5167 0.6235
200 0.2769 0.3824 0.4227 0.4136 0.5269 0.6233
HME 25 0.1103 0.4643 0.3445 0.4789 0.5015 0.6688
50 0.1681 0.4031 0.3641 0.4104 0.5229 0.6262
100 0.1824 0.2849 0.3908 0.3541 0.5237 0.5897
150 0.1872 0.2604 0.4029 0.3105 0.5169 0.5801
200 0.1901 0.2482 0.3968 0.3025 0.5242 0.5755
MME 25 0.0285 0.4011 0.1932 0.4098 0.4868 0.6631
50 0.0513 0.3470 0.2401 0.3560 0.5219 0.6192
100 0.0567 0.2262 0.3271 0.2682 0.5213 0.5883
150 0.0619 0.2060 0.3510 0.2083 0.5162 0.5775
200 0.0646 0.1801 0.3523 0.1789 0.5242 0.5730
LMSE 25 0.0078 0.5375 0.1014 0.5375 0.2804 0.8372
50 0.0173 0.3772 0.0688 0.3772 0.3846 0.6487
100 0.0106 0.2467 0.0601 0.2867 0.3937 0.5898
150 0.0127 0.2160 0.0571 0.2142 0.4303 0.5810
200 0.0116 0.1877 0.0428 0.1930 0.4311 0.5770
LTSE 25 0.0154 0.3907 0.1135 0.3907 0.3341 0.6326
50 0.0263 0.2727 0.0953 0.2727 0.4087 0.5581
100 0.0245 0.1806 0.0964 0.2048 0.4324 0.5398
150 0.0251 0.1508 0.1036 0.1539 0.4324 0.5242
200 0.0271 0.1358 0.0884 0.1487 0.4424 0.5140
SE 25 0.0129 0.4191 0.1048 0.4191 0.3425 0.7257
50 0.0170 0.2859 0.0757 0.2859 0.4262 0.6250
100 0.0139 0.1775 0.0613 0.2056 0.4381 0.5781
150 0.0128 0.1548 0.0591 0.1542 0.4823 0.5607
200 0.0135 0.1294 0.0464 0.1453 0.4764 0.5479
JSE 25 0.1912 0.6128 0.4938 0.6128 0.7283 0.8096
50 0.2693 0.5501 0.4705 0.5501 0.6711 0.7674
100 0.2874 0.4417 0.4604 0.5021 0.6127 0.7350
150 0.2874 0.4274 0.4605 0.4684 0.5777 0.7033
200 0.2894 0.4020 0.4458 0.4554 0.5764 0.6893
RSE 25 0.1303 0.5878 0.4913 0.5870 0.8224 0.7151
50 0.0528 0.4982 0.5671 0.4980 0.8589 0.6823
100 0.1036 0.4054 0.6383 0.4365 0.8633 0.6389
150 0.1213 0.3847 0.6688 0.4149 0.8607 0.6198
200 0.1324 0.3772 0.6593 0.4039 0.8738 0.6198
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A9. Estimated Bias and RMSE under ε i t 2 with Outliers in the y Direction and no Multicollinearity.
Table A9. Estimated Bias and RMSE under ε i t 2 with Outliers in the y Direction and no Multicollinearity.
Method n π = 0.10 π = 0.25 π = 0.50
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0457 0.8724 0.0108 0.9139 0.3930 1.0740
50 0.0267 0.5982 0.0230 0.6246 0.3705 0.8713
100 0.0233 0.4566 0.0136 0.5075 0.4457 0.7181
150 0.0188 0.3505 0.0276 0.3837 0.3872 0.6936
200 0.0189 0.3341 0.0043 0.3400 0.4038 0.6850
ME 25 0.0208 0.4170 0.0102 0.4597 0.1766 0.8102
50 0.0031 0.2449 0.0197 0.2570 0.1835 0.5907
100 0.0141 0.1654 0.0059 0.1681 0.1964 0.4931
150 0.0029 0.1322 0.0024 0.1516 0.2044 0.4554
200 0.0021 0.1266 0.0037 0.1169 0.2053 0.4281
MME 25 0.0022 0.3946 0.0113 0.4170 0.0299 0.6781
50 0.0008 0.2122 0.0235 0.2452 0.0475 0.4995
100 0.0123 0.1573 0.0009 0.1612 0.0993 0.4100
150 0.0044 0.1205 0.0007 0.1362 0.0906 0.3616
200 0.0039 0.1158 0.0042 0.1057 0.0901 0.3397
LMSE 25 0.0123 0.5972 0.0260 0.6250 0.0345 0.6433
50 0.0217 0.4033 0.0009 0.3650 0.0146 0.4197
100 0.0028 0.2630 0.0049 0.2685 0.0317 0.3096
150 0.0075 0.2153 0.0102 0.2092 0.0140 0.2627
200 0.0053 0.1956 0.0122 0.1731 0.0033 0.2433
LTSE 25 0.0081 0.4295 0.0103 0.4563 0.0157 0.4986
50 0.0032 0.2272 0.0203 0.2466 0.0226 0.3812
100 0.0097 0.1658 0.0007 0.1595 0.0435 0.2623
150 0.0069 0.1249 0.0036 0.1300 0.0199 0.2243
200 0.0076 0.1155 0.0022 0.1046 0.0311 0.1865
SE 25 0.0130 0.4157 0.0041 0.4847 0.0254 0.5413
50 0.0024 0.2574 0.0230 0.2676 0.0375 0.3912
100 0.0061 0.1817 0.0040 0.1702 0.0580 0.2859
150 0.0126 0.1366 0.0042 0.1362 0.0317 0.2358
200 0.0055 0.1233 0.0027 0.1084 0.0493 0.2046
JSE 25 0.2578 0.6665 0.3083 0.7295 0.6597 0.9887
50 0.2344 0.5465 0.2726 0.5550 0.7327 0.9186
100 0.2220 0.4315 0.2031 0.4319 0.7492 0.8692
150 0.1064 0.3455 0.0935 0.3493 0.6862 0.8416
200 0.0805 0.3229 0.1119 0.3013 0.6758 0.8293
RSE 25 0.0204 0.7605 0.0753 0.8116 0.2687 1.1759
50 0.0109 0.5665 0.0525 0.5923 0.4567 0.8200
100 0.0487 0.4300 0.0482 0.4537 0.5525 0.6905
150 0.0068 0.3458 0.0151 0.3743 0.6033 0.6707
200 0.0091 0.3282 0.0136 0.3082 0.6156 0.6582
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A10. Estimated Bias and RMSE for ε i t 2 with Outliers in the x Direction and no Multicollinearity.
Table A10. Estimated Bias and RMSE for ε i t 2 with Outliers in the x Direction and no Multicollinearity.
Method n π = 0.10 π = 0.25 π = 0.50
Bias RMSE Bias RMSE Bias RMSE
OLSE 25 0.2460 0.6138 0.2460 0.8977 0.5062 0.7285
50 0.3284 0.5014 0.3284 0.6730 0.5376 0.6899
100 0.2551 0.4067 0.3381 0.5003 0.5133 0.6504
150 0.2546 0.4000 0.3364 0.4804 0.5158 0.6086
200 0.2783 0.3824 0.3544 0.4236 0.5260 0.5897
ME 25 0.2329 0.4643 0.2329 0.4745 0.4999 0.6688
50 0.2970 0.4031 0.2970 0.4299 0.5360 0.6262
100 0.2078 0.2849 0.2898 0.3909 0.5190 0.5897
150 0.2336 0.2798 0.2886 0.3667 0.5216 0.5601
200 0.2234 0.2682 0.3060 0.3500 0.5271 0.5455
MME 25 0.1196 0.4011 0.1196 0.4299 0.4886 0.6631
50 0.1961 0.3470 0.1961 0.3902 0.5335 0.6092
100 0.1135 0.2262 0.1969 0.3339 0.5159 0.5383
150 0.1231 0.2060 0.2112 0.2945 0.5205 0.5175
200 0.1286 0.1801 0.2439 0.2532 0.5249 0.5110
LMSE 25 0.0158 0.5375 0.0158 0.5375 0.3637 0.8372
50 0.0639 0.3772 0.0639 0.4005 0.4210 0.6487
100 0.0338 0.2467 0.0263 0.3519 0.3981 0.5898
150 0.0139 0.2260 0.0238 0.3007 0.4402 0.5703
200 0.0094 0.1877 0.0090 0.2689 0.4483 0.5598
LTSE 25 0.0196 0.3907 0.0196 0.3907 0.3810 0.6326
50 0.0955 0.2727 0.0955 0.2727 0.4372 0.5599
100 0.0363 0.1806 0.0601 0.2048 0.4448 0.5300
150 0.0350 0.1508 0.0514 0.1539 0.4439 0.5156
200 0.0371 0.1358 0.0622 0.1487 0.4658 0.5078
SE 25 0.0059 0.4191 0.0059 0.4191 0.4574 0.7257
50 0.0652 0.2859 0.0652 0.2859 0.4620 0.6250
100 0.0260 0.1775 0.0299 0.2056 0.4497 0.5705
150 0.0204 0.1548 0.0333 0.1542 0.4946 0.5577
200 0.0140 0.1294 0.0365 0.1453 0.5012 0.5429
JSE 25 0.4444 0.6128 0.4444 0.6128 0.7679 0.8096
50 0.4666 0.5501 0.4666 0.5501 0.7722 0.7589
100 0.3449 0.4417 0.4348 0.5021 0.7062 0.7350
150 0.3477 0.4209 0.4115 0.4684 0.6812 0.7003
200 0.3409 0.4020 0.4128 0.4109 0.6663 0.6593
RSE 25 0.2650 0.5878 0.2650 0.5782 0.5192 0.7151
50 0.3363 0.4982 0.3363 0.5024 0.5473 0.6823
100 0.2608 0.4054 0.3427 0.4822 0.5167 0.6389
150 0.2751 0.3947 0.3426 0.4577 0.5207 0.6011
200 0.2826 0.3772 0.3566 0.4104 0.5291 0.5800
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A11. Estimated Bias and RMSE for Normal Errors with 10% Outliers in the y Direction and Multicollinearity.
Table A11. Estimated Bias and RMSE for Normal Errors with 10% Outliers in the y Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0161 1.1661 0.0267 1.1767 0.0859 4.8447
50 0.0104 0.9019 0.0146 0.9395 0.0823 3.5972
100 0.0102 0.6200 0.0049 0.6164 0.0264 2.5442
150 0.0075 0.5013 0.0039 0.5253 0.0245 2.0862
200 0.0066 0.4414 0.0045 0.4400 0.0096 1.8097
HME 25 0.0089 0.6654 0.0067 0.6856 0.0170 2.7112
50 0.0028 0.4462 0.0069 0.4787 0.0182 1.8527
100 0.0038 0.3104 0.0003 0.3135 0.0257 1.2647
150 0.0012 0.2425 0.0031 0.2661 0.0156 1.0221
200 0.0024 0.2164 0.0047 0.2285 0.0083 0.8758
MME 25 0.0022 0.6513 0.0054 0.6630 0.0297 2.5821
50 0.0007 0.4161 0.0023 0.4474 0.0148 1.7323
100 0.0019 0.2932 0.0019 0.3061 0.0174 1.2065
150 0.0023 0.2304 0.0052 0.2452 0.0072 0.9542
200 0.0024 0.2049 0.0013 0.2196 0.0071 0.8440
LMSE 25 0.0042 1.3739 0.0186 1.4445 0.0502 5.6464
50 0.0048 0.9668 0.0129 1.0399 0.0760 4.1230
100 0.0069 0.7582 0.0155 0.8240 0.0185 3.0788
150 0.0091 0.6626 0.0094 0.6933 0.0459 2.7251
200 0.0060 0.5967 0.0010 0.6350 0.0252 2.4792
LTSE 25 0.0071 0.8149 0.0092 0.8652 0.0275 3.3599
50 0.0046 0.4933 0.0080 0.5221 0.0095 2.0934
100 0.0010 0.3309 0.0036 0.3435 0.0076 1.3464
150 0.0052 0.2572 0.0015 0.2701 0.0092 1.0902
200 0.0041 0.2228 0.0002 0.2390 0.0086 0.9219
SE 25 0.0065 1.0166 0.0091 1.0819 0.0270 4.2438
50 0.0118 0.7430 0.0059 0.7808 0.0462 3.0566
100 0.0035 0.5346 0.0047 0.5755 0.0378 2.1820
150 0.0069 0.4442 0.0062 0.4766 0.0322 1.8690
200 0.0060 0.3978 0.0060 0.4206 0.0118 1.6512
JSE 25 0.0705 1.0623 0.0712 1.4445 0.0855 4.7029
50 0.0258 0.8135 0.0322 0.8125 0.1237 3.4315
100 0.0101 0.5772 0.0303 0.5580 0.0744 2.3470
150 0.0058 0.4759 0.0288 0.4987 0.0558 1.8779
200 0.0020 0.4091 0.0119 0.4366 0.0604 1.5931
RSE 25 0.0083 0.6170 0.0226 0.5898 0.0942 2.5164
50 0.0079 0.4132 0.0090 0.4003 0.0612 1.6407
100 0.0033 0.2935 0.0051 0.2657 0.0500 1.0493
150 0.0019 0.2310 0.0018 0.2155 0.0323 0.8170
200 0.0029 0.2015 0.0015 0.1936 0.0359 0.6839
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A12. Estimated Bias and RMSE Values for Normal Errors with 25% Outliers in the y Direction and Multicollinearity.
Table A12. Estimated Bias and RMSE Values for Normal Errors with 25% Outliers in the y Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0062 1.5543 0.0046 1.6247 0.0530 6.3331
50 0.0212 1.0810 0.0089 1.1396 0.0191 4.4080
100 0.0137 0.7174 0.0154 0.7447 0.0368 2.8907
150 0.0038 0.5801 0.0062 0.6160 0.0452 2.4116
200 0.0057 0.5121 0.0029 0.5368 0.0291 2.1021
HME 25 0.0100 0.7930 0.0035 0.8190 0.0139 3.1968
50 0.0021 0.4917 0.0063 0.5162 0.0092 1.9931
100 0.0030 0.3281 0.0013 0.3415 0.0247 1.3352
150 0.0030 0.2676 0.0023 0.2830 0.0123 1.1082
200 0.0057 0.2380 0.0056 0.2501 0.0191 0.9796
MME 25 0.0064 0.7174 0.0071 0.7441 0.0280 2.8945
50 0.0020 0.4460 0.0070 0.4675 0.0163 1.8181
100 0.0019 0.3435 0.0046 0.3183 0.1093 1.2491
150 0.0027 0.2773 0.0022 0.2609 0.0150 1.0299
200 0.0029 0.2187 0.0024 0.2308 0.0145 0.9129
LMSE 25 0.0218 1.4472 0.0095 1.4409 0.0370 5.9381
50 0.0122 1.0082 0.0089 1.0629 0.0320 4.0632
100 0.0108 0.7533 0.0069 0.7914 0.0285 2.9913
150 0.0034 0.6561 0.0024 0.7027 0.0321 2.7053
200 0.0046 0.6061 0.0042 0.6359 0.0222 2.4734
LTSE 25 0.0062 0.8854 0.0060 0.9104 0.0131 3.5050
50 0.0041 0.5026 0.0037 0.5218 0.0206 2.0321
100 0.0026 0.3326 0.0022 0.3432 0.0239 1.3321
150 0.0045 0.2677 0.0018 0.2782 0.0096 1.0861
200 0.0022 0.2301 0.0012 0.2423 0.0055 0.9453
SE 25 0.0127 1.0989 0.0099 1.0978 0.0512 4.3564
50 0.0048 0.8401 0.0057 0.7404 0.0092 2.8994
100 0.0095 0.6323 0.0018 0.5428 0.0240 2.1071
150 0.0066 0.5142 0.0052 0.4565 0.0158 1.7641
200 0.0040 0.4505 0.0034 0.3906 0.0154 1.5235
JSE 25 0.0786 1.3898 0.0726 1.4474 0.0525 6.2080
50 0.0515 0.9745 0.0477 1.0007 0.1046 4.2547
100 0.0166 0.6572 0.0200 0.6375 0.1093 2.6981
150 0.0143 0.5358 0.0192 0.5287 0.1118 2.2113
200 0.0077 0.4776 0.0126 0.4550 0.0670 1.8900
RSE 25 0.0086 0.6409 0.0226 0.7031 0.0942 3.0150
50 0.0079 0.4270 0.0090 0.4487 0.0612 1.7837
100 0.0033 0.3202 0.0051 0.2902 0.0500 1.1195
150 0.0019 0.2411 0.0018 0.2385 0.0323 0.9004
200 0.0029 0.1902 0.0015 0.2102 0.0359 0.7816
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A13. Estimated Bias and RMSE Values for Normal Errors with 50% Outliers in the y Direction and Multicollinearity.
Table A13. Estimated Bias and RMSE Values for Normal Errors with 50% Outliers in the y Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0361 2.6872 0.0391 3.4565 0.1435 13.4395
50 0.0207 1.8804 0.0137 2.4060 0.1291 9.2996
100 0.0229 1.2856 0.0173 1.6108 0.0680 6.2748
150 0.0054 1.0056 0.0135 1.2991 0.0646 5.0614
200 0.0152 0.9050 0.0219 1.1438 0.0649 4.4912
HME 25 0.0152 2.0393 0.0385 3.2750 0.2547 12.7506
50 0.0178 1.2846 0.0166 2.2399 0.0905 8.6701
100 0.0107 0.8170 0.0108 1.4946 0.0923 5.8517
150 0.0043 0.6205 0.0192 1.2080 0.1026 4.7199
200 0.0055 0.5431 0.0188 1.0487 0.0344 4.1304
MME 25 0.0123 2.0160 0.0502 3.3765 0.1710 12.9902
50 0.0119 1.2511 0.0190 2.2857 0.0689 8.8028
100 0.0085 0.8068 0.0139 1.5218 0.0902 5.9529
150 0.0056 0.6260 0.0097 1.2321 0.1193 4.8432
200 0.0027 0.5310 0.0206 1.0664 0.0504 4.1981
LMSE 25 0.0111 1.8804 0.0700 6.3924 0.2934 24.8944
50 0.0141 1.1249 0.0352 4.3369 0.1285 16.6505
100 0.0033 0.7390 0.0336 3.0340 0.0672 11.8651
150 0.0067 0.6363 0.0238 2.5743 0.0366 9.9337
200 0.0056 0.5753 0.0365 2.2427 0.0476 8.7208
LTSE 25 0.0126 1.8604 0.0447 4.3584 0.2164 16.9940
50 0.0069 1.1510 0.0124 2.6902 0.1171 10.4412
100 0.0074 0.7537 0.0205 1.7371 0.1301 6.8903
150 0.0089 0.6363 0.0113 1.3817 0.0520 5.3751
200 0.0050 0.4968 0.0054 1.1846 0.0265 4.6208
SE 25 0.0054 1.5971 0.0354 5.0033 0.1718 18.9508
50 0.0155 0.9831 0.0254 3.1914 0.0856 12.2507
100 0.0080 0.6203 0.0418 2.1167 0.1493 8.3920
150 0.0010 0.5092 0.0101 1.7027 0.0531 6.7311
200 0.0016 0.4403 0.0184 1.4327 0.0516 5.5473
JSE 25 0.1135 2.4747 0.1148 3.2656 0.1605 13.3709
50 0.0988 1.6975 0.0892 2.1964 0.0541 9.2018
100 0.0749 1.1428 0.0778 1.4191 0.0462 6.1440
150 0.0472 0.9173 0.0748 1.1416 0.0819 4.9121
200 0.0328 0.8131 0.0387 0.9870 0.0584 4.3278
RSE 25 0.0986 1.5785 0.1026 3.0745 0.2389 12.6750
50 0.0718 0.8309 0.0875 2.0285 0.0940 8.5669
100 0.0245 0.4867 0.0564 1.3047 0.0169 5.7115
150 0.0130 0.3892 0.0506 1.0478 0.1073 4.5634
200 0.0102 0.3333 0.0408 0.9044 0.0529 3.9618
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A14. Estimated Bias and RMSE Values for Normal Errors with 10% Outliers in the x Direction and Multicollinearity.
Table A14. Estimated Bias and RMSE Values for Normal Errors with 10% Outliers in the x Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0135 2.2325 0.0281 2.3509 0.1694 9.0955
50 0.0263 1.5163 0.0141 1.6087 0.0844 6.2819
100 0.0101 1.0717 0.0084 1.1340 0.0381 4.4269
150 0.0078 0.8638 0.0185 0.9072 0.0316 3.5486
200 0.0127 0.7507 0.0129 0.7909 0.0288 3.0516
HME 25 0.0144 2.1473 0.0092 2.2668 0.0867 8.7886
50 0.0344 1.4519 0.0249 1.5383 0.0609 5.9849
100 0.0123 1.0188 0.0082 1.0696 0.0453 4.1529
150 0.0095 0.8122 0.0089 0.8530 0.0302 3.3366
200 0.0047 0.7005 0.0093 0.7376 0.0201 2.8468
MME 25 0.0107 2.1610 0.0093 2.2880 0.0801 9.0087
50 0.0365 1.4752 0.0242 1.5452 0.0408 6.0579
100 0.0170 1.0358 0.0058 1.0782 0.0595 4.1825
150 0.0183 0.8209 0.0035 0.8702 0.0559 3.3697
200 0.0046 0.7107 0.0105 0.7372 0.0416 2.8525
LMSE 25 0.0205 4.5983 0.0626 4.8056 0.2446 19.0631
50 0.0381 3.2831 0.0553 3.4427 0.1216 13.6482
100 0.0346 2.3554 0.0554 2.4843 0.1069 9.7381
150 0.0204 2.0155 0.0385 2.1367 0.0515 8.4898
200 0.0150 1.8472 0.0211 1.8739 0.0571 7.3646
LTSE 25 0.0272 2.9346 0.0400 3.0534 0.1054 12.2296
50 0.0189 1.8234 0.0098 1.9280 0.0747 7.6308
100 0.0194 1.1892 0.0067 1.2630 0.0460 4.8699
150 0.0064 0.9607 0.0084 1.0068 0.0521 3.9624
200 0.0043 0.8050 0.0114 0.8567 0.0224 3.2949
SE 25 0.0533 3.4634 0.0468 3.6445 0.1537 14.5047
50 0.0244 2.4897 0.0347 2.6742 0.0834 10.4343
100 0.0294 1.7188 0.0229 1.8000 0.0372 6.9285
150 0.0215 1.4082 0.0176 1.4764 0.0661 5.7540
200 0.0089 1.1880 0.0051 1.2568 0.0224 4.8324
JSE 25 0.1058 2.0278 0.0689 2.1415 0.0877 8.9953
50 0.0684 1.3438 0.0585 1.4176 0.0926 6.1550
100 0.0423 0.9539 0.0499 0.9805 0.0767 4.2635
150 0.0217 0.7895 0.0265 0.7840 0.1009 3.3695
200 0.0281 0.6973 0.0348 0.6879 0.0934 2.8600
RSE 25 0.0949 1.9411 0.0778 2.0640 0.0336 8.6892
50 0.0494 1.2857 0.0664 1.3551 0.0386 5.8501
100 0.0430 0.9164 0.0547 0.9267 0.0962 3.9854
150 0.0150 0.7424 0.0255 0.7345 0.1059 3.1533
200 0.0235 0.6516 0.0381 0.6387 0.0934 2.6459
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A15. Estimated Bias and RMSE Values for Normal Errors with 25% Outliers in the x Direction and Multicollinearity.
Table A15. Estimated Bias and RMSE Values for Normal Errors with 25% Outliers in the x Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0281 2.4286 0.0247 2.5558 0.0960 9.9821
50 0.0326 1.6594 0.0078 1.7535 0.0437 6.7796
100 0.0136 1.1247 0.0146 1.1722 0.0898 4.5734
150 0.0103 0.9013 0.0171 0.9516 0.0493 3.7040
200 0.0075 0.7997 0.0081 0.8411 0.0309 3.3035
HME 25 0.0275 2.3096 0.0108 2.4388 0.0361 9.4162
50 0.0181 1.5310 0.0308 1.6133 0.0503 6.1978
100 0.0091 1.0456 0.0143 1.0929 0.1120 4.2635
150 0.0118 0.8415 0.0064 0.8870 0.0390 3.4689
200 0.0066 0.7483 0.0098 0.7872 0.0170 3.0805
MME 25 0.0349 2.3528 0.0125 2.4749 0.0507 9.5822
50 0.0203 1.5405 0.0272 1.6325 0.0503 6.2386
100 0.0157 1.0569 0.0211 1.1076 0.1020 4.3226
150 0.0059 0.8486 0.0060 0.8878 0.0290 3.5174
200 0.0066 0.7566 0.0126 0.7982 0.0120 3.1332
LMSE 25 0.0683 4.9767 0.0417 5.2389 0.1866 19.8633
50 0.0586 3.4244 0.0647 3.5244 0.3311 13.4509
100 0.0313 2.4225 0.0572 2.5611 0.0303 9.6458
150 0.0295 2.0941 0.0110 2.1461 0.0874 8.4162
200 0.0024 1.8611 0.0328 1.9605 0.0901 7.6914
LTSE 25 0.0260 3.2252 0.0309 3.4264 0.1217 13.2600
50 0.0071 1.8757 0.0271 1.9788 0.1588 7.5153
100 0.0185 1.2288 0.0070 1.2818 0.0851 5.0267
150 0.0063 0.9946 0.0084 1.0384 0.0529 4.0800
200 0.0094 0.8717 0.0096 0.9133 0.0515 3.5295
SE 25 0.0354 3.7383 0.0530 4.0627 0.0944 15.9112
50 0.0174 2.4830 0.0605 2.6136 0.2457 10.1470
100 0.0102 1.7304 0.0191 1.8229 0.0568 7.1198
150 0.0236 1.3918 0.0101 1.4741 0.0348 5.6401
200 0.0185 1.2410 0.0301 1.3127 0.0663 5.0493
JSE 25 0.0838 2.2172 0.1500 2.3635 0.0430 9.8877
50 0.0962 1.4831 0.0885 1.5707 0.0312 6.0673
100 0.0434 0.9977 0.0552 1.0160 0.1486 4.4244
150 0.0290 0.8187 0.0299 0.8197 0.0966 3.5270
200 0.0191 0.7291 0.0371 0.7239 0.0727 3.1188
RSE 25 0.0900 2.1028 0.0717 2.2381 0.0566 9.3223
50 0.0846 1.3616 0.0952 1.4390 0.1143 6.0673
100 0.0521 0.9346 0.0482 0.9475 0.1295 4.1004
150 0.0289 0.7667 0.0304 0.7642 0.0856 3.2875
200 0.0163 0.6869 0.0270 0.6772 0.0723 2.8904
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A16. Estimated Bias and RMSE Values for Normal Errors with 50% Outliers in the x Direction and Multicollinearity.
Table A16. Estimated Bias and RMSE Values for Normal Errors with 50% Outliers in the x Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0257 3.2900 0.0391 3.4565 0.1435 13.4395
50 0.0204 2.2706 0.0137 2.4060 0.1291 9.2996
100 0.0120 1.5474 0.0173 1.6108 0.0680 6.2748
150 0.0127 1.2354 0.0135 1.2991 0.0646 5.0614
200 0.0123 1.0907 0.0219 1.1438 0.0649 4.4912
HME 25 0.0311 3.1178 0.0385 3.2750 0.2547 12.7506
50 0.0172 2.1034 0.0166 2.2399 0.0905 8.6701
100 0.0211 1.4313 0.0108 1.4946 0.0923 5.8517
150 0.0149 1.1512 0.0192 1.2080 0.1026 4.7199
200 0.0244 1.0038 0.0188 1.0487 0.0344 4.1304
MME 25 0.0491 3.1932 0.0502 3.3765 0.1710 12.9902
50 0.0248 2.1431 0.0190 2.2857 0.0689 8.8028
100 0.0204 1.4502 0.0139 1.5218 0.0902 5.9529
150 0.0165 1.1734 0.0097 1.2321 0.1193 4.8432
200 0.0244 1.0204 0.0206 1.0664 0.0504 4.1981
LMSE 25 0.0645 6.0669 0.0700 6.3924 0.2934 24.8944
50 0.0437 4.1302 0.0352 4.3695 0.1285 16.6505
100 0.0353 2.8316 0.0336 3.0340 0.0672 11.8651
150 0.0203 2.4174 0.0238 2.5743 0.0366 9.9337
200 0.0136 2.1420 0.0337 2.2427 0.0476 8.7208
LTSE 25 0.0761 4.0590 0.0457 4.3584 0.2164 16.9940
50 0.0180 2.5061 0.0124 2.6902 0.1171 10.4412
100 0.0214 1.6536 0.0205 1.7371 0.1301 6.8903
150 0.0062 1.3165 0.0113 1.3817 0.0520 6.7311
200 0.0110 1.1377 0.0054 1.1846 0.0265 5.5473
SE 25 0.0337 4.5980 0.0354 5.0033 0.1718 18.9508
50 0.0206 3.0280 0.0254 3.1914 0.0856 12.2507
100 0.0307 2.0286 0.0418 2.1167 0.1493 8.3920
150 0.0246 1.6297 0.0101 1.7027 0.0531 6.7311
200 0.0133 1.3705 0.0184 1.4327 0.0516 4.5473
JSE 25 0.1499 3.0926 0.1148 3.2656 0.1605 13.3709
50 0.1395 2.0736 0.0875 2.1964 0.0541 9.2018
100 0.0838 1.3648 0.0778 1.4191 0.0462 6.1440
150 0.0664 1.1109 0.0748 1.1416 0.0819 4.9121
200 0.0398 0.9737 0.0387 0.9870 0.0584 4.3278
RSE 25 0.1312 2.9141 0.1026 3.0745 0.2389 12.6750
50 0.1123 1.8990 0.0875 2.0285 0.0940 8.5669
100 0.0838 1.2641 0.0564 1.3057 0.0169 5.7115
150 0.0538 1.0271 0.0506 1.0478 0.1073 4.5634
200 0.0466 0.9041 0.0408 0.9044 0.0529 3.9618
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A17. Estimated Bias and RMSE Values for ε i t 2 with 10% Outliers in the y Direction and Multicollinearity.
Table A17. Estimated Bias and RMSE Values for ε i t 2 with 10% Outliers in the y Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0355 2.6985 0.0653 2.8377 0.2089 9.2302
50 0.0320 2.0576 0.0495 2.0770 0.1682 6.7577
100 0.0432 1.4167 0.0319 1.4718 0.1120 4.6603
150 0.0193 1.1467 0.0397 1.1803 0.1703 3.7981
200 0.0354 0.9816 0.0358 1.0025 0.0565 3.1780
HME 25 0.0128 0.7385 0.0191 0.7786 0.0294 2.4807
50 0.0077 0.4569 0.0275 0.4823 0.0326 1.5343
100 0.0099 0.3093 0.0030 0.3199 0.0089 1.0333
150 0.0018 0.2471 0.0038 0.2575 0.0173 0.8176
200 0.0039 0.2129 0.0094 0.2207 0.0171 0.6987
MME 25 0.0158 0.7469 0.0195 0.7784 0.0311 2.4392
50 0.0077 0.4638 0.0300 0.4883 0.0375 1.5615
100 0.0086 0.3129 0.0027 0.3233 0.0065 1.0473
150 0.0016 0.2493 0.0038 0.2594 0.0190 0.8263
200 0.0042 0.2152 0.0095 0.2230 0.0167 0.7059
LMSE 25 0.0290 1.1745 0.0626 1.2612 0.1298 4.0206
50 0.0253 0.7511 0.0316 0.7720 0.1194 2.5813
100 0.0116 0.4959 0.0168 0.5316 0.0427 1.6684
150 0.0121 0.4128 0.0056 0.4416 0.0336 1.3965
200 0.0115 0.3746 0.0096 0.3859 0.0415 1.2230
LTSE 25 0.0252 0.7879 0.0193 0.8346 0.0366 2.6328
50 0.0072 0.4848 0.0269 0.5010 0.0346 1.6078
100 0.0142 0.3152 0.0040 0.3235 0.0088 1.0657
150 0.0012 0.2513 0.0031 0.2666 0.0148 0.8401
200 0.0043 0.2158 0.0086 0.2244 0.0174 0.7055
SE 25 0.0276 0.8549 0.0235 0.8870 0.0585 2.9387
50 0.0185 0.5267 0.0266 0.5610 0.0671 1.8034
100 0.0099 0.3323 0.0085 0.3532 0.0227 1.1202
150 0.0057 0.2680 0.0035 0.2835 0.0095 0.9089
200 0.0088 0.2276 0.0086 0.2383 0.0127 0.7596
JSE 25 0.7574 1.3869 0.7617 1.4108 0.7701 1.8679
50 0.6873 1.2240 0.7396 1.2222 0.7502 1.6907
100 0.5537 1.0248 0.6130 1.0448 0.7646 1.0864
150 0.4985 0.9498 0.5308 0.9672 0.7523 1.0285
200 0.4551 0.8875 0.5165 0.9029 0.7547 0.9957
RSE 25 0.1224 0.7129 0.1233 0.7489 0.2582 1.4354
50 0.1200 0.4517 0.1200 0.4631 0.2510 1.1576
100 0.1123 0.3073 0.1130 0.3143 0.2413 0.7914
150 0.1126 0.2284 0.1132 0.2495 0.2421 0.6433
200 0.1164 0.2003 0.1159 0.2105 0.2397 0.5571
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A18. Estimated Bias and RMSE Values for ε i t 2 with Multicollinearity and 25% Outliers in the y Direction.
Table A18. Estimated Bias and RMSE Values for ε i t 2 with Multicollinearity and 25% Outliers in the y Direction.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.0851 4.4032 0.1041 4.5218 0.4094 14.3599
50 0.0658 2.9326 0.0482 3.0069 0.3181 9.7475
100 0.1061 2.1240 0.0376 2.1299 0.3463 7.0300
150 0.0412 1.6970 0.0381 1.7547 0.1705 5.3059
200 0.0538 1.4902 0.0549 1.5066 0.1883 4.7391
HME 25 0.0308 1.4874 0.0160 1.5534 0.2438 4.8113
50 0.0183 0.5697 0.0149 0.5926 0.0435 1.9026
100 0.0115 0.3552 0.0117 0.3766 0.0294 0.9398
150 0.0075 0.2912 0.0033 0.2994 0.0294 0.9398
200 0.0058 0.2434 0.0066 0.2565 0.0235 0.7541
MME 25 0.0157 1.1182 0.0193 1.1224 0.0734 3.6637
50 0.0157 0.5721 0.0118 0.6094 0.0330 1.9400
100 0.0122 0.3691 0.0134 0.3909 0.0258 0.9677
150 0.0080 0.3006 0.0032 0.3098 0.0258 0.9677
200 0.0055 0.2507 0.0064 0.2638 0.0190 0.8570
LMSE 25 0.0338 1.2257 0.0361 1.2559 0.1089 4.0461
50 0.0072 0.7788 0.0252 0.8096 0.0647 2.5366
100 0.0081 0.5321 0.0176 0.5589 0.0429 1.7388
150 0.0191 0.4592 0.0113 0.4624 0.0448 1.4856
200 0.0075 0.4087 0.0086 0.4204 0.0120 1.3296
LTSE 25 0.0268 0.8817 0.0122 0.9245 0.0879 2.9881
50 0.0119 0.5463 0.0140 0.5711 0.0339 1.8242
100 0.0103 0.3505 0.0096 0.3767 0.0106 1.2141
150 0.0079 0.2930 0.0054 0.2985 0.0324 0.9495
200 0.0073 0.2445 0.0066 0.2566 0.0201 0.8194
SE 25 0.0336 0.8569 0.0086 0.8580 0.1036 2.8933
50 0.0091 0.5331 0.0194 0.5448 0.0678 1.7469
100 0.0084 0.3461 0.0077 0.3611 0.0160 1.1448
150 0.0086 0.2966 0.0058 0.2981 0.0428 0.9002
200 0.0079 0.2547 0.0074 0.2619 0.0235 0.7541
JSE 25 0.7908 1.8380 0.7576 1.7894 0.7684 10.8075
50 0.7524 1.4694 0.7724 1.4720 0.7594 8.4858
100 0.7156 1.2321 0.7597 1.2758 0.7571 4.2756
150 0.6420 1.1254 0.7081 1.1349 0.7642 3.1536
200 0.5570 1.0665 0.6444 1.0662 0.7670 2.5951
RSE 25 0.1144 0.7906 0.1131 0.8281 0.2498 2.1158
50 0.1181 0.5053 0.1187 0.5235 0.2424 1.3083
100 0.1241 0.3315 0.1168 0.3544 0.2384 0.8901
150 0.1182 0.2685 0.1211 0.2755 0.2412 0.7147
200 0.1116 0.2276 0.1144 0.2380 0.2428 0.6306
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A19. Estimated Bias and RMSE Values for ε i t 2 with 50% Outliers in the y Direction and Multicollinearity.
Table A19. Estimated Bias and RMSE Values for ε i t 2 with 50% Outliers in the y Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.8488 19.6873 0.7906 19.4488 1.0191 40.7973
50 0.5346 19.0980 0.6276 19.3425 1.2897 30.2086
100 0.7694 18.0536 0.7018 18.9754 0.8172 24.9392
150 0.6870 17.1070 0.4330 18.3462 1.0011 22.1539
200 0.5887 16.3318 0.4991 17.3047 0.7971 20.7615
HME 25 0.3293 7.0647 0.1116 7.3974 0.4452 24.0466
50 0.1449 4.7746 0.1662 4.9250 0.5889 15.9805
100 0.1303 3.2177 0.1267 2.8200 0.1635 11.1029
150 0.1416 2.6552 0.1113 2.4335 0.1934 8.9369
200 0.0943 2.3010 0.0537 2.0563 0.1468 7.5880
MME 25 0.2795 6.6162 0.0981 6.8656 0.4049 22.4089
50 0.1324 4.5829 0.1512 4.7748 0.5941 15.3914
100 0.1227 3.1681 0.1144 3.3225 0.1632 10.9061
150 0.1379 2.6262 0.1059 2.7004 0.1905 8.8067
200 0.0825 2.2941 0.0405 2.3425 0.1613 7.5240
LMSE 25 0.1442 7.4609 0.1380 8.0187 0.3155 18.9403
50 0.0989 5.1311 0.1235 5.3363 0.2125 16.5584
100 0.0634 3.2493 0.1848 3.3769 0.1479 11.0435
150 0.0803 2.6496 0.0792 3.0367 0.0967 8.8498
200 0.1008 2.6153 0.0984 2.6756 0.2632 7.7167
LTSE 25 0.4722 8.3560 0.1881 8.9986 0.7007 28.8922
50 0.1518 5.4782 0.2335 5.7422 0.7990 18.5412
100 0.1381 3.2822 0.1341 3.4588 0.2280 11.3549
150 0.1360 2.6971 0.1302 2.7673 0.1870 9.1910
200 0.1052 2.3156 0.0656 2.3916 0.1188 7.7337
SE 25 2.8435 9.4556 3.7004 10.4928 5.4429 28.2871
50 0.8114 6.5779 1.2565 6.2095 2.0388 16.3748
100 0.6504 3.8305 0.9445 3.9316 1.9139 11.8926
150 0.9939 2.7156 0.7543 3.2098 5.5093 9.5507
200 0.8905 2.4521 0.5439 2.8587 3.0965 8.8487
JSE 25 0.7432 19.5232 0.6327 19.1775 0.9350 30.9780
50 0.5909 18.0380 0.9221 18.4486 0.3600 27.1521
100 0.4665 17.0666 0.4645 18.0012 0.5687 19.1521
150 0.4083 16.0001 0.7556 17.3483 1.1434 18.1797
200 0.5706 15.0623 0.6031 16.2746 0.5111 17.1067
RSE 25 0.3469 4.5985 0.1614 4.5109 0.1272 13.7179
50 0.0791 3.1763 0.1239 3.2625 0.7092 9.8212
100 0.0890 2.3176 0.0884 2.5966 0.1543 7.8820
150 0.1325 2.0001 0.0942 2.1660 0.1484 7.0053
200 0.0768 1.8924 0.0263 1.8990 0.1324 6.4548
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A20. Estimated Bias and RMSE Values for ε i t 2 with 10% Outliers in the x Direction and Multicollinearity.
Table A20. Estimated Bias and RMSE Values for ε i t 2 with 10% Outliers in the x Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.7944 5.2375 0.5017 6.1350 0.6275 6.4083
50 0.5521 4.8550 0.7120 5.9626 0.4389 6.2877
100 0.8544 4.1828 0.4655 5.7585 0.6999 6.0153
150 0.7160 3.0651 0.5376 5.3560 0.5693 5.2649
200 0.5921 2.9390 0.5933 5.2213 0.6371 5.0758
HME 25 0.0695 0.5643 0.0608 0.5857 0.0679 0.8973
50 0.0690 0.3065 0.0660 0.2964 0.0626 0.3229
100 0.0623 0.2039 0.0598 0.2038 0.0604 0.2116
150 0.0600 0.1724 0.0624 0.1757 0.0629 0.1757
200 0.0614 0.1599 0.0619 0.1614 0.0601 0.1588
MME 25 0.0562 0.5725 0.0457 0.5904 0.0489 1.2000
50 0.0562 0.2944 0.0548 0.2909 0.0484 0.3485
100 0.0468 0.1900 0.0464 0.1906 0.0450 0.1981
150 0.0458 0.1560 0.0484 0.1639 0.0481 0.1609
200 0.0463 0.1433 0.0448 0.1420 0.0452 0.1447
LMSE 25 0.0625 1.1280 0.0498 1.1404 0.0931 3.3462
50 0.0519 0.6491 0.0658 0.6595 0.0648 1.3806
100 0.0548 0.4080 0.0576 0.4131 0.0598 0.5696
150 0.0529 0.3264 0.0605 0.3239 0.0503 0.3914
200 0.0566 0.2774 0.0519 0.2713 0.0580 0.3142
LTSE 25 0.0973 0.6964 0.0647 0.6953 0.0736 1.6717
50 0.0780 0.3913 0.0783 0.3967 0.0724 0.6050
100 0.0750 0.2562 0.0680 0.2529 0.0700 0.3075
150 0.0673 0.2046 0.0731 0.2093 0.0706 0.2163
200 0.0672 0.1781 0.0662 0.1813 0.0685 0.1867
SE 25 0.1298 1.0254 0.0169 0.6801 0.3637 0.7047
50 0.0934 0.5478 0.0110 0.4933 0.1190 0.2945
100 0.1629 0.3002 0.1485 0.2666 0.1052 0.1858
150 0.1206 0.2731 0.0512 0.2351 0.0928 0.1529
200 0.1736 0.2623 0.0736 0.1853 0.1457 0.1497
JSE 25 0.3167 4.7204 0.4594 6.0041 0.4751 5.5051
50 0.1586 3.1748 0.1988 5.7254 0.3179 5.3947
100 0.1965 2.1097 0.3427 5.0111 0.1710 5.3683
150 0.1029 2.0062 0.2095 4.7791 0.2699 5.3016
200 0.2396 1.7858 0.2952 4.7019 0.1746 5.1026
RSE 25 0.0100 0.5285 0.0157 0.5742 0.0415 0.6514
50 0.0161 0.2630 0.0246 0.3027 0.0195 0.3105
100 0.0236 0.1779 0.0211 0.1759 0.0182 0.1691
150 0.0214 0.1315 0.0182 0.1328 0.0213 0.1359
200 0.0190 0.1099 0.0214 0.1128 0.0204 0.1124
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A21. Estimated Bias and RMSE Values for ε i t 2 with 25% Outliers in the x Direction and Multicollinearity.
Table A21. Estimated Bias and RMSE Values for ε i t 2 with 25% Outliers in the x Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.7197 6.1436 0.4972 6.6404 0.6248 6.5710
50 0.6168 6.0352 0.6490 6.6169 0.5822 6.1232
100 0.6384 5.3854 0.6268 6.1234 0.5426 6.0692
150 0.6185 5.0035 0.5820 5.4785 0.6485 5.2365
200 0.7964 4.5073 0.5438 5.0980 0.5591 5.0336
HME 25 0.0624 0.3609 0.0500 0.3594 0.0579 0.3638
50 0.0679 0.2331 0.0592 0.2360 0.0594 0.2316
100 0.0604 0.1783 0.0564 0.1780 0.0620 0.1811
150 0.0606 0.1604 0.0569 0.1595 0.0575 0.1577
200 0.0629 0.1523 0.0601 0.1527 0.0627 0.1536
MME 25 0.0510 0.3599 0.0474 0.3606 0.0449 0.3565
50 0.0530 0.2201 0.0519 0.2177 0.0513 0.2196
100 0.0461 0.1625 0.0468 0.1615 0.0462 0.1618
150 0.0477 0.1434 0.0471 0.1435 0.0449 0.1427
200 0.0460 0.1335 0.0469 0.1348 0.0452 0.1334
LMSE 25 0.0571 0.8234 0.0557 0.8147 0.0521 0.8229
50 0.0541 0.4482 0.0580 0.4417 0.0566 0.4412
100 0.0537 0.2613 0.0540 0.2610 0.0550 0.2635
150 0.0578 0.2292 0.0558 0.2290 0.0556 0.2292
200 0.0543 0.2115 0.0564 0.2134 0.0559 0.2125
LTSE 25 0.0744 0.4775 0.0732 0.4801 0.0670 0.4804
50 0.0741 0.3025 0.0734 0.3042 0.0713 0.3037
100 0.0702 0.2001 0.0678 0.1998 0.0684 0.2009
150 0.0665 0.1720 0.0687 0.1716 0.0697 0.1719
200 0.0709 0.1635 0.0701 0.1639 0.0699 0.1644
SE 25 0.1102 0.5024 0.1217 0.5035 0.0173 0.4901
50 0.2590 0.4799 0.1471 0.3330 0.1527 0.4601
100 0.1934 0.2489 0.1479 0.2863 0.1231 0.2918
150 0.1387 0.2201 0.1286 0.2488 0.1150 0.2446
200 0.1072 0.1870 0.1130 0.1855 0.1092 0.1880
JSE 25 0.2322 7.0444 0.2406 8.1936 0.2621 8.1735
50 0.2676 7.0099 0.1940 8.0740 0.2975 7.5860
100 0.2418 6.5458 0.2174 7.5776 0.2899 7.4900
150 0.2262 6.1071 0.3186 6.7061 0.3452 7.0690
200 0.2661 5.4648 0.2850 5.7614 0.3689 6.2156
RSE 25 0.0103 0.3262 0.0073 0.3252 0.0091 0.3206
50 0.0276 0.2069 0.0077 0.2121 0.0054 0.2102
100 0.0214 0.1277 0.0082 0.1278 0.0062 0.1306
150 0.0215 0.1008 0.0079 0.1000 0.0087 0.1005
200 0.0188 0.0869 0.0079 0.0880 0.0073 0.0878
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).
Table A22. Estimated Bias and RMSE Values for ε i t 2 with 50% Outliers in the x Direction and Multicollinearity.
Table A22. Estimated Bias and RMSE Values for ε i t 2 with 50% Outliers in the x Direction and Multicollinearity.
Method n ρ = 0.10 ρ = 0.50 ρ = 0.98
BIAS RMSE BIAS RMSE BIAS RMSE
OLSE 25 0.5657 7.9980 0.4434 8.9370 0.6042 8.0520
50 0.7596 7.0075 0.5667 8.2005 0.5769 7.9962
100 0.8088 6.2413 0.5829 7.3920 0.5820 7.7281
150 0.6682 5.4902 0.7837 6.4956 0.6723 6.4396
200 0.7307 5.0436 0.8332 5.3495 0.5592 5.6593
HME 25 0.0657 0.2953 0.0582 0.2969 0.0578 0.2917
50 0.0612 0.2139 0.0654 0.2124 0.0623 0.2131
100 0.0651 0.1721 0.0580 0.1679 0.0612 0.1758
150 0.0612 0.1567 0.0627 0.1582 0.0614 0.1559
200 0.0645 0.1484 0.0615 0.1483 0.0593 0.1483
MME 25 0.0479 0.2803 0.0449 0.2840 0.0449 0.2810
50 0.0480 0.1995 0.0512 0.1984 0.0479 0.1999
100 0.0499 0.1552 0.0454 0.1518 0.0434 0.1575
150 0.0496 0.1415 0.0455 0.1373 0.0473 0.1378
200 0.0464 0.1283 0.0461 0.1263 0.0451 0.1296
LMSE 25 0.0594 0.5024 0.0572 0.5109 0.0464 0.4924
50 0.0536 0.3142 0.0523 0.3122 0.0626 0.3105
100 0.0548 0.2374 0.0546 0.2300 0.0526 0.2314
150 0.0556 0.2082 0.0595 0.2112 0.0561 0.2105
200 0.0541 0.1899 0.0557 0.1919 0.0562 0.1953
LTSE 25 0.0713 0.3348 0.0669 0.3417 0.0678 0.3342
50 0.0733 0.2375 0.0690 0.2358 0.0676 0.2295
100 0.0693 0.1848 0.0699 0.1838 0.0657 0.1865
150 0.0706 0.1679 0.0708 0.1707 0.0684 0.1704
200 0.0701 0.1584 0.0699 0.1608 0.0704 0.1616
SE 25 0.0487 0.3743 0.1390 0.3623 0.0858 0.3725
50 0.1429 0.3441 0.1533 0.2081 0.0967 0.2990
100 0.0755 0.2189 0.1182 0.2116 0.1140 0.2466
150 0.1122 0.1808 0.1004 0.2062 0.1067 0.2130
200 0.1100 0.1816 0.1044 0.1792 0.0577 0.1935
JSE 25 0.2102 9.2222 0.2572 9.9901 0.1209 9.5601
50 0.0821 8.6237 0.2206 9.6870 0.1603 9.3979
100 0.3418 7.7882 0.2696 8.9530 0.2304 9.0038
150 0.3379 6.8491 0.1748 7.9881 0.3194 8.6317
200 0.0998 5.1003 0.3074 6.8933 0.4819 7.2279
RSE 25 0.0075 0.2611 0.0061 0.2718 0.0082 0.2668
50 0.0039 0.1622 0.0110 0.1645 0.0030 0.1593
100 0.0051 0.1044 0.0039 0.1027 0.0057 0.1072
150 0.0045 0.0854 0.0072 0.0843 0.0054 0.0828
200 0.0062 0.0730 0.0042 0.0732 0.0051 0.0735
Note: OLSE (Ordinary Least Squares Estimator), HME (Huber Maximum Likelihood Estimator), MME (Modified Maximum Likelihood Estimator), LMSE (Least Median of Squares Estimator), and LTSE (Least Trimmed Squares Estimator). SE (S-Estimator), JSE (James–Stein Estimator), and RSE (Robust Stein Estimator).

References

  1. Lukman, A.F.; Farghali, R.A.; Kibria, B.G.; Oluyemi, O.A. Robust-stein estimator for overcoming outliers and multicollinearity. Scientific Reports 2023, 13, 9066. [CrossRef]
  2. Sani, M. Robust Diagnostic and Parameter Estimation for Multiple Linear and Panel Data Regression Models 2018.
  3. Algamal, Z.; Lukman, A.; Abonazel, M.R.; Awwad, F. Performance of the Ridge and Liu Estimators in the zero-inflated Bell Regression Model. Journal of Mathematics 2022, 2022, 9503460. [CrossRef]
  4. Fernandes, G.; Rodrigues, J.J.; Carvalho, L.F.; Al-Muhtadi, J.F.; Proença, M.L. A comprehensive survey on network anomaly detection. Telecommunication Systems 2019, 70, 447–489. [CrossRef]
  5. Hampel, F.R. Robust statistics: A brief introduction and overview. In Proceedings of the Research Report/Seminar für Statistik, Eidgenössische Technische Hochschule (ETH). Seminar für Statistik, Eidgenössische Technische Hochschule, 2001, Vol. 94.
  6. Huber, P.J. Robust regression: asymptotics, conjectures and Monte Carlo. The annals of statistics 1973, pp. 799–821.
  7. Draper, N.R. Applied regression analysis bibliography update 1992–93 1994.
  8. Hadi. A modification of a method for the detection of outliers in multivariate samples. Journal of the Royal Statistical Society Series B: Statistical Methodology 1994, 56, 393–396. [CrossRef]
  9. Neter, J.; Wasserman, W.; Kutner, M.H. Applied linear regression models; Richard D. Irwin, 1983.
  10. Fitrianto, A.; Xin, S.H. Comparisons between robust regression approaches in the presence of outliers and high leverage points. BAREKENG: Jurnal Ilmu Matematika dan Terapan 2022, 16, 243–252. [CrossRef]
  11. Arum.; Ugwuowo. Combining principal component and robust ridge estimators in linear regression model with multicollinearity and outlier. Concurrency and Computation: Practice and Experience 2022, 34, e6803. [CrossRef]
  12. Jegede, S.L.; Lukman, A.F.; Ayinde, K.; Odeniyi, K.A. Jackknife Kibria-Lukman M-estimator: Simulation and application. Journal of the Nigerian Society of Physical Sciences 2022, pp. 251–264.
  13. Dawoud, I.; Kibria, B.G. A new biased estimator to combat the multicollinearity of the Gaussian linear regression model. Stats 2020, 3, 526–541. [CrossRef]
  14. Dawoud, I.; Abonazel. Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression model. Journal of Statistical Computation and Simulation 2021, 91, 3678–3692. [CrossRef]
  15. Alma, Ö.G. Comparison of robust regression methods in linear regression. Int. J. Contemp. Math. Sciences 2011, 6, 409–421.
  16. Stein, C. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Proceedings of the third Berkeley symposium on mathematical statistics and probability, volume 1: Contributions to the theory of statistics. University of California Press, 1956, Vol. 3, pp. 197–207.
  17. James, W.; Stein, C.; et al. Estimation with quadratic loss. In Proceedings of the Proceedings of the fourth Berkeley symposium on mathematical statistics and probability. University of California Press, 1961, Vol. 1, pp. 361–379.
  18. Siegel, A.F. Robust regression using repeated medians. Biometrika 1982, 69, 242–244. [CrossRef]
  19. Yohai. High breakdown-point and high efficiency robust estimates for regression. The Annals of statistics 1987, pp. 642–656.
  20. Rousseeuw.; Yohai. Robust regression by means of S-estimators. In Proceedings of the Robust and nonlinear time series analysis: Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 “Stochastische Mathematische Modelle”, Heidelberg 1983. Springer, 1984, pp. 256–272.
  21. Yohai. High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics 1987, 15, 642–656. [CrossRef]
  22. Huber, P.J. The place of the L1-norm in robust estimation. Computational statistics & data Analysis 1987, 5, 255–262.
  23. Fitrianto, A.; Midi, H. Estimating bias and rmse of indirect effects using rescaled residual bootstrap in mediation analysis. WSEAS Transaction on Mathematics 2010, 9, 397–406.
  24. Bai, X. Robust linear regression 2012.
  25. Yahya. Performance of ridge estimator in inverse Gaussian regression model. Communications in Statistics-Theory and Methods 2019, 48, 3836–3849. [CrossRef]
  26. Suhail, M.; Chand, S.; Aslam, M. New quantile based ridge M-estimator for linear regression models with multicollinearity and outliers. Communications in Statistics-Simulation and Computation 2023, 52, 1417–1434. [CrossRef]
  27. Lee, B.K.; Lessler, J.; Stuart, E.A. Weight trimming and propensity score weighting. PloS one 2011, 6, e18174. [CrossRef]
  28. Mutalib, S.S.S.; Satari, S.Z.; Yusoff, W.N.S.W. Comparison of robust estimators for detecting outliers in multivariate datasets. In Proceedings of the Journal of Physics: Conference Series. IOP Publishing, 2021, Vol. 1988, p. 012095.
  29. Yeh, I.C.; Hsu, T.K. Building real estate valuation models with comparative approach through case-based reasoning. Applied Soft Computing 2018, 65, 260–271. [CrossRef]
  30. Ibrahim. Comparative study of some estimators of linear regression models in the presence of outliers. FUDMA Journal of Sciences 2022, 6, 368–376. [CrossRef]
  31. Rahayu, D.A.; Nursholihah, U.F.; Suryaputra, G.; Surono, S. Comparasion of the m, mm and s estimator in robust regression analysis on indonesian literacy index data 2018. EKSAKTA: Journal of Sciences and Data Analysis 2023, pp. 11–22.
  32. Gad, A.M.; Qura, M.E. Regression estimation in the presence of outliers: A comparative study. International Journal of probability and Statistics 2016, 5, 65–72.
  33. Affindi, A.; Ahmad, S.; Mohamad, M. A comparative study between ridge MM and ridge least trimmed squares estimators in handling multicollinearity and outliers. In Proceedings of the Journal of Physics: Conference Series. IOP Publishing, 2019, Vol. 1366, p. 012113.
  34. Almetwally, E.M.; Almongy, H. Comparison between M-estimation, S-estimation, and MM estimation methods of robust estimation with application and simulation. International Journal of Mathematical Archive 2018, 9, 1–9.
Figure 1. RMSE Plots under Normal Errors with Multicollinearity and no Outliers.
Figure 1. RMSE Plots under Normal Errors with Multicollinearity and no Outliers.
Preprints 182777 g001
Figure 2. RMSE Plots under Student’s t-distribution with 7 Degrees of Freedom with Multicollinearity and no Outliers.
Figure 2. RMSE Plots under Student’s t-distribution with 7 Degrees of Freedom with Multicollinearity and no Outliers.
Preprints 182777 g002
Figure 3. RMSE Plots under Student’s t-distribution with 2 Degrees of Freedom with Multicollinearity and no Outliers.
Figure 3. RMSE Plots under Student’s t-distribution with 2 Degrees of Freedom with Multicollinearity and no Outliers.
Preprints 182777 g003
Figure 4. RMSE Plots under Cauchy Distribution with Multicollinearity and no Outliers.
Figure 4. RMSE Plots under Cauchy Distribution with Multicollinearity and no Outliers.
Preprints 182777 g004
Figure 5. RMSE Plots under Normal Errors with no Multicollinearity and Outliers in y Direction.
Figure 5. RMSE Plots under Normal Errors with no Multicollinearity and Outliers in y Direction.
Preprints 182777 g005
Figure 6. RMSE Plots with under Normal Errors no Multicollinearity and Outliers in x Direction.
Figure 6. RMSE Plots with under Normal Errors no Multicollinearity and Outliers in x Direction.
Preprints 182777 g006
Figure 7. RMSE Plots with ε i t 2 , no Multicollinearity, and Outliers in the y Direction.
Figure 7. RMSE Plots with ε i t 2 , no Multicollinearity, and Outliers in the y Direction.
Preprints 182777 g007
Figure 8. RMSE Plots with ε i t 2 , no Multicollinearity, and Outliers in the x Direction.
Figure 8. RMSE Plots with ε i t 2 , no Multicollinearity, and Outliers in the x Direction.
Preprints 182777 g008
Figure 9. RMSE Plots with Normal Errors with Multicollinearity, and 10% Outliers in y Direction.
Figure 9. RMSE Plots with Normal Errors with Multicollinearity, and 10% Outliers in y Direction.
Preprints 182777 g009
Figure 10. RMSE Plots with Normal Errors with Multicollinearity, and 25% Outliers in y Direction.
Figure 10. RMSE Plots with Normal Errors with Multicollinearity, and 25% Outliers in y Direction.
Preprints 182777 g010
Figure 11. RMSE Plots with Normal Errors with Multicollinearity, and 50% Outliers in y Direction.
Figure 11. RMSE Plots with Normal Errors with Multicollinearity, and 50% Outliers in y Direction.
Preprints 182777 g011
Figure 12. RMSE Plots for 10% Outliers in x Direction and Multicollinearity
Figure 12. RMSE Plots for 10% Outliers in x Direction and Multicollinearity
Preprints 182777 g012
Figure 13. RMSE Plots with Normal Errors with Multicollinearity, and 25% Outliers in x Direction.
Figure 13. RMSE Plots with Normal Errors with Multicollinearity, and 25% Outliers in x Direction.
Preprints 182777 g013
Figure 14. RMSE Plots with Normal Errors with Multicollinearity, and 50% Outliers in x Direction.
Figure 14. RMSE Plots with Normal Errors with Multicollinearity, and 50% Outliers in x Direction.
Preprints 182777 g014
Figure 15. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 10% y- Outliers.
Figure 15. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 10% y- Outliers.
Preprints 182777 g015
Figure 16. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 25% y- Outliers.
Figure 16. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 25% y- Outliers.
Preprints 182777 g016
Figure 17. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 50% y- Outliers.
Figure 17. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 50% y- Outliers.
Preprints 182777 g017
Figure 18. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 10% x-Outliers.
Figure 18. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 10% x-Outliers.
Preprints 182777 g018
Figure 19. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 25% x-Outliers.
Figure 19. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 25% x-Outliers.
Preprints 182777 g019
Figure 20. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 50% x-Outliers.
Figure 20. RMSE Plots with ε i t 2 for Different Multicollinearity Levels and 50% x-Outliers.
Preprints 182777 g020
Figure 21. Plot to Check for Outliers Using a Milk Dataset.
Figure 21. Plot to Check for Outliers Using a Milk Dataset.
Preprints 182777 g021
Figure 22. Plots to Check for Normality on OLS using a Milk Dataset.
Figure 22. Plots to Check for Normality on OLS using a Milk Dataset.
Preprints 182777 g022
Figure 23. Comparison of Bias and RMSE Across Multicollinearity and Outlier Levels for Milk Dataset.
Figure 23. Comparison of Bias and RMSE Across Multicollinearity and Outlier Levels for Milk Dataset.
Preprints 182777 g023
Figure 24. Plot to Check for Outliers Using a Real Estate Valuation Dataset.
Figure 24. Plot to Check for Outliers Using a Real Estate Valuation Dataset.
Preprints 182777 g024
Figure 25. Plots to Check for Normality on OLS using Real Estate Valuation Dataset.
Figure 25. Plots to Check for Normality on OLS using Real Estate Valuation Dataset.
Preprints 182777 g025
Figure 26. Comparison of Bias and RMSE Across Multicollinearity and Outlier Levels for Real Estate Valuation Dataset.
Figure 26. Comparison of Bias and RMSE Across Multicollinearity and Outlier Levels for Real Estate Valuation Dataset.
Preprints 182777 g026
Figure 27. Plot to Check for Outliers Using a Hawkins Bradu Kass Dataset
Figure 27. Plot to Check for Outliers Using a Hawkins Bradu Kass Dataset
Preprints 182777 g027
Figure 28. Plots to Check for Normality on OLS using Hawkins Bradu Kass Dataset
Figure 28. Plots to Check for Normality on OLS using Hawkins Bradu Kass Dataset
Preprints 182777 g028
Figure 29. Comparison of Bias and RMSE Across Multicollinearity and Outlier Levels for Hawkins Bradu Kass Dataset.
Figure 29. Comparison of Bias and RMSE Across Multicollinearity and Outlier Levels for Hawkins Bradu Kass Dataset.
Preprints 182777 g029
Table 2. Pearson Correlation Coefficient Matrix of the Regressors for the Milk Dataset.
Table 2. Pearson Correlation Coefficient Matrix of the Regressors for the Milk Dataset.
X 1 X 2 X 3 X 4 X 5 X 6 X 7
X 1 1.0000 0.4496 0.4055 0.3235 0.3588 0.6748 0.6480
X 2 0.4496 1.0000 0.9248 0.6288 0.6382 0.7010 0.6380
X 3 0.4055 0.9248 1.0000 0.5866 0.5959 0.6963 0.6380
X 4 0.3235 0.6288 0.5866 1.0000 0.9782 0.5469 0.3897
X 5 0.3588 0.6382 0.5959 0.9782 1.0000 0.5666 0.4292
X 6 0.6748 0.7010 0.6963 0.5469 0.5666 1.0000 0.6827
X 7 0.6480 0.6380 0.6380 0.3897 0.4292 0.6827 1.0000
Table 3. Estimated Bias and RMSE of the Estimators under Multicollinearity and Varying Outlier Levels for Milk Dataset.
Table 3. Estimated Bias and RMSE of the Estimators under Multicollinearity and Varying Outlier Levels for Milk Dataset.
Estimator 0% Outlier 10% Outlier 20% Outlier
Bias RMSE Bias RMSE Bias RMSE
OLSE 0.0002 0.0247 0.0007 0.0295 0.0028 0.0270
HME 0.0010 0.0280 0.0032 0.0282 0.0035 0.0250
MME 0.0026 0.0472 0.0059 0.0126 0.0058 0.0340
LMSE 0.0044 0.0890 0.0056 0.0667 0.0064 0.0606
LTSE 0.0041 0.0767 0.0006 0.0531 0.0065 0.0489
SE 0.0043 0.0753 0.0054 0.0235 0.0064 0.0214
JSE 0.0006 0.0228 0.0014 0.0126 0.0029 0.0111
RSE 0.0013 0.0261 0.0030 0.0114 0.0037 0.0108
Table 4. Pearson Correlation Coefficient Matrix of the Regressors for the Real Estate Valuation Dataset.
Table 4. Pearson Correlation Coefficient Matrix of the Regressors for the Real Estate Valuation Dataset.
X 1 X 2 X 3 X 4 X 5 X 6
X 1 1.0000 0.0175 0.0609 0.0095 0.0350 0.0411
X 2 0.0175 1.0000 0.0256 0.0496 0.0544 0.0485
X 3 0.0609 0.0256 1.0000 -0.6025 -0.5911 -0.8063
X 4 0.0095 0.0496 -0.6025 1.0000 0.4441 0.4491
X 5 0.0350 0.0544 -0.5911 0.4441 1.0000 0.4129
X 6 0.0411 0.0485 -0.8063 0.4491 0.4129 1.0000
Table 5. Estimated Bias and RMSE of the Estimators under Multicollinearity and Varying Outlier Levels for Real Estate Valuation Dataset.
Table 5. Estimated Bias and RMSE of the Estimators under Multicollinearity and Varying Outlier Levels for Real Estate Valuation Dataset.
Estimator 0% Outlier 15.3% Outlier 21.5% Outlier
Bias RMSE Bias RMSE Bias RMSE
OLSE 168.2679 54504.9900 2732.8280 66897.1350 7291.0330 59865.6200
HME 7683.2360 67391.2100 1937.2760 62329.2885 2379.8690 47601.0400
MME 12588.7800 67391.2100 2322.3150 70523.8053 720.0933 50175.4500
LMSE 18806.2100 167922.3000 9802.2880 188380.7012 8417.1460 137477.5000
LTSE 17386.5200 116365.6000 5397.6670 90165.8498 6875.5230 71319.8900
SE 21667.5800 89613.2900 12931.5900 28573.5115 4669.2530 20823.2300
JSE 1446.8980 29700.3800 3393.4700 13195.9917 8122.0880 13441.6400
RSE 9355.8480 40048.4200 3861.2500 13122.0683 3046.3670 10501.8300
Table 6. Pearson Correlation Coefficient Matrix of the Regressors for Hawkins Bradu Kass Dataset.
Table 6. Pearson Correlation Coefficient Matrix of the Regressors for Hawkins Bradu Kass Dataset.
X 1 X 2 X 3
X 1 1.0000 0.9460 0.9618
X 2 0.9460 1.0000 0.9787
X 3 0.9618 0.9787 1.0000
Table 7. Estimated Bias and RMSE of the Estimators under Multicollinearity and Varying Outlier Levels for Hawkins–Bradu–Kass Dataset.
Table 7. Estimated Bias and RMSE of the Estimators under Multicollinearity and Varying Outlier Levels for Hawkins–Bradu–Kass Dataset.
Estimator 0% Outlier 18.67% Outlier
Bias RMSE Bias RMSE
OLSE 0.0004 0.0633 0.0672 0.3983
HME 0.0002 0.0683 0.0671 0.3721
MME 0.0005 0.0721 0.0147 0.1127
LMSE 0.0058 0.2818 0.0122 0.2698
LTSE 0.0031 0.1542 0.0238 0.2135
SE 0.0092 0.1704 0.0078 0.1494
JSE 0.0012 0.0593 0.0588 0.3669
RSE 0.0025 0.0620 0.0152 0.0847
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated