Submitted:
29 October 2025
Posted:
30 October 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
1.1. Biological Complexity and Heterogeneity of Tumors
1.2. The Need for Precision and Personalization
1.3. Nanotechnology as a Transformative Enabler
1.4. Scope of This Review
2. Conventional Cancer Modalities: A Brief Overview
2.1. Diagnostic Methods
2.2. Therapeutic Modalities
2.3. Limitations of Conventional Modalities
3. The Emergence of Nanotechnology in Oncology
3.1. Definition and Principles of Nanotechnology in Medicine
3.2. Types of Nanomaterials in Cancer
3.3. Mechanisms of Tumor Targeting
3.4. Outlook
4. Nanotechnology in Cancer Diagnostics
4.1. Nanobiosensors for Early Detection
4.2. Nanoparticle-Enhanced Imaging
4.3. Nanotechnology in Liquid Biopsy
4.4. Integration with Artificial Intelligence
4.5. Outlook
5. Nanotechnology in Cancer Therapy
5.1. Nanoparticle-Based Drug Delivery Systems
5.2. Photothermal and Photodynamic Therapy
5.3. Gene and RNA Delivery
5.4. Immunomodulation and Cancer Vaccines
5.5. Combination Nanotherapies
5.6. Outlook
6. Clinical Translation and Current Trials
6.1. FDA-Approved Nanomedicines
6.2. Ongoing Clinical Trials
6.3. Translational Barriers
6.4. Safety and Biocompatibility Considerations
6.5. Outlook
7. Challenges and Limitations
7.1. Biological Barriers
7.2. Nanotoxicology and Biodistribution
7.3. Reproducibility and Scalability
7.4. Regulatory Challenges
7.5. Ethical and Economic Considerations
7.6. Outlook
8. Emerging Trends and Future Perspectives
8.1. Smart Nanoplatforms
8.2. Integration with AI and Bioinformatics
8.3. Organoid and Microfluidic Tumor Models
8.4. Nanorobotics and Precision Delivery Systems
8.5. Outlook for Next-Generation Clinical Translation
9. Concluding Remarks
9.1. Progress Made
9.2. Remaining Gaps
9.3. Vision for the Next Decade
References
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2023;73(3):209-49.
- Wild CP, Weiderpass E, Stewart BW, editors. World Cancer Report 2020: Cancer Research for Cancer Prevention. Lyon: IARC; 2020.
- Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics 2022. CA Cancer J Clin. 2022;72(5):409-36.
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics 2023. CA Cancer J Clin. 2023;73(1):17-48.
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022;12(1):31-46.
- McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell. 2017;168(4):613-28.
- Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81-94.
- Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423-37.
- Garraway LA, Verweij J, Ballman KV. Precision oncology: An overview. J Clin Oncol. 2013;31(15):1803-5.
- Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-5.
- Van Norman, GA. Limitations of precision medicine. JACC Basic Transl Sci. 2016;1(5):494-503.
- Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17(2):79-92.
- Wan JC M, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-38.
- Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37.
- Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-24.
- Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer. 2005;5(3):161-71.
- Kelkar SS, Reineke TM. Theranostics: Combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879-903.
- Ventola, CL. The nanomedicine revolution: Part 1—Emergence and current status. P T. 2012;37(9):512-25.
- Barenholz, YC. Doxil®—the first FDA-approved nano-drug: Lessons learned. J Control Release. 2012;160(2):117-34.
- Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel (ABI-007) compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12(4):1317-24.
- Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44(10):1050-60.
- DeVita VT Jr, Lawrence TS, Rosenberg SA. Cancer: Principles & Practice of Oncology. 12th ed. Philadelphia: Wolters Kluwer; 2023.
- van der Kwast T, Bubendorf L, Moller H. Histopathology in cancer diagnosis: Current challenges and future perspectives. Virchows Arch. 2021;478(3):481-9.
- Padhani AR, Lecouvet FE, Tunariu N, Koh DM, De Keyzer F, Collins DJ, et al. Imaging cancer treatment response with MRI: Techniques, challenges, and opportunities. Radiology. 2017;282(2):358-75.
- Hricak H, Leddy R, Sala E, Barentsz J, Reed N. Imaging in oncology: An overview. Cancer Imaging. 2011;11(1A):S1–S12.
- Roychowdhury S, Chinnaiyan AM. Advancing precision medicine for prostate cancer through genomics. J Clin Oncol. 2013;31(15):1866-73.
- McGivney WT, Koh WJ, Green S. Surgery in cancer care: Current role and future directions. CA Cancer J Clin. 2018;68(4):261-89.
- Jaffray DA, Gospodarowicz MK. Radiotherapy for cancer: Present and future. Nat Rev Clin Oncol. 2019;16(12):719-28.
- Gottesman, MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615-27.
- Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56-61.
- Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 2013;13(10):714-26.
- Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275-92.
- Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299-309.
- Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2-25.
- Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14(9):623-31.
- Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410.
- Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol Biol Int. 2014;2014:852748.
- Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol Med. 2015;21(4):223-32.
- Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release. 2015;200:138-57.
- Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941-51.
- Bregoli L, Chiarini F, Gambarelli A, Sighinolfi G, Gatti AM, Santi P, et al. Nanomedicine applied to oncology: The role of nanotoxicology. Biomed Microdevices. 2016;18(1):18.
- Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010;10(9):3223-30.
- Torchilin, VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813-27.
- Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991-1003.
- Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179-91.
- Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-60.
- Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2-25.
- Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine-based targeted chemotherapy: Recent advances in cancer therapy. J Control Release. 2016;240:186-201.
- Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release. 2000;65(1-2):271-84.
- Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136-51.
- Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244(Pt A):108-21.
- Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410.
- Mitchell MJ, Jain RK, Langer R. Engineering and physical sciences in oncology: Challenges and opportunities. Nat Rev Cancer. 2017;17(11):659-75.
- van der Meel R, Lammers T, Hennink WE. Cancer nanomedicines: Oversold or underappreciated? Expert Opin Drug Deliv. 2017;14(1):1-5.
- Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev. 2017;108:25-38.
- Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615-27.
- Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1-16.
- Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137-43.
- Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941-51.
- Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
- Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23):1706759.
- Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14(4):2181-8.
- Kroll AV, Fang RH, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28(1):23-32.
- Li SY, Cheng H, Qiu WX, Zhang L, Wan SS, Zeng JY, et al. Cancer cell membrane-coated biomimetic nanoparticles for targeted therapy. Biomaterials. 2017;133:37-48.
- Li J, Wang Y, Zhu Y, Oupický D. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. Adv Drug Deliv Rev. 2017;115:33-45.
- Xu CF, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2015;10(1):1-12.
- Zhang P, Chen Y, Zeng Y, Shen C, Li R, Guo Z, et al. Targeted delivery of chemotherapeutic agents and genes using ligand-modified nanoparticles for cancer therapy. J Control Release. 2022;343:722-47.
- Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412-7.
- Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185-98.
- Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, et al. Quantifying the ligand-mediated uptake of nanoparticles in cancer cells. ACS Nano. 2018;12(8):8423-35.
- Miao L, Lin CM, Huang L. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Pharmacol Sci. 2015;36(9):789-801.
- Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(5):e1450.
- Torchilin, VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145-60.
- Wang H, Agarwal P, Zhao S, Xu RX, Yu J, Lu X, et al. Combined cancer therapy with hyaluronic acid-based nanomaterials. Biomaterials. 2018;180:12-24.
- Zhang X, Li C, Wang L, Zhang J, Chen Y, Dong J, et al. Multifunctional nanocarriers for stimuli-responsive drug delivery in cancer therapy. Chem Soc Rev. 2022;51(5):1704-36.
- Liu Y, Crawford BM, Vo-Dinh T. Gold nanoparticles for drug delivery and cancer therapy. Nanomedicine (Lond). 2021;16(3):123-43.
- Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8(3):290–312.
- Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng Transl Med. 2021;6(3):e10246.
- Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116(5):2826–85.
- Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012;3(4):457–78.
- Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.
- Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.
- Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8(6):2101–41.
- Ma X, Williams RO III. Polymeric nanomedicines for poorly soluble drugs in cancer therapy. J Pharm Sci. 2018;107(1):10–24.
- Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.
- Avgoustakis, K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: Preparation, properties and possible applications in drug delivery. Curr Drug Deliv. 2004;1(4):321–33.
- Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161(2):505–22.
- Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel). 2019;11(5):640.
- Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23):1706759.
- Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220(Pt B):600–7.
- Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ, Radovic-Moreno AF, et al. Self-assembled lipid–polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano. 2008;2(8):1696–702.
- Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8(1):61–8.
- Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–5.
- Li R, He Y, Zhu Y, Jiang L, Zhang S, Qin J, et al. Route to multifunctional biomimetic nanoparticles in biomedical applications. Adv Mater. 2019;31(8):1804828.
- Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol. 2018;13(12):1182–90.
- Meng QF, Rao L, Zan M, Chen M, Yu GT, Wei X, et al. Biomimetic immunomagnetic nanoparticles for theranostic applications in leukemia. Adv Mater. 2020;32(18):1907461.
- Zhen X, Cheng P, Pu K. Recent advances in cell membrane–camouflaged nanoparticles for cancer phototheranostics. Small. 2019;15(12):1804105.
- Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater. 2016;28(43):9581–8.
- Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano. 2018;12(6):5121–9.
- Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017;12(7):648–54.
- Hu CMJ, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: Clinical development and advances in stealth functionalization strategies. Nanoscale. 2014;6(1):65–75.
- Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for influenza virus. ACS Nano. 2015;9(7):6918–33.
- Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater. 2016;15(9):1037–46.
- Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51.
- Barenholz, YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.
- Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.
- Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71(3):555–64.
- Sofou, S. Liposomal nanocarriers in cancer therapy: from preclinical to clinical progress. Adv Drug Deliv Rev. 2021;179:113912.
- Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.
- Ventola, CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742–55.
- Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14.
- Park, K. The beginning of the end of the nanomedicine hype. J Control Release. 2019;305:221–2.
- Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.
- Xu X, Ho W, Zhang X, Bertrand N, Farokhzad OC. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015;21(4):223–32.
- Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng Transl Med. 2021;6(3):e10246.
- Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.
- Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9:1410.
- Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, et al. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res. 2012;18(12):3229–41.
- Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
- Hare J, Lammers T, Ashford M, Puri S, Storm G, Barry S. Challenges and strategies in anti-cancer nanomedicine translation. Nat Rev Clin Oncol. 2017;14(12):731–46.
- Bobo D, Corrie SR, Thurecht KJ. Nanoparticles in clinical trials: current status and future perspectives. Nanomedicine. 2020;15(11):1073–84.
- ClinicalTrials.gov. Clinical trials involving nanomedicines in oncology. [Internet]. Bethesda (MD): National Library of Medicine; updated 2025 [cited 2025 Oct 29]. Available from: https://clinicaltrials.gov.
- Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
- Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.
- Venditto VJ, Szoka FC Jr. Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev. 2013;65(1):80–8.
- Hare J, Lammers T, Ashford M, Puri S, Storm G, Barry S. Challenges and strategies in anti-cancer nanomedicine translation. Nat Rev Clin Oncol. 2017;14(12):731–46.
- Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev. 2015;115(19):10907–37.
- Moghimi SM, Simberg D. Nanoparticle clearance pathways and toxicity. Toxicol Appl Pharmacol. 2018;360:264–8.
- Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543–57.
- Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.
- Chan WCW. Nanomedicine 2.0. Acc Chem Res. 2017;50(3):627–32.
- Torrice, M. Does nanomedicine have a delivery problem? ACS Cent Sci. 2016;2(7):434–7.
- Docter D, Strieth S, Westmeier D, Hayden O, Gao M, Knauer SK, Stauber RH. No king without a crown—impact of the protein corona on nanoparticle interactions in vitro and in vivo. Nanomedicine. 2015;10(12):3121–38.
- Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.
- Maeda H, Khatami M. Analyses of repeated failures in cancer nanomedicine: a call for new strategies. Cancer Sci. 2018;109(4):959–68.
- Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumour targeting and cancer nanomedicine efficacy. Theranostics. 2020;10(17):7921–4.
- Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz Y, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313(1):35–56.
- Park, K. Facing the truth about nanomedicine: the lessons from COVID-19 vaccines. J Control Release. 2021;335:253–6.
- Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.
- Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14.
- Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9(7):6655–74.
- Pettersson M, Crews CM. PROteolysis TArgeting Chimeras (PROTACs)—past, present and future. Drug Discov Today Technol. 2019;31:15–27.
- Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–14.
- Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16(2):101–14.
- Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, et al. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther. 2019;4:64.
- Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs: applications and challenges. Pharmacol Ther. 2017;174:138–44.
- Paiva S-L, Crews CM. Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 2019;50:111–9.
- Wang C, Zhang Y, Chen Y, Xu Y, Ma L, Zhang Q. Nanocarrier-based PROTAC delivery for cancer therapy. Adv Drug Deliv Rev. 2023;199:114918.
- Liu J, Chen H, Ma L, Dang Y, Li X, Zhou C, et al. Integration of PROTAC technology with nanomedicine for precise tumor therapy. Nano Today. 2024;54:102096.
- Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–96.
- Zhang Y, Shi J, Zhang H, Xu Q, Chen X. Immuno-nanomedicine for cancer therapy: recent advances and future prospects. Chem Soc Rev. 2022;51(17):7285–316.
- Hu Q, Li H, Archibong E, Chen Q, Wang C, Xu H, et al. In situ administration of nanomedicine for tumor immunotherapy. Nat Nanotechnol. 2021;16(4):410–20.
- Koshy ST, Mooney DJ. Biomaterials for enhancing anti-cancer immunity. Nat Rev Cancer. 2016;16(3):159–70.
- Ghosh S, Thakur A, Maiti TK. Personalized nanomedicine: opportunities and challenges for precision oncology. Adv Drug Deliv Rev. 2023;198:114887.
- Zhang X, Liu Y, Fan Z, Zhang H. Hybrid nanostructures for multimodal cancer therapy. Adv Mater. 2020;32(31):2001071.
- He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of clinical translation of cancer nanomedicines—lessons learned and future directions. J Control Release. 2020;319:407–20.
- Wicki A, Lammers T. Nanomedicine for future precision cancer therapy: opportunities and obstacles. Adv Drug Deliv Rev. 2024;205:114996.
- Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
