Submitted:
23 October 2025
Posted:
24 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literary review
2.1. The Discovery Era (c. 1750-1850)
2.2. The Parametric Era (c. 1850-1920)
2.3. The Analog Era (c. 1920-1960)
2.4. The Statistical Era (c. 1960-2000)
2.5. The Millennium Era (c. 2000-Present)
2.6. Summary of the Literature
3. Non-Mathematical Reasons for Solution Unknownness
3.1. Economic dependence on Navier-Stokes as an unsolvable algorithm
3.2. Straw Men Are Lazy: Lack of Action Falsely Implied by Lack of Necessity
3.3. Status Loss Phobia Due to Deeper Philosophical Implications
4. Structure of Proposed Navier-Stokes Solution
4.1. Foundation as Three Postulates
4.2. Irrotational Flow by Helmholtz Decomposed Potential Flow
4.3. Rotational Flow by Vector-Triquartic Modified Cole-Hopf Methods
4.3.1. The Modified Cole-Hopf (MCH) Transformation Framework
4.3.2. Origin of Turbulence Identified as Quartic Root Multiplicity Collapse in MCH Lift
4.4. Pressure Recovery by Pressure-Poisson Formulation
4.5. Unbounded Flows and the Millennium Problem
5. Solving for the Irrotational Part of the Velocity Field
5.1. Invocation of the Helmholtz Decomposition
5.2. Derivation of the Potential Flow Scalar
5.3. Inversion of the Helmholtz Decomposition by Projection Operators
5.4. Final Statement of Irrotational Velocity Field
6. Solving for the Rotational Part of the Velocity Field
6.1. Second-Curl Reduction of Momentum Equations
6.2. Solving the Pseudo-Depressurized Momentum Equations by MCH
6.3. Defining the MCH Kernel as a Vector of Heat Equation Solutions
6.4. Deriving the MCH Lift as Roots of a Triquadratic Algebraic System
6.4.1. MCH Lift Edge Case: One Irrotational or Zero Velocity Component
6.4.2. MCH Lift Edge Case: Two Irrotational or Zero Velocity Components
6.5. Deriving the MCH Reconciliation by Inversion of the MCH Residue
6.6. Final Statement of Rotational Velocity Field as MCH Subject
7. Final Assembly of the Velocity Field
8. Recovery of the Pressure Field
9. The Navier-Stokes Existence and Smoothness Problem
9.1. Proofs of Global Existence of and on for All
9.1.1. Proof of Global Existence of Velocity Field on for All t
9.1.2. Proof of Global Existence of Pressure Field on for All t
9.1.3. Conclusion of Existence
9.2. Proofs of global smoothness of and on for all t
9.2.1. Proof of Global Smoothness of Velocity Field on for All t
9.2.2. Proof of Global Smoothness of Pressure Field on for All t
9.2.3. Conclusion of Smoothness
9.3. Proofs of Square Integrability of and on for all t
9.3.1. Proof of Global Square Integrability of Velocity Field on for All t
9.3.2. Proof of global square integrability of pressure field on for all t
9.3.3. Conclusion of Square Integrability
9.4. Conclusion of Navier-Stokes Existence and Smoothness
10. Conclusions
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Robert, A. Granger, Fluid Mechanics. Holt, Rinehart, and Winston, New York, NY, 1985. p. 203.
- Claude, L. Navier, Mémoire sur les lois du mouvement des fluides, Mémoires de l’Académie des Sciences, 1823. Vol. 6, pp. 389–440.
- George, G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 1845. Vol. 8, pp. 287–305.
- Olivier Darrigol, Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier-Stokes Equation. Archive for History of Exact Sciences, Springer-Verlag, 2002. Vol. 56, pp. 95–150.
- Salvatore, P. Sutera and Richard Skalak, The History of Poiseuille’s Law. Annual Review of Fluid Mechanics, 1993. Iss. 25, pp. 1–19.
- Leonhard Euler, Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin, 1757. Vol. 11, pp. 274–315.
- Osborne Reynolds, On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philosophical Transactions of the Royal Society of London A, 1895. Iss. 186, pp. 123–164.
- Frank, P. Incropera and David P. DeWitt, Fundamentals of heat transfer. Wiley, New York, 1981. ISBN 978-0-471-42711-7.
- Lewis, F. Moody, Friction factors for pipe flow. Transactions of the ASME, 1944. Vol. 66, Iss. 8, pp. 671–684.
- Dejan Brkić, Review of explicit approximations to the Colebrook relation for flow friction. Journal of Petroleum Science and Engineering, 2011. Vol. 77, Iss. 1, pp. 34-48.
- A. Zukauskas, Heat Transfer from Tubes in Crossflow. Advances in Heat Transfer, 1972. Vol. 8, pp. 93-160.
- Paul R., H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeitschrift für Angewandte Mathematik und Physik, 1908. Vol. 56, pp. 1–37.
- "Schlieren Optics". Harvard Natural Sciences Lecture Demonstrations. Retrieved 2024-02-03 from https://sciencedemonstrations.fas.harvard.
- Charles, L. Ladson and Cuyler W. Brooks, Jr., Development of a Computer Program to Obtain Ordinates for NACA 4-Digit, 4-Digit Modified, 5-Digit, and 16-Series Airfoils. NASA Technical Memorandum, NASA Langley Research Center, 1975. Report No. TM X-3284. Retrieved October 7, 2025 from https://ntrs.nasa.gov/api/citations/19760003945/downloads/19760003945.pdf.
- David Houghton and Warren Washington, On global initialization of the primitive equations. Journal of Applied Meteorology, 1969. Vol. 8, No. 5, pp. 726-737.
- E. N. Lorenz, Deterministic nonperiodic flow. 1963.
- Olga, A. Ladyzhenskaya, Solution in the large to the boundary-value problem for the Navier–Stokes equations in two space variables. Soviet Physics-Doklady, Iss. 123, Vol. 3, pp. 1128-1131.
- Olga, A. Ladyzhenskaya, On non-stationary operator equations and their applications to linear problems of mathematical physics. 1958.
- Alberto Fiorenza, Maria R. Formica, Tomáš Roskovec, and Filip Soudský, Detailed Proof of Classical Gagliardo–Nirenberg Interpolation Inequality with Historical Remarks. Zeitschrift für Analysis und ihre Anwendungen, 2021. Iss. 40, Vol. 2, pp. 217-236.
- Julian, D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics. Quarterly of Applied Mathematics, 1951. Vol. 9, Iss. 3, pp. 225-236.
- Eberhard Hopf, The partial differential equation ut+uux=μxx. Communications on Pure and Applied Mathematics, 1950. Vol. 3, Iss. 3, pp. 201-230.
- Andrei, D. Polyanin and Valentin F. Zaitsev, Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton, FL, 2003. pp. 9-11. ISBN 1-58488-355-3.
- L. D. Landau, New exact solution of the Navier-Stokes equations. Doklady Akademii Nauk SSSR, 1944. Vol. 44, pp. 311-314.
- H. B. Squire, The round laminar jet. The Quarterly Journal of Mechanics and Applied Mathematics, 1951. Iss. 4, Vol. 3, pp. 321-329.
- G. I. Taylor and A. E. Green, Mechanism of the Production of Small Eddies from Large Ones Proceedings of the Royal Society of London A, 1937. Iss. 158, Vol. 895, pp. 499–521.
- Ippolit, S. Gromeka, Some cases of incompressible fluid motion. Scientific Notes of the Kazan University, 1881. pp. 76-148.
- Sir Horace Lamb, Hydrodynamics, 1932. Cambridge University Press, pp. 134–139. Library of Congress Cat. No. 46-1891.
- Alexandre, J. Chorin and Jerrold E. Marsden, A Mathematical Introduction to Fluid Mechanics. Texts in Applied Mathematics, Springer, New York, 1990. ISBN 978-1-4684-0364-0.
- Big whorls, little whorls. Editorial. Nature Physics, 2016. Vol. 12, p. 197.
- Andrey, N. Kolmogorov, Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Doklady Akademii Nauk SSSR, 1941. Vol. 31, pp. 99–101.
- Andrei, D. Polyanin and Valentin F. Zaitsev, Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton, FL, 2003. p. 78. ISBN 1-58488-355-3.
- Andrei, D. Polyanin and Valentin F. Zaitsev, Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton, FL, 2003. p. 81. ISBN 1-58488-355-3.
- Kumar Mukesh and Kumari Manju, A Comprehensive Review on Burger’s Equation and Lie Group Theory. Journal of Basic and Applied Engineering, 2019. Vol. 6, Iss. 2, pp. 76-80.
- R. Sinuvasan, K. M. R. Sinuvasan, K. M. Tamizhmani, and P. G. L. Leach, Algebraic resolution of the Burgers equation with a forcing term. Pramana, Indian Academy of Sciences, 2017. Vol. 88, Art. 74.
- Eric Kamke, Differentialgleichiungen Lösungsmethoden und Lösungen. Chelsea Publishing Company, 1971. p. 21.
- Stephen, B. Pope, Turbulent Flows. Cambridge University Press, 2000. pp. 373-383. ISBN 0-521-59886-9.
- Stephen, B. Pope, Turbulent Flows. Cambridge University Press, 2000. pp. 383-386. ISBN 0-521-59886-9.
- Joseph Smagorinsky, General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 1963. Vol. 91, Iss. 3, pp. 99–164.
- Chou, P.Y. On velocity correlations and the solutions of the equations of turbulent fluctuation. AMS Quarterly of Applied Mathematics 1945, 3, 38–54. [Google Scholar] [CrossRef]
- J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics. Springer, 2001. ISBN 978-3-319-99691-2.
- R. Issa, Solution of the implicitly discretized fluid flow equations by operator-splitting. Journal of Computational Physics, Vol. 62, Iss. 1, pp. 40-65.
- C. Hirsch, Introduction to "Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method". Journal of Computational Physics, 1997. Vol. 135, Iss. 2, pp. 227–228.
- Peter, D. Lax and Burton Wendroff, Systems of conservation laws. Communications on Pure and Applied Mathematics, 1960. Vol. 13, Iss. 2, pp. 217-237.
- Sergei, K. Godunov, A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations. Matematicheskii Sbornik, 1959. Vol. 47, pp. 271–306. Russian translation by U.S. Joint Publications Research Service, 1969.
- Richard Courant, Kurt Friedrichs, and Hans Lewy, On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 1967. Vol. 11, Iss. 2, pp. 215–234.
- J. G. Charney, R. J. G. Charney, R. Fjørtoft, and John von Neumann, Numerical Integration of the Barotropic Vorticity Equation. Tellus, 1950. Vol. 2, Iss. 4, pp. 237–254.
- Pieter Wesseling, Principles of Computational Fluid Dynamics. Springer Science & Business Media, 2001. pp. 447-456. ISBN 978-3-540-67853-3.
- A. Harten and S. Osher, Uniformly High-Order Accurate Nonoscillatory Schemes. I. SIAM Journal on Numerical Analysis, 1987. Vol. 24, pp. 279-309.
- James Carlson (editor), The Poincaré Conjecture. Clay Research Conference, Resolution of the Poincaré Conjecture, Institut Henri Poincaré, Paris, France. June 8–9, 2010. Clay Mathematics Proceedings, Vol. 19.
- Nick Sheridan, Hamilton’s Ricci Flow. Thesis. University of Melbourne, Department of Mathematics and Statistics, 2006.
- Charles, L. Fefferman, Existence and Smoothness of the Navier-Stokes Equation. Clay Mathematics Institute, 2000.
- Terence Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation. Journal of the American Mathematical Society, 2016. Vol. 29, Iss. 3, pp. 601-674.
- Matteo Antuono, Tri-periodic fully three-dimensional analytic solutions for the Navier–Stokes equations. Journal Of Fluid Mechanics, Cambridge University Press, 2020. Vol. 890, Art. 23.
- Andrei, D. Polyanin and Alexei I. Zhurov, Separation of Variables and Exact Solutions to Nonlinear PDEs. CRC Press, 2022. p. 34. ISBN 978-0-367-48689-1.
- Turbulence Simulation Laboratory at University of Massachusetts Amherst. Retrieved October 7, 2025 from https://people.umass.edu/debk/TurbulenceSimulationLaboratory.html.
- G.K. Batchelor, An Introduction to Fluid Dynamics. Cambridge University Press, 1973. pp. 93-101. ISBN 0-521-09817-3.
- Koji Ohkitani, Self-similarity in turbulence and its applications. Philosophical Transactions of the Royal Society of London A, 2022. Vol. 380, Iss. 2226.
- Peter Constantin, C. Foias, and R. Temam, On the dimension of the attractors in two-dimensional turbulence. Physica D: Nonlinear Phenomena, 1988. Vol. 30, Iss. 3, pp. 284-296.
- Alexandre, J. Chorin, Numerical Solution to the Navier-Stokes Equations. Mathematics of Computation, 1968. Vol. 22, Iss. 104, pp. 745-762.
- M. Shub, M. M. Shub, M. and S. Smale, Complexity of Bézout’s Theorem. I. Geometric Aspects. Journal of the American Mathematical Society, 1993. Vol. 6, pp. 459-501.
- Mauricio Chávez-Pichardo, Miguel A. Martínez-Cruz, Alfredo Trejo-Martínez, Daniel, Martínez-Carbajal, and Tanya Arenas-Resendiz, A Complete Review of the General Quartic Equation with Real Coefficients and Multiple Roots. Mathematics, 2022. Vol. 10, Iss. 14, p. 2377.
- John, P. Cornthwaite, Pressure Poisson Method For the Incompressible Navier-Stokes Equations using Galerkin Finite Elements. Thesis. Rice University, 2003.
- Andrei, D. Polyanin and Vladimir E. Nazaikinskii, Handbook of Linear Partial Differential Equations. CRC Press, Boca Raton, FL, 2016. pp. 866-871. ISBN 978-1-4665-8145-6.
- Galina Weinstein, General Relativity Conflict and Rivalries: Einstein’s Polemics with Physicists. Cambridge Scholars Publishing, 2016. pp. 211–212. ISBN 978-1-4438-8362-7.
- Yevgeniy Kovchegov and Peter, T. Otto, Multidimensional Lambert–Euler inversion and vector-multiplicative coalescent processes. Journal of Statistical Physics, Vol. 190, Iss. 12, pp. 188.
- Semyon, A. Gershgorin, Über die Abgrenzung der Eigenwerte einer Matrix. USSR Otdelenie Fiziko-Matematicheskikh Nauk, Izvestiya Rossiĭskoĭ Akademii Nauk, 1931. Vol. 6, pp. 749-754.
- Allen Hatcher, Algebraic Topology. Cambridge University Press, 2002. p. 185. ISBN 978-0-521-79540-1.
- Charles, H. Edwards, Advanced Calculus of Several Variables. Dover Publications, Mineola, New York, 1994. pp. 417–418. ISBN 0-486-68336-2.
- Andrei, D. Polyanin and Vladimir E. Nazaikinskii, Handbook of Linear Partial Differential Equations. CRC Press, Boca Raton, FL, 2016. p. 465. ISBN 978-1-4665-8145-6.
- D. Schmidt, Introduction to Partial Differential Equations - Chapter 4: Heat Equation. University of Mannheim, 2021. Retrieved from https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/schmidt/HWS2021/Intro_PDE/chapter_4.pdf.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
