Submitted:
24 October 2025
Posted:
24 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. General Formalism
2.1. Time-Harmonic Electromagnetic Fields
2.2. Quasi-Energy Response
2.3. Density Response
2.4. Orthonormality
2.5. Determination of U: The CP-HF/KS Equations
2.5.1. The First-Order CP-HF/KS Equation
2.5.2. The Second-Order CP-HF/KS Equation
2.6. Quasi-Energy Response: Working Form
3. Applications
3.1. Polarizabilities
3.2. Magnetizabilities
3.2.1. Comparison with the GIAO Method
4. Results and Discussion
4.1. Numerical Tests
4.2. Non-Optical Properties
4.3. Gauge-Invariant Magnetic Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Derivation of T-Response
Appendix B. Derivation of W-Response
Appendix B.1. The First-Order W-Response
Appendix B.2. The Second-Order W-Response
Appendix B.3. The Third-Order W-Response
Appendix C. Evaluation of (ρa(ωA)|kxc|ρb(ωB)|ρc(ωC))
| LDA | GGA | mGGA | |
|---|---|---|---|
| spin-restricted | |||
| collinear | a | b | |
| locally-collinear | c | d | |
| non-collinear |
Appendix D. Gauge Transformations
References
- Bursulaya, B.D.; Kim, H.J. Optical Kerr effect spectroscopy of liquid water: Role of fluctuating electronic polarizability. The Journal of Physical Chemistry B 1997, 101, 10994–10999. [Google Scholar] [CrossRef]
- Ghanadzadeh, A.; Zeini, A.; Kashef, A.; Moghadam, M. Solvent polarizability and anisotropy effects on the photophysical behavior of oxazine 1: An appropriate polarizability indicator dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009, 73, 324–329. [Google Scholar] [CrossRef]
- Egorochkin, A.N.; Kuznetsova, O.V.; Khamaletdinova, N.M.; Domratcheva-Lvova, L.G. Infrared spectroscopic studies of transition metal complexes and polarizability effect. Journal of Organometallic Chemistry 2011, 696, 2199–2205. [Google Scholar] [CrossRef]
- Bender, J.S.; Coasne, B.; Fourkas, J.T. Assessing polarizability models for the simulation of low-frequency Raman spectra of benzene. The Journal of Physical Chemistry B 2015, 119, 9345–9358. [Google Scholar] [CrossRef]
- Gasbarri, C.; Angelini, G. Polarizability over dipolarity for the spectroscopic behavior of azobenzenes in room-temperature ionic liquids and organic solvents. Journal of Molecular Liquids 2017, 229, 185–188. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Arun Murthy, T.V.S.; Giri, S.; Roy, D.R. A connection between softness and magnetizability. Journal of Molecular Structure: THEOCHEM 2007, 813, 63–65. [Google Scholar] [CrossRef]
- Foroutan-Nejad, C. Interatomic magnetizability: A QTAIM-based approach toward deciphering magnetic aromaticity. The Journal of Physical Chemistry A 2011, 115, 12555–12560. [Google Scholar] [CrossRef]
- Yin, Y.; Wan, X.; Tu, X.; Wang, D. Large magneto-optical effects in the van der Waals ferrimagnet Mn3Si2Te6. Physical Review B 2024, 110, 104410. [Google Scholar] [CrossRef]
- Delaire, J.A.; Nakatani, K. Linear and nonlinear optical properties of photochromic molecules and materials. Chemical Reviews 2000, 100, 1817–1846. [Google Scholar] [CrossRef]
- Marder, S.R. Organic nonlinear optical materials: where we have been and where we are going. Chemical Communications 2006, pp. 131–134.
- Boyd, R.W.; Prato, D. Nonlinear Optics; Academic Press, 2008; pp. 1–4.
- Castet, F.; Rodriguez, V.; Pozzo, J.L.; Ducasse, L.; Plaquet, A.; Champagne, B. Design and characterization of molecular nonlinear optical switches. Accounts of Chemical Research 2013, 46, 2656–2665. [Google Scholar] [CrossRef]
- Gu, F.L.; Aoki, Y.; Springborg, M.; Kirtman, B. Calculations on nonlinear optical properties for large systems: The elongation method; Springer, 2014; pp. 1–8.
- Gready, J.E.; Bacskay, G.B.; Hush, N.S. Finite-field method calculations of molecular polarisabilities. I. Theoretical basis and limitations of SCF and Galerkin treatments. Chemical Physics 1977, 22, 141–150. [Google Scholar] [CrossRef]
- Locknar, S.A.; Peteanu, L.A.; Shuai, Z. Calculation of ground and excited state polarizabilities of unsubstituted and donor/acceptor polyenes: a comparison of the finite-field and sum-over-states methods. The Journal of Physical Chemistry A 1999, 103, 2197–2201. [Google Scholar] [CrossRef]
- Bouř, P. Approximate ab initio calculations of polarizabilities via the excitation scheme. Chemical Physics Letters 1997, 265, 65–70. [Google Scholar] [CrossRef]
- Bouř, P. Computations of the Raman optical activity via the sum-over-states expansions. Journal of Computational Chemistry 2001, 22, 426–435. [Google Scholar] [CrossRef]
- Bishop, D.M.; Kirtman, B.; Champagne, B. Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. The Journal of Chemical Physics 1997, 107, 5780–5787. [Google Scholar] [CrossRef]
- Champagne, B.; Kirtman, B. Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull π-conjugated systems. The Journal of Chemical Physics 2006, 125, 024101. [Google Scholar] [CrossRef]
- Sekino, H.; Bartlett, R.J. Frequency dependent nonlinear optical properties of molecules. The Journal of Chemical Physics 1986, 85, 976–989. [Google Scholar] [CrossRef]
- Rice, J.E.; Amos, R.D.; Colwell, S.M.; Handy, N.C.; Sanz, J. Frequency dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride. The Journal of Chemical Physics 1990, 93, 8828–8839. [Google Scholar] [CrossRef]
- Karna, S.P.; Dupuis, M. Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program. Journal of Computational Chemistry 1991, 12, 487–504. [Google Scholar] [CrossRef]
- Rice, J.E.; Handy, N.C. The calculation of frequency-dependent polarizabilities as pseudo-energy derivatives. The Journal of Chemical Physics 1991, 94, 4959–4971. [Google Scholar] [CrossRef]
- Kutzelnigg, W. Stationary perturbation theory: I. Survey of basic concepts. Theoretica Chimica Acta 1992, 83, 263–312. [Google Scholar] [CrossRef]
- Sasagane, K.; Aiga, F.; Itoh, R. Higher-order response theory based on the quasienergy derivatives: The derivation of the frequency-dependent polarizabilities and hyperpolarizabilities. The Journal of Chemical Physics 1993, 99, 3738–3778. [Google Scholar] [CrossRef]
- Colwell, S.M.; Murray, C.W.; Handy, N.C.; Amos, R.D. The determination of hyperpolarisabilities using density functional theory. Chemical Physics Letters 1993, 210, 261–268. [Google Scholar] [CrossRef]
- Li, S.; Hu, L.; Peng, L.; Yang, W.; Gu, F.L. Coupled-perturbed SCF approach for calculating static polarizabilities and hyperpolarizabilities with nonorthogonal localized molecular orbitals. Journal of Chemical Theory and Computation 2015, 11, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Li, S.; Peng, L.; Gu, F.L.; Yang, W. Time-Dependent Coupled Perturbed Hartree–Fock and Density-Functional-Theory Approach for Calculating Frequency-Dependent (Hyper) Polarizabilities with Nonorthogonal Localized Molecular Orbitals. Journal of Chemical Theory and Computation 2017, 13, 4101–4112. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.; Colwell, S.M. The determination of hyperpolarizabilities using density functional theory with nonlocal functionals. The Journal of Chemical Physics 1994, 101, 9704–9709. [Google Scholar] [CrossRef]
- Van Gisbergen, S.J.A.; Snijders, J.G.; Baerends, E.J. Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory. The Journal of Chemical Physics 1998, 109, 10644–10656. [Google Scholar] [CrossRef]
- Kamiya, M.; Sekino, H.; Tsuneda, T.; Hirao, K. Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn–Sham method. The Journal of Chemical Physics 2005, 122, 234111. [Google Scholar] [CrossRef]
- Banerjee, A.; Harbola, M.K. Variation-perturbation method in time-dependent density-functional theory. Physics Letters A 1997, 236, 525–532. [Google Scholar] [CrossRef]
- Aiga, F.; Tada, T.; Yoshimura, R. Frequency-dependent polarizabilities, hyperpolarizabilities, and excitation energies from time-dependent density-functional theory based on the quasienergy derivative method. The Journal of Chemical Physics 1999, 111, 2878–2888. [Google Scholar] [CrossRef]
- Kirtman, B.; Gu, F.L.; Bishop, D.M. Extension of the Genkin and Mednis treatment for dynamic polarizabilities and hyperpolarizabilities of infinite periodic systems. I. Coupled perturbed Hartree-Fock theory. The Journal of Chemical Physics 2000, 113, 1294–1309. [Google Scholar] [CrossRef]
- Casida, M.E. Time-dependent density functional response theory for molecules. In Recent Advances In Density Functional Methods: (Part I); World Scientific, 1995; pp. 155–192.
- Kutzelnigg, W. Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. Israel Journal of Chemistry 1980, 19, 193–200. [Google Scholar] [CrossRef]
- Hansen, A.E.; Bouman, T.D. Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors. The Journal of Chemical Physics 1985, 82, 5035–5047. [Google Scholar] [CrossRef]
- Keith, T.A.; Bader, R.F.W. Calculation of magnetic response properties using a continuous set of gauge transformations. Chemical Physics Letters 1993, 210, 223–231. [Google Scholar] [CrossRef]
- Ditchfield, R. Molecular orbital theory of magnetic shielding and magnetic susceptibility. The Journal of Chemical Physics 1972, 56, 5688–5691. [Google Scholar] [CrossRef]
- Helgaker, T.; Jo/rgensen, P. An electronic Hamiltonian for origin independent calculations of magnetic properties. The Journal of Chemical Physics 1991, 95, 2595–2601. [Google Scholar] [CrossRef]
- Ruud, K.; Helgaker, T.; Bak, K.L.; Jo/rgensen, P.; Jensen, H.J.A. Hartree–Fock limit magnetizabilities from London orbitals. The Journal of Chemical Physics 1993, 99, 3847–3859. [Google Scholar] [CrossRef]
- London, F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. Journal de Physique et le Radium 1937, 8, 397–409. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N.S.; Bogdanov, N.A.; Booth, G.H.; Chen, J.; Cui, Z.H.; et al. Recent developments in the PySCF program package. The Journal of Chemical Physics 2020, 153, 024109. [Google Scholar] [CrossRef]
- Sun, Q. Libcint: An efficient general integral library for Gaussian basis functions. Journal of Computational Chemistry 2015, 36, 1664–1671. [Google Scholar] [CrossRef]
- Ekström, U.; Visscher, L.; Bast, R.; Thorvaldsen, A.J.; Ruud, K. Arbitrary-order density functional response theory from automatic differentiation. Journal of Chemical Theory and Computation 2010, 6, 1971–1980. [Google Scholar] [CrossRef]
- Lehtola, S.; Steigemann, C.; Oliveira, M.J.T.; Marques, M.A.L. Recent developments in libxc—A comprehensive library of functionals for density functional theory. SoftwareX 2018, 7, 1–5. [Google Scholar] [CrossRef]
- Saad, Y. Iterative methods for sparse linear systems, second ed.; SIAM, 2003; pp. 157–257.
- Liesen, J.; Strakos, Z. Krylov Subspace Methods: Principles and Analysis; Numerical Mathematics and Scie, OUP Oxford, 2013; pp. 12–70.
- Knoll, D.A.; Keyes, D.E. Jacobian-free Newton–Krylov methods: a survey of approaches and applications. Journal of Computational Physics 2004, 193, 357–397. [Google Scholar] [CrossRef]
- Baker, A.H.; Jessup, E.R.; Manteuffel, T. A technique for accelerating the convergence of restarted GMRES. SIAM Journal on Matrix Analysis and Applications 2005, 26, 962–984. [Google Scholar] [CrossRef]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New basis set exchange: An open, up-to-date resource for the molecular sciences community. Journal of chemical information and modeling 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01, 2016. Gaussian Inc. Wallingford CT.
- Aidas, K.; Angeli, C.; Bak, K.L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; et al. The Dalton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4, 269–284. [Google Scholar] [CrossRef]
| Method | Solver | ||||
|---|---|---|---|---|---|
| Krylov | 2.456114 | 2.493836 | 9.724434 | 10.67309 | |
| HF | N-K | 2.456114 | 2.493836 | 9.724434 | 10.67309 |
| exact | 2.456114 | 2.493836 | 9.724434 | 10.67309 | |
| Gaussian | 2.456114 | 2.493836 | 9.724434 | 10.67309 | |
| Krylov | 2.337072 | 2.378101 | 9.601582 | 10.94481 | |
| SVWN5 | N-K | 2.337072 | 2.378101 | 9.601582 | 10.94481 |
| exact | 2.337072 | 2.378101 | 9.601582 | 10.94481 | |
| Gaussian | 2.337074 | 2.378104 | 9.601611 | 10.94484 | |
| Krylov | 2.389041 | 2.430847 | 9.490396 | 10.78105 | |
| PBE | N-K | 2.389041 | 2.430847 | 9.490396 | 10.78105 |
| exact | 2.389041 | 2.430847 | 9.490396 | 10.78105 | |
| Gaussian | 2.389024 | 2.430829 | 9.490255 | 10.78088 | |
| Krylov | 2.447234 | 2.488514 | 9.555978 | 10.75230 | |
| TPSS | N-K | 2.447234 | 2.488514 | 9.555978 | 10.75230 |
| exact | 2.447234 | 2.488514 | 9.555978 | 10.75230 | |
| Gaussian | 2.447381 | 2.488667 | 9.563478 | 10.76102 |
| Method | Solver | ||||
|---|---|---|---|---|---|
| Krylov | -3.004265 | 0.354248 | -2.650016 | -2.638684 | |
| HF | N-K | -3.004265 | 0.354248 | -2.650016 | -2.638684 |
| exact | -3.004265 | 0.354248 | -2.650016 | -2.638684 | |
| Dalton | -3.004263 | 0.354248 | -2.650015 | - | |
| Krylov | -2.997094 | 0.391350 | -2.605744 | -2.589627 | |
| SVWN5 | N-K | -2.997094 | 0.391350 | -2.605744 | -2.589627 |
| exact | -2.997094 | 0.391350 | -2.605744 | -2.589627 | |
| Dalton | -2.997093 | 0.391350 | -2.605744 | - | |
| Krylov | -3.010564 | 0.399143 | -2.611421 | -2.594833 | |
| PBE | N-K | -3.010564 | 0.399143 | -2.611421 | -2.594833 |
| exact | -3.010564 | 0.399143 | -2.611421 | -2.594833 | |
| Dalton | -3.010565 | 0.399143 | -2.611422 | - | |
| Krylov | -3.017507 | 0.380711 | -2.636796 | -2.622316 | |
| TPSS | N-K | -3.017507 | 0.380711 | -2.636796 | -2.622316 |
| exact | -3.017507 | 0.380711 | -2.636796 | -2.622316 | |
| Dalton | - | - | - | - |
| Method | |||||
|---|---|---|---|---|---|
| 0.05 | 2.465426 | 10.03915 | -0.096125 | 1.060108 | |
| HF | 0.10 | 2.493836 | 11.07370 | -0.087554 | 1.104119 |
| 0.15 | 2.542842 | 13.17900 | -0.072223 | 1.167423 | |
| 0.20 | 2.615197 | 17.39514 | -0.048216 | 1.254649 | |
| 0.05 | 2.347162 | 10.04824 | -0.060547 | 1.184807 | |
| SVWN5 | 0.10 | 2.378101 | 11.58515 | -0.048325 | 1.236818 |
| 0.15 | 2.432036 | 15.09977 | -0.025942 | 1.318000 | |
| 0.20 | 2.513118 | 24.29370 | -0.010578 | 1.437984 | |
| 0.05 | 2.399326 | 9.921563 | -0.058666 | 1.182924 | |
| PBE | 0.10 | 2.430847 | 11.39941 | -0.046085 | 1.233733 |
| 0.15 | 2.485755 | 14.74416 | -0.023015 | 1.314061 | |
| 0.20 | 2.568186 | 23.14165 | -0.014707 | 1.433669 | |
| 0.05 | 2.457400 | 9.962100 | -0.079933 | 1.117914 | |
| TPSS | 0.10 | 2.488514 | 11.33683 | -0.068962 | 1.163513 |
| 0.15 | 2.542545 | 14.35058 | -0.049021 | 1.234274 | |
| 0.20 | 2.623225 | 21.48152 | -0.016914 | 1.337470 |
| Method | Gauge Basis | STO-3G | 6-31G | cc-pVDZ | Sadlej-pVTZ |
|---|---|---|---|---|---|
| HF | - | -2.650016 | -2.997862 | -2.820516 | -2.949613 |
| GIAO | -2.459860 | -2.798452 | -2.773012 | -2.931758 | |
| SVWN5 | - | -2.605744 | -2.983692 | -2.820797 | -3.062157 |
| GIAO | -2.417908 | -2.784379 | -2.768266 | -3.059146 | |
| PBE | - | -2.611421 | -2.967591 | -2.796043 | -3.032509 |
| GIAO | -2.402182 | -2.754203 | -2.740750 | -3.027743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).