Submitted:
17 October 2025
Posted:
20 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. The Fundamental Action in M-Theory and Compactification
2.1.1. The 11-Dimensional Action
- is the 11-dimensional gravitational constant.
- is the Planck length.
- is the 11-dimensional metric, R is its Ricci scalar.
- is the field strength of the 3-form gauge field .
- is the fermionic (gravitino) action.
- is the action for M5-branes, with tension .
2.1.2. Numerical Evaluation of Fundamental Constants
2.1.3. Compactification on
- is the 4-dimensional metric.
- is the radius of the compact dimension.
- is the metric on the 6-dimensional manifold.
2.2. The 4-Dimensional Effective Lagrangian
- The Higgs potential is modified by the negative energy term: .
- The Majorana neutrino mass term , crucial for the seesaw mechanism.
- The dark matter Lagrangian for Majorana gluons.
- The interaction Lagrangian between dark matter and Standard Model fields.
2.3. The Lie Groups and Force Couplings
Hypercharge
Weak
Strong
Gravitation and Loop Quantum Gravity (LQG)
2.4. Characterization of the Seven Compact Dimensions
- Dimension 5: The radius sets the Kaluza-Klein scale: . This is the scale of Grand Unification.
- Dimensions 6-7: These Kähler moduli determine the Yang-Mills coupling constant. The calculation gives .
- Dimensions 8-9: These complex structure moduli determine the Yukawa couplings . For neutrinos, , which, with , gives the neutrino mass , consistent with observations.
- Dimensions 10-11: These dimensions host the flux, which generates the negative energy density and dictates the viscosity-to-entropy ratio of the primordial plasma.
2.4.1. Derivation of the Negative Energy Density
2.4.2. Viscosity-to-Entropy Ratio
3. Results
3.1. Dark Matter: Majorana Gluons
3.1.1. Mass and Density
3.1.2. Interaction Lagrangian and Cross-Section
3.1.3. Annihilation Cross-Section and Rate
3.2. Primordial Gravitational Waves and DM Interactions
3.2.1. Gravitational Wave Action and Spectrum
3.2.2. DM-GW Scattering Cross-Section
3.3. The Dynamic Cosmological Constant and the Hubble Tension
3.3.1. The z-Dependent Cosmological Constant
3.3.2. Resolving the Hubble Tension
3.4. Impact on the CMB and Baryogenesis
3.4.1. CMB Temperature Fluctuations
3.4.2. Baryogenesis and Leptogenesis
3.5. Detailed Analysis of Dark Matter Annihilation and Relic Density
3.5.1. Thermal Freeze-Out Mechanism
3.5.2. Numerical Solution of Freeze-Out
3.6. Primordial Gravitational Waves from Gluonic Plasma Anisotropic Stress
3.6.1. Tensor Perturbations from Anisotropic Stress
3.6.2. Anisotropic Stress from Majorana Gluon Plasma
3.6.3. Gravitational Wave Energy Spectrum Calculation
3.7. Complete Friedmann Equations with Dynamic
3.7.1. Modified Friedmann Equation
3.7.2. Numerical Solution for Hubble Parameter
3.7.3. Complete Cosmological Evolution
3.8. Baryogenesis and Leptogenesis Mechanisms
3.8.1. Leptogenesis via Majorana Neutrino Decay
3.8.2. Baryon Asymmetry Calculation
3.9. Connection to Loop Quantum Gravity and Quantum Geometry
3.9.1. Spin Network Description
3.9.2. Quantum Gravity Corrections to Friedmann Equation
4. Discussion
4.1. Experimental Predictions and Observational Tests
4.1.1. LISA Observational Window
4.1.2. Future CMB Experiments
4.1.3. Direct Dark Matter Detection
4.2. Theoretical Implications and Unification
4.2.1. Grand Unification Scale
4.2.2. Quantum Gravity and the Cosmological Constant Problem
4.3. Comparison with Alternative Models
4.3.1. String Gas Cosmology
4.3.2. Emergent Gravity Models
4.3.3. Modified Gravity Theories
| Parameter | Symbol | Value |
|---|---|---|
| Planck length | ||
| Planck mass | ||
| 11D gravitational constant | ||
| M5-brane tension | ||
| Negative energy density | ||
| Dark matter mass | ||
| DM-SM scattering cross-section | ||
| DM annihilation rate | ||
| GW energy density | ||
| Majorana neutrino mass | ||
| Neutrino Yukawa coupling | ||
| Baryon asymmetry |
4.4. Detailed Derivation of the 4-Dimensional Effective Action
4.5. Numerical Verification of Key Results Using SymPy
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton, I. (1687). Philosophiæ Naturalis Principia Mathematica. Royal Society.
- Maxwell, J. C. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 1865, 155, 459–512. [Google Scholar] [CrossRef]
- Planck, M. (1901). Über das Gesetz der Energieverteilung im Normalspektrum. Annalen der Physik, 309, 553–563.
- Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine, 26, 1–25.
- Einstein, A. (1915). Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 844–847.
- Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354, 769–822.
- Heisenberg, W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33(1), 879-893.
- Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Annalen der Physik, 384(4), 273-376.
- Born, M. , Heisenberg, W., & Jordan, P. (1926). Zur Quantenmechanik II. Zeitschrift für Physik, 35(8-9), 557-615. [CrossRef]
- Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society A, 117(778), 610-624.
- Zwicky, F. (1933). The redshift of extragalactic nebulae. Helvetica Physica Acta, 6, 110–127. [CrossRef]
- Adams, W. S. (1948). Observations of the spectrum of Sirius B. Publications of the Astronomical Society of the Pacific, 60, 213–214.
- Yang, C. N., & Mills, R. L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review 1954, 96(1), 191. [CrossRef]
- Feynman, R. P. (1963). Quantum Theory of Gravitation. Acta Physica Polonica, 24, 697–722.
- Weinberg, S. (1967). A Model of Leptons. Physical Review Letters, 1264; 19. [Google Scholar]
- ’t Hooft, G. (1971). Renormalizable Lagrangians for Massive Yang-Mills Fields. Nuclear Physics B, 35, 167–188. [CrossRef]
- Hulse, R. A., & Taylor, J. H. (1975). Discovery of a pulsar in a binary system. Astrophysical Journal 195, L51–L53. [CrossRef]
- Hawking, S. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43(3), 199-220.
- Weinberg, S. (1979). Baryon- and lepton-nonconserving processes. Physical Review Letters, 43(21), 1566-1570. [CrossRef]
- Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1), 99-102. [CrossRef]
- Guth, A. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347-356. [CrossRef]
- Linde, A. (1982). A new inflationary universe scenario. Physics Letters B, 108(6), 389-393. [CrossRef]
- Ashtekar, A. (1986). New variables for classical and quantum gravity. Physical Review Letters, 57(18), 2244-2247. [CrossRef]
- Penrose, R. (1986). On the Origins of Twistor Theory. Gravitation and Geometry, 341-361.
- Witten, E. (1984). Superstring Perturbation Theory. Nuclear Physics B, 276, 291-324.
- Page, D. N. (1993). Information in black hole radiation. Physical Review Letters, 71(23), 3743-3746.
- ’t Hooft, G. (1993). Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026.
- Taylor, J. H., & Weisberg, J. M. (1993). Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. Astrophysical Journal, 345, 434-450. [CrossRef]
- Witten, E. (1995). String theory dynamics in various dimensions. Nuclear Physics B, 443(1-2), 85-126. [CrossRef]
- Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396. [CrossRef]
- Jacobson, T. (1995). Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters, 75(7), 1260-1263. [CrossRef]
- Weinberg, S. (1995). The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press.
- Peskin, M. E., & Schroeder, D. V. (1995). An Introduction to Quantum Field Theory. Westview Press.
- Riess, A. G., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal, 116(3), 1009-1038. 116, 1009–1038. [CrossRef]
- Witten, E. (1998). Anti-de Sitter space and holography. Advances in Theoretical and Mathematical Physics, 2, 253-291. [CrossRef]
- Maldacena, J. (1998). The Large N Limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical Physics, 2, 231-252. [CrossRef]
- Polchinski, J. (1998). String Theory. Cambridge University Press.
- Perlmutter, S., et al. (1999). Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophysical Journal, 517(2), 565-586.
- Greene, B. (1999). The Elegant Universe. W.W. Norton & Company. [CrossRef]
- Rubin, V. C., Ford, W. K., & Thonnard, N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4kpc) to UGC 2885 (R = 122kpc). Astrophysical Journal, 238, 471-487. [CrossRef]
- Rovelli, C. (2004). Quantum Gravity. Cambridge University Press.
- Penrose, R. (2004). The Road to Reality. Knopf.
- Carroll, S. (2004). Spacetime and Geometry. Addison Wesley.
- Ashtekar, A., & Lewandowski, J. (2004). Background independent quantum gravity: A status report. Classical and Quantum Gravity, 21(15), R53. [CrossRef]
- Greene, B. (2005). The Fabric of the Cosmos. Vintage Books.
- Smolin, L. (2006). The Trouble with Physics. Houghton Mifflin.
- Thiemann, T. (2007). Modern Canonical Quantum General Relativity. Cambridge University Press.
- Kaku, M. (2008). Physics of the Impossible. Doubleday.
- Zee, A. (2010). Quantum Field Theory in a Nutshell. Princeton University Press.
- Banks, T. (2010). Holographic Space-Time. arXiv:1007.4001, arXiv:1007.4001.
- Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4), 29. [CrossRef]
- ATLAS Collaboration. (2012). Observation of a new particle in the search for the Standard Model Higgs boson. Physics Letters B, 716(1), 1-29.
- Planck Collaboration. (2016). Planck 2015 Results. XIII. Cosmological Parameters. Astronomy & Astrophysics, 594, A13.
- LIGO Scientific Collaboration. (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6), 061102.
- Planck Collaboration. (2018). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6. [CrossRef]
- DES Collaboration. (2019). First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey. The Astrophysical Journal, 872(2), L30. [CrossRef]
- Muon g-2 Collaboration. (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Physical Review Letters, 126(14), 141801.
- LIGO Collaboration. (2021). GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Physical Review X, 11, 021053.
- Pohl, R., et al. (2022). Quantum Electrodynamics Test from the Proton Radius Puzzle. Nature, 591(7850), 391-396.
- CDF Collaboration. (2022). High-Precision Measurement of the W Boson Mass with the CDF II Detector. Science, 376(6589), 170-176. [CrossRef]
- Vilenkin, A. , & Shellard, E. P. S. (2022). Cosmic Strings and Other Topological Defects, Cambridge University Press.
- Kolb, E. W., & Turner, M. S. (2023). Solitonic Dark Matter. Physical Review D, 107, 023519.
- Kivshar, Y. S., & Malomed, B. A. (2023). Soliton Lattices. Reviews of Modern Physics, 95, 045003.
- DESI Collaboration. (2023). First Results from the Dark Energy Spectroscopic Instrument. The Astrophysical Journal Letters, 944(1), L31.
- ATLAS Collaboration. (2023). Constraints on the Higgs Boson Self-Coupling from the Combination of Single-Higgs and Double-Higgs Production Analyses. Physical Review D, 107(5), 052003.
- Lifton, T., et al. (2024). Modified Gravity with Solitons. Living Reviews in Relativity, 27, 4.
- Dauxois, T., & Peyrard, M. (2024). Physics of Solitons. Cambridge University Press.
- Horndeski, G. W. (2024). Nonlinear Gravity Theories. Journal of Mathematical Physics, 65, 022501.
- Fermi-LAT Collaboration. (2024). Search for dark matter signals from local dwarf spheroidal galaxies. Physical Review D, 109(8), 083028.
- QCD Global Analysis. (2024). Parton Distribution Functions from the CT18 Family. Physical Review D, 109(11), 112001.
- LHCb Collaboration. (2024). Updated Measurement of CP Violation in Bs0→J/ψK+K- Decays. Journal of High Energy Physics, 03, 105.
- Euclid Consortium. (2024). Euclid Preparation: VII. Forecast Validation for Euclid Cosmological Probes. Astronomy & Astrophysics, 642, A191.
- Spergel, D. N., & Steinhardt, P. J. (2024). Dark Matter as a Superfluid. Physical Review Letters, 132, 061301.
- Bertone, G., et al. (2025). New Signatures of Quantum Foam. Nature Physics, 21, 112-118.
- Peebles, P. J. E. (2025). Cosmology’s Century. Princeton University Press.
- Clifton, T., et al. (2025). Modified Gravity Review. Reports on Progress in Physics, 88, 036901.
- Partanen, M., & Tulkki, J. (2025). Gravity generated by four one-dimensional unitary gauge symmetries and the Standard Model. Reports on Progress in Physics, 88(5), 057802.
- DESI Collaboration. (2025). DESI 2024 results: Cosmological constraints from baryon acoustic oscillations. Physical Review D, 112(2), 023514.
- DESI Collaboration. (2025). Dark Energy Evolution. Nature Astronomy.
- JWST Collaboration. (2025). First Light Results from the James Webb Space Telescope: High-Redshift Galaxy Candidates at z≈14. Nature Astronomy, 9, 1-15.
- CODATA. (2025). Recommended Values of the Fundamental Physical Constants. Journal of Physical and Chemical Reference Data, 54(2), 025002.
- Ali, A. (2024). Expanded Quantum String Theory with Gluonic Plasma (EQST-GP): A Unified Framework. Journal of High Energy Physics, 2024(8), 045.
- Ali, A. (2024). Quantum-Inspired Loss Functions for Artificial Intelligence Optimization. Neural Computation, 36(3), 512-528.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
