Submitted:
16 October 2025
Posted:
17 October 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Synthetic Pathways to Psilocybin
Objectives
Materials and Methods
Data Sources and Search Strategy

Inclusion and Exclusion Criteria
Results
Study Selection
Psilocybin and AUD
- Psilocybin and alcohol consumption
- 2.
- Psilocybin and craving
- 3.
- Other targets of psilocybin
Adverse Effects of Psilocybin
Discussion
- -
- Sample reliability
- -
- Efficient control
- -
- Normalised tests
Perspectives
Conclusions
Appendix A. PHDD
Appendix B. Completed Clinical Trials
| Study | Year | n | Substance | Dose | Gender (% women) | Age (mean; SD) | Main Outcome | Adverse Events |
| Bogenschutz et al. | 2022 | 93 | psilocybin | 25 mg / 70 kg 25-40 mg / 70 kg |
44,2% | 46 [12] | Psilocybin administered in combination with psychotherapy produced robust decreases in percentage of heavy drinking days over and above those produced by active placebo and psychotherapy. | None. |
| Rieser et al. | 2022 | 37 | psilocybin | 25 mg | 38% | 37 [12] | A single dose of psilocybin combined with five psychotherapy sessions may not be sufficient to reduce relapse rates and alcohol use in severely affected AUD patients following withdrawal treatment. | 13 in the psilocybin and 7 in the placebo group |
| Pagni et al. | 2024 | 11 | psilocybin | 25 mg | 36% | 46 | Across both alcohol and emotional cues, psilocybin increased activity in the medial and lateral prefrontal cortex and left caudate, and decreased activity in the insular, motor, temporal, parietal, and occipital cortices, and cerebellum. | |
| Pagni et al. | 2025 | 84 | psilocybin | 25 mg 30-40 mg / 70 kg |
42% | 46 | Relative to the placebo group, the psilocybin group showed significant reductions in neuroticism and increases in extraversion and openness. | |
| Gold et al. | 2025 | 93 | psilocybin | unknown | 16% | 29 | Significant reduction in clinical opioid withdrawal symptoms and drug use following treatment | No clinically significant cardiovascular or other medical events occurred in this study |
| Luquiens et al. | 2025 | 30 | psilocybin | 25 mg | 43% | 50 | The psilocybin group showed significantly greater abstinent rate, reductions in percentage of drinking days and craving frequency. | 10 in the psilocybin and 6 in the control group |
References
- Witkiewitz, K.; Litten, R.Z.; Leggio, L. Advances in the science and treatment of alcohol use disorder. Sci Adv 2019, 5, eaax4043. [Google Scholar] [CrossRef]
- Rieser, N.M.; Bitar, R.; Halm, S.; Rossgoderer, C.; Gubser, L.P.; Thévenaz, M.; Kreis, Y.; von Rotz, R.; Nordt, C.; Visentini, M.; et al. Psilocybin-assisted therapy for relapse prevention in alcohol use disorder: a phase 2 randomized clinical trial. EClinicalMedicine 2025, 82, 103149. [Google Scholar] [CrossRef] [PubMed]
- Rieser, N.M.; Herdener, M.; Preller, K.H. Psychedelic-Assisted Therapy for Substance Use Disorders and Potential Mechanisms of Action. In Disruptive Psychopharmacology; Springer, Cham, 2021; pp. 187–211 ISBN 978-3-031-12184-5.
- Reiff, C.M.; Richman, E.E.; Nemeroff, C.B.; Carpenter, L.L.; Widge, A.S.; Rodriguez, C.I.; Kalin, N.H.; McDonald, W.M. ; the Work Group on Biomarkers and Novel Treatments, a Division of the American Psychiatric Association Council of Research Psychedelics and Psychedelic-Assisted Psychotherapy. Am J Psychiatry 2020, 177, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Bogenschutz, M.P.; Ross, S.; Bhatt, S.; Baron, T.; Forcehimes, A.A.; Laska, E.; Mennenga, S.E.; O’Donnell, K.; Owens, L.T.; Podrebarac, S.; et al. Percentage of Heavy Drinking Days Following Psilocybin-Assisted Psychotherapy vs Placebo in the Treatment of Adult Patients With Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2022, 79, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E.; Nichols, C.D. Chapter One - History of psychedelic drug science and molecular pharmacology. In International Review of Neurobiology; Nutt, D.J., Thurgur, H., Eds.; Psychedelics in Psychiatry; Academic Press, 2025; Vol. 181, pp. 3–43.
- Nichols, D.E.; Walter, H. The History of Psychedelics in Psychiatry. Pharmacopsychiatry 2020, 54, 151–166. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Goodwin, G.M. The Therapeutic Potential of Psychedelic Drugs: Past, Present, and Future. Neuropsychopharmacol 2017, 42, 2105–2113. [Google Scholar] [CrossRef]
- Serreau, R.; Terbeche, Y.; Rigourd, V. Pollutants in Breast Milk: A Scoping Review of the Most Recent Data in 2024. Healthcare (Basel) 2024, 12, 680. [Google Scholar] [CrossRef]
- Galdino, T.P.; Oliveira, L.C.; Luz, M.A.; Jesus, R.A.; Lima, E.P.N.; Torres, M.C.M.; Sivieri, K.; Afonso, V.I.; Delgado, J.M.P.Q.; Lima, A.G.B.; et al. Extraction Yields of Psilocybin and Psilocin: A Short Review of Current Methods and Their Implications. Pharmaceuticals 2025, 18, 380. [Google Scholar] [CrossRef]
- Kurzbaum, E.; Páleníček, T.; Shrchaton, A.; Azerrad, S.; Dekel, Y. Exploring Psilocybe cubensis Strains: Cultivation Techniques, Psychoactive Compounds, Genetics and Research Gaps. Journal of Fungi 2025, 11, 99. [Google Scholar] [CrossRef]
- Serreau, R.; Amirouche, A.; Benyamina, A.; Berteina-Raboin, S. A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe. Pharmaceuticals (Basel) 2022, 16, 40. [Google Scholar] [CrossRef]
- Hofmann, A.; Frey, A.; Ott, H.; Petr Zilka, T.; Troxler, F. [Elucidation of the structure and the synthesis of psilocybin]. Experientia 1958, 14, 397–399. [Google Scholar] [CrossRef]
- Hofmann, A.; Troxler, F. [Identification of psilocin]. Experientia 1959, 15, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Troxler, F.; Seemann, F.; Hofmann, A. Abwandlungsprodukte von Psilocybin und Psilocin. 2. Mitteilung über synthetische Indolverbindungen. Helvetica Chimica Acta 1959, 42, 2073–2103. [Google Scholar] [CrossRef]
- Nichols, D.E.; Frescas, S. Improvements to the Synthesis of Psilocybin and a Facile Method for Preparing the O-Acetyl Prodrug of Psilocin. Synthesis 1999, 1999, 935–938. [Google Scholar] [CrossRef]
- Shirota, O.; Hakamata, W.; Goda, Y. Concise large-scale synthesis of psilocin and psilocybin, principal hallucinogenic constituents of “magic mushroom. ” J Nat Prod 2003, 66, 885–887. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, A.M.; Meisenheimer, P.; Tarpley, G.; Kargbo, R.B. An Improved, Practical, and Scalable Five-Step Synthesis of Psilocybin. Synthesis 2020, 52, 688–694. [Google Scholar] [CrossRef]
- Kargbo, R.B.; Sherwood, A.; Walker, A.; Cozzi, N.V.; Dagger, R.E.; Sable, J.; O’Hern, K.; Kaylo, K.; Patterson, T.; Tarpley, G.; et al. Direct Phosphorylation of Psilocin Enables Optimized cGMP Kilogram-Scale Manufacture of Psilocybin. ACS Omega 2020, 5, 16959–16966. [Google Scholar] [CrossRef] [PubMed]
- Fricke, J.; Kargbo, R.; Regestein, L.; Lenz, C.; Peschel, G.; Rosenbaum, M.A.; Sherwood, A.; Hoffmeister, D. Scalable Hybrid Synthetic/Biocatalytic Route to Psilocybin. Chemistry 2020, 26, 8281–8285. [Google Scholar] [CrossRef]
- Wurst, F.M.; Skipper, G.E.; Weinmann, W. Ethyl glucuronide--the direct ethanol metabolite on the threshold from science to routine use. Addiction 2003, 98 Suppl 2, 51–61. [Google Scholar] [CrossRef]
- Pagni, B.A.; Petridis, P.D.; Podrebarac, S.K.; Grinband, J.; Claus, E.D.; Bogenschutz, M.P. Psilocybin-induced changes in neural reactivity to alcohol and emotional cues in patients with alcohol use disorder: an fMRI pilot study. Sci Rep 2024, 14, 3159. [Google Scholar] [CrossRef]
- Hamano, H.; Ikeda, Y.; Goda, M.; Fukushima, K.; Kishi, S.; Chuma, M.; Yamashita, M.; Niimura, T.; Takechi, K.; Imanishi, M.; et al. Diphenhydramine may be a preventive medicine against cisplatin-induced kidney toxicity. Kidney Int 2021, 99, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, H.R. Overview of Alcohol Use Disorder. AJP 2023, 180, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Luquiens, A.; Belahda, D.; Graux, C.; Igounenc, N.; Serrand, C.; Rochefort, P.; Mura, T.; Sergent, F. Psilocybin in alcohol use disorder and comorbid depressive symptoms: Results from a feasibility randomized clinical trial. Addiction 2025. [Google Scholar] [CrossRef] [PubMed]
- Vollstädt-Klein, S.; Leménager, T.; Jorde, A.; Kiefer, F.; Nakovics, H. Development and validation of the craving automated scale for alcohol. Alcohol Clin Exp Res 2015, 39, 333–342. [Google Scholar] [CrossRef]
- Wagner, E.F.; Baldwin, J.A. Recovery in Special Emphasis Populations. Alcohol Res 2020, 40, 05. [Google Scholar] [CrossRef]
- Pagni, B.A.; Zeifman, R.J.; Mennenga, S.E.; Carrithers, B.M.; Goldway, N.; Bhatt, S.; O’Donnell, K.C.; Ross, S.; Bogenschutz, M.P. Multidimensional Personality Changes Following Psilocybin-Assisted Therapy in Patients With Alcohol Use Disorder: Results From a Double-Blind, Placebo-Controlled Clinical Trial. Am J Psychiatry 2025, 182, 114–125. [Google Scholar] [CrossRef]
- Gold, N.D.; Pagni, B.A.; Petridis, P.D.; Bogenschutz, M.P. Psilocybin-Assisted Therapy May Enhance Conservation Values in Patients with Alcohol Use Disorder. Psychedelic Med (New Rochelle) 2025, 3, 31–40. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Roseman, L.; Bolstridge, M.; Demetriou, L.; Pannekoek, J.N.; Wall, M.B.; Tanner, M.; Kaelen, M.; McGonigle, J.; Murphy, K.; et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep 2017, 7, 13187. [Google Scholar] [CrossRef]
- Popovic, D.; Schiltz, K.; Falkai, P.; Koutsouleris, N. [Not Available]. Fortschr Neurol Psychiatr 2020, 88, 778–785. [Google Scholar] [CrossRef]
- Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F.S. Recreational Use, Analysis and Toxicity of Tryptamines. Curr Neuropharmacol 2015, 13, 26–46. [Google Scholar] [CrossRef]
- Reinwald, J.R.; Schmitz, C.N.; Skorodumov, I.; Kuchar, M.; Weber-Fahr, W.; Spanagel, R.; Meinhardt, M.W. Psilocybin-induced default mode network hypoconnectivity is blunted in alcohol-dependent rats. Transl Psychiatry 2023, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Alper, K.; Dong, B.; Shah, R.; Sershen, H.; Vinod, K.Y. LSD Administered as a Single Dose Reduces Alcohol Consumption in C57BL/6J Mice. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, M.W.; Güngör, C.; Skorodumov, I.; Mertens, L.J.; Spanagel, R. Psilocybin and LSD have no long-lasting effects in an animal model of alcohol relapse. Neuropsychopharmacol. 2020, 45, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, R.R.; Johnson, M.W.; Carducci, M.A.; Umbricht, A.; Richards, W.A.; Richards, B.D.; Cosimano, M.P.; Klinedinst, M.A. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J Psychopharmacol 2016, 30, 1181–1197. [Google Scholar] [CrossRef]
- Griffiths, R.R.; Richards, W.A.; McCann, U.; Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology 2006, 187, 268–283. [Google Scholar] [CrossRef]
- Ross, S.; Bossis, A.; Guss, J.; Agin-Liebes, G.; Malone, T.; Cohen, B.; Mennenga, S.E.; Belser, A.; Kalliontzi, K.; Babb, J.; et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol 2016, 30, 1165–1180. [Google Scholar] [CrossRef]
- Falk, D.E.; O’Malley, S.S.; Witkiewitz, K.; Anton, R.F.; Litten, R.Z.; Slater, M.; Kranzler, H.R.; Mann, K.F.; Hasin, D.S.; Johnson, B.; et al. Evaluation of Drinking Risk Levels as Outcomes in Alcohol Pharmacotherapy Trials: A Secondary Analysis of 3 Randomized Clinical Trials. JAMA Psychiatry 2019, 76, 374–381. [Google Scholar] [CrossRef]
- Committee, T.C.I.S. Design of the cardiac insufficiency bisoprolol study II (OBIS II). Fundamental & Clinical Pharmacology 1997, 11, 138–142. [Google Scholar] [CrossRef]
- The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. The Lancet 1999, 353, 9–13. [CrossRef]
- Funck-Brentano, C.; Lancar, R.; Hansen, S.; Hohnloser, S.H.; Vanoli, E. Predictors of medical events and of their competitive interactions in the Cardiac Insufficiency Bisoprolol Study 2 (CIBIS-2). American Heart Journal 2001, 142, 989–997. [Google Scholar] [CrossRef]
- Willenheimer, R.; Erdmann, E.; Follath, F.; Krum, H.; Ponikowski, P.; Silke, B.; van Veldhuisen, D.J.; van de Ven, L.; Verkenne, P.; Lechat, P.; et al. Comparison of treatment initiation with bisoprolol vs. enalapril in chronic heart failure patients: rationale and design of CIBIS-III. European Journal of Heart Failure 2004, 6, 493–500. [Google Scholar] [CrossRef]
- Willenheimer, R.; van Veldhuisen, D.J.; Silke, B.; Erdmann, E.; Follath, F.; Krum, H.; Ponikowski, P.; Skene, A.; van de Ven, L.; Verkenne, P.; et al. Effect on Survival and Hospitalization of Initiating Treatment for Chronic Heart Failure With Bisoprolol Followed by Enalapril, as Compared With the Opposite Sequence. Circulation 2005, 112, 2426–2435. [Google Scholar] [CrossRef]
- Atherton, O.E.; Willroth, E.C.; Graham, E.K.; Luo, J.; Mroczek, D.K.; Lewis-Thames, M.W. Rural–urban differences in personality traits and well-being in adulthood. Journal of Personality 2024, 92, 73–87. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
