Submitted:
15 October 2025
Posted:
16 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
References
- Armoiry, X.; Sturt, J.; Phelps, E.E.; Walker, C.-L.; Court, R.; Taggart, F.; Sutcliffe, P.; Griffiths, F.; Atherton, H. Digital Clinical Communication for Families and Caregivers of Children or Young People With Short- or Long-Term Conditions: Rapid Review. J Med Internet Res 2018, 20, e5. [Google Scholar] [CrossRef]
- Bernild, C.; Missel, M.; Berg, S. COVID-19: Lessons Learned About Communication Between Family Members and Healthcare Professionals—A Qualitative Study on How Close Family Members of Patients Hospitalized in Intensive Care Unit With COVID-19 Experienced Communication and Collaboration With Healthcare Professionals. INQUIRY: The Journal of Health Care Organization, Provision, and Financing 2021, 58, 00469580211060005. [Google Scholar] [CrossRef] [PubMed]
- Stamer, T.; Steinhäuser, J.; Flägel, K. Artificial Intelligence Supporting the Training of Communication Skills in the Education of Health Care Professions: Scoping Review. J Med Internet Res 2023, 25, e43311. [Google Scholar] [CrossRef]
- Bernild, C.; Missel, M.; Berg, S. COVID-19: Lessons Learned About Communication Between Family Members and Healthcare Professionals-A Qualitative Study on How Close Family Members of Patients Hospitalized in Intensive Care Unit With COVID-19 Experienced Communication and Collaboration With Healthcare Professionals. Inquiry: a journal of medical care organization, provision and financing 2021, 58, 469580211060005. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Jeong, S.; Paeng, H.; Yoo, S.; Son, M.H. Communication challenges and experiences between parents and providers in South Korean paediatric emergency departments: a qualitative study to define AI-assisted communication agents. BMJ Open 2025, 15, e094748. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Tsai, H.H.; Shieh, W.Y.; Weng, L.C.; Huang, H.L.; Liu, C.Y. Expectations of AI-supported communication in nurse-family interactions in nursing homes: Navigating ambiguities in role transformation. Digital health 2025, 11, 20552076251362385. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, B.; Nilsson, C.; Zotterman, D.; Söderberg, S.; Skär, L. Using Information and Communication Technology in Home Care for Communication between Patients, Family Members, and Healthcare Professionals: A Systematic Review. International journal of telemedicine and applications 2013, 2013, 461829. [Google Scholar] [CrossRef]
- Cermak, C.A.; Read, H.; Jeffs, L. Health Care Professionals’ Experiences With Using Information and Communication Technologies in Patient Care During the COVID-19 Pandemic: Qualitative Study. JMIR Form Res 2024, 8, e53056. [Google Scholar] [CrossRef]
- Cherrez-Ojeda, I.; Vanegas, E.; Felix, M.; Mata, V.L.; Jiménez, F.M.; Sanchez, M.; Simancas-Racines, D.; Cherrez, S.; Gavilanes, A.W.D.; Eschrich, J.; et al. Frequency of Use, Perceptions and Barriers of Information and Communication Technologies Among Latin American Physicians: An Ecuadorian Cross-Sectional Study. Journal of multidisciplinary healthcare 2020, 13, 259–269. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.A.; Alajlani, M.; Ali, N.; Denecke, K.; Bewick, B.M.; Househ, M. Perceptions and Opinions of Patients About Mental Health Chatbots: Scoping Review. J Med Internet Res 2021, 23, e17828. [Google Scholar] [CrossRef]
- Hermansen, A.; Regier, D.A.; Pollard, S. Developing Data Sharing Models for Health Research with Real-World Data: A Scoping Review of Patient and Public Preferences. Journal of Medical Systems 2022, 46, 86. [Google Scholar] [CrossRef]
- Xiberta, P.; Boada, I.; Thió-Henestrosa, S.; Ortuño, P.; Pedraza, S. Introducing Online Continuing Education in Radiology for General Practitioners. Journal of Medical Systems 2020, 44, 55. [Google Scholar] [CrossRef]
- Chen, Y.C.; Li, T.C.; Chang, Y.W.; Liao, H.C.; Huang, H.M.; Huang, L.C. Exploring the relationships among professional quality of life, personal quality of life and resignation in the nursing profession. J Adv Nurs 2021, 77, 2689–2699. [Google Scholar] [CrossRef]
- Li, A.; Jiao, D.; Liu, X.; Zhu, T. A Comparison of the Psycholinguistic Styles of Schizophrenia-Related Stigma and Depression-Related Stigma on Social Media: Content Analysis. J Med Internet Res 2020, 22, e16470. [Google Scholar] [CrossRef] [PubMed]
- Moreno Alestedt, L.T.; Vaca Morales, S.M.; Martínez Changuan, D.I.; Suasnavas Bermúdez, P.R.; Cárdenas Moncayo, I.M.; Gómez García, A.R. Diseño y Validación de un Cuestionario para el Diagnóstico de Riesgos Psicosociales en Empresas Ecuatorianas. Ciencia & trabajo 2018, 20, 160–168. [Google Scholar] [CrossRef]
- García-García, J.A.; Reding-Bernal, A.; López-Alvarenga, J.C. Cálculo del tamaño de la muestra en investigación en educación médica. Investigación en Educación Médica 2013, 2, 217–224. [Google Scholar] [CrossRef]
- Rahman, M.M. Sample Size Determination for Survey Research and Non-Probability Sampling Techniques: A Review and Set of Recommendations. 2023 2023, 11, 21. [Google Scholar]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Gaskin, C.J.; Happell, B. On exploratory factor analysis: a review of recent evidence, an assessment of current practice, and recommendations for future use. International journal of nursing studies 2014, 51, 511–521. [Google Scholar] [CrossRef]
- Harerimana, A.; Mtshali, N.G. Using Exploratory and Confirmatory Factor Analysis to understand the role of technology in nursing education. Nurse Education Today 2020, 92, 104490. [Google Scholar] [CrossRef]
- Izquierdo, I.; Olea, J.; Abad, F.J. Exploratory factor analysis in validation studies: uses and recommendations. Psicothema 2014, 26, 395–400. [Google Scholar] [CrossRef]
- Chanchalani, G.; Arora, N.; Nasa, P.; Sodhi, K.; Bahrani, M.J.A.; Tayar, A.A.; Hashmi, M.; Jaiswal, V.; Kantor, S.; Lopa, A.J.; et al. Visiting and Communication Policy in Intensive Care Units.
- during COVID-19 Pandemic: A Cross-sectional Survey from.
- South Asia and the Middle East. Indian Journal of Critical Care Medicine 2022, 28. [CrossRef]
- Jones, X.M.; Zimba, O.; Gupta, L. Informed Consent for Scholarly Articles during the COVID-19 Pandemic. Journal of Korean medical science 2021, 36, e31. [Google Scholar] [CrossRef] [PubMed]
- Mundial, A.M. Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos. Available online: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/ (accessed on 09/19/2023).
- López Luna, J.F.; Armendáriz Mireles, E.N.; Nuño Maganda, M.A.; Herrera Rivas, H.; Machucho Cadena, R.; Hernández Almazán, J.A. Design and validation of a preliminary instrument to contextualize interactions through information technologies of health professionals. 2024, 30, 14604582241259323. [Google Scholar] [CrossRef] [PubMed]
- Alwan, K.; Awoke, T.; Tilahun, B. Knowledge and Utilization of Computers Among Health Professionals in a Developing Country: A Cross-Sectional Study. JMIR human factors 2015, 2, e4. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, C.M.; Van Hulle, J.M.; McAlearney, A.S.; Huerta, T.R. Odds of talking to healthcare providers as the initial source of healthcare information: updated cross-sectional results from the Health Information National Trends Survey (HINTS). BMC Family Practice 2018, 19, 146. [Google Scholar] [CrossRef]
- Mensah, N.K.; Adzakpah, G.; Kissi, J.; Abdulai, K.; Taylor-Abdulai, H.; Johnson, S.B.; Opoku, C.; Hallo, C.; Boadu, R.O. Health professionals’ perceptions of electronic health records system: a mixed method study in Ghana. BMC Medical Informatics and Decision Making 2024, 24, 254. [Google Scholar] [CrossRef]
- Goldfarb, G.; Nasanovsky, J.; Krynski, L.; Ciancaglini, A.; García Bournissen, F. Use of information and communication technologies by argentine pediatricians. Archivos argentinos de pediatria 2019, 117, S264–s276. [Google Scholar] [CrossRef]
- Globus, O.; Leibovitch, L.; Maayan-Metzger, A.; Schushan-Eisen, I.; Morag, I.; Mazkereth, R.; Glasser, S.; Kaplan, G.; Strauss, T. The use of short message services (SMS) to provide medical updating to parents in the NICU. Journal of perinatology: official journal of the California Perinatal Association 2016, 36, 739–743. [Google Scholar] [CrossRef]
- Ozcelik, H.; Erdogan, N. Relationship Between the Needs of Turkish Relatives of Patients Admitted to an Intensive Care Unit and Their Coping Styles. 2022, 85, 990–1006. [Google Scholar] [CrossRef]
- Velasco Bueno, J.M.; Alonso-Ovies, A.; Heras La Calle, G.; Zaforteza Lallemand, C. Principales demandas informativas de los familiares de pacientes ingresados en Unidades de Cuidados Intensivos. Medicina Intensiva 2018, 42, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Manias, E.; Bucknall, T.; Wickramasinghe, N.; Gray, K.; Schaffer, J.; Rosenfeld, E. Patient and family engagement in communicating with electronic medical records in hospitals: A systematic review. International journal of medical informatics 2020, 134, 104036. [Google Scholar] [CrossRef]
- Siegal, G.; Dagan, E.; Wolf, M.; Duvdevani, S.; Alon, E.E. Medical Information Exchange: Pattern of Global Mobile Messenger Usage among Otolaryngologists. Otolaryngology–Head and Neck Surgery 2016, 155, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Ciancaglini, A.; Nuñez, J.; Jaitt, M.; Otero, P.; Goldfarb, G. The electronic medical record in pediatrics: functionalities and best use practices. Archivos argentinos de pediatria 2021, 119, S236–s245. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: transforming the practice of medicine. Future healthcare journal 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.P.; Senadeera, M.; Jacobs, S.; Coghlan, S.; Le, V. Trust and medical AI: the challenges we face and the expertise needed to overcome them. Journal of the American Medical Informatics Association: JAMIA 2021, 28, 890–894. [Google Scholar] [CrossRef]



| Demographic data | Value | Count | Percentage |
|---|---|---|---|
| Sex | Man | 19 | 37.30% |
| Woman | 32 | 62.70% | |
| Total | 51 | 100.00% | |
| Age | From 18 to 29 years old | 6 | 11.80% |
| From 30 to 39 years old | 19 | 37.30% | |
| From 40 to 49 years old | 15 | 29.40% | |
| From 50 to 59 years old | 8 | 15.70% | |
| From 60 to 69 years old | 2 | 3.90% | |
| Over 69 years | 1 | 2.00% | |
| Total | 51 | 100.00% | |
| Place of residence | Rural | 2 | 3.90% |
| Urban | 49 | 96.1% | |
| Other | 0 | 0.00% | |
| Total | 51 | 100.00% | |
| Profession | Social worker | 0 | 0.00% |
| Nurse | 5 | 9.80% | |
| Specialist doctor | 19 | 37.30% | |
| Resident doctor | 10 | 19.60% | |
| Psychologist | 12 | 23.50% | |
| Nutritionist | 3 | 5.90% | |
| Dentist | 0 | 0.00% | |
| Other | 2 | 3.90% | |
| Total | 51 | 100.0% | |
| Area or department | Neonatal intensive care unit | 6 | 11.80% |
| Pediatric intensive care unit | 4 | 7.80% | |
| Hospitalization | 12 | 23.50% | |
| Emergency | 6 | 11.80% | |
| Surgery | 0 | 0.00% | |
| Oncology and hematology | 10 | 19.60% | |
| Administrative | 1 | 2.00% | |
| Other | 12 | 23.50% | |
| Total | 51 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
