Submitted:
14 October 2025
Posted:
15 October 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Sampling and Environmental Parameters
2.2. Laboratory Analyses on Benthic Invertebrates
2.3. Indices and Statistical Analyses
3. Results
3.1. Benthic Invertebrates: Abundance, Diversity and Water Quality Indices
3.2. Benthic Invertebrates: Main Drivers for Distribution and Diversity
3.3. Mitigation Strategies Anchored in Key Findings
4. Discussion
4.1. Urban Stream Syndrome Indicated by Benthic Invertebrates
4.2. Current State of the Someșul Mic River in Cluj-Napoca and Directions for Mitigation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BGI | Blue-Green Infrastructure |
| EBI | Extensive Biotic Index |
| EPT | Ephemeroptera, Plecoptera, Trichoptera |
| FDis | Functional Dispersion |
| FDiv | Functional Divergence |
| FDR | False Discovery Rate |
| FEve | Functional Evenness |
| FFG | Functional Feeding Groups |
| FRic | Functional Richness |
| ID | Index of Dominance |
| MNWH-AR | Modified New Walley Hawkes, Abundance Related |
| MNWH-PO | Modified New Walley Hawkes, Presence-Only |
| OCH | Oligochaeta, Chironomidae |
| RaoQ | Rao’s Quadratic Entropy |
| SD | Standard deviation |
| USS | Urban Stream Syndrome |
References
- Palmer, M.; Ruhi, A. Linkages between Flow Regime, Biota, and Ecosystem Processes: Implications for River Restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef]
- Mishra, R.R.; Saxena, S. Cities and Rivers: A Symbiotic Relationship. In Managing Urban Rivers; Elsevier, 2024; pp 3–24. [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Ferreira, A.J.D. Degradation in Urban Areas. Current Opinion in Environmental Science & Health 2018, 5, 19–25. [Google Scholar] [CrossRef]
- Barles, S. Urban Metabolism and River Systems: An Historical Perspective – Paris and the Seine, 1790–1970. Hydrol. Earth Syst. Sci. 2007, 11, 1757–1769. [Google Scholar] [CrossRef]
- Steele, M.K.; Heffernan, J.B. Morphological Characteristics of Urban Water Bodies: Mechanisms of Change and Implications for Ecosystem Function. Ecological Applications 2014, 24, 1070–1084. [Google Scholar] [CrossRef]
- Gurnell, A.; Lee, M.; Souch, C. Urban Rivers: Hydrology, Geomorphology, Ecology and Opportunities for Change. Geography Compass 2007, 1, 1118–1137. [Google Scholar] [CrossRef]
- Bălteanu, D.; Dogaru, D. Geographical Perspectives on Human-Environment Relationships and Anthropic Pressure Indicators. Romanian Journal of Geography 2011, 55, 69–80. [Google Scholar]
- Siegel, F.R. Introduction. In Cities and Mega-Cities; SpringerBriefs in Geography; Springer International Publishing: Cham, 2019. [Google Scholar] [CrossRef]
- Cattaneo, A.; Nelson, A.; McMenomy, T. Global Mapping of Urban–Rural Catchment Areas Reveals Unequal Access to Services. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2011990118. [Google Scholar] [CrossRef]
- Gracias, J.S.; Parnell, G.S.; Specking, E.; Pohl, E.A.; Buchanan, R. Smart Cities—A Structured Literature Review. Smart Cities 2023, 6, 1719–1743. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Choppali, U.; Kougianos, E. Everything You Wanted to Know about Smart Cities: The Internet of Things Is the Backbone. IEEE Consumer Electron. Mag. 2016, 5, 60–70. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.; La Sorte, F.A. Cities as Sanctuaries. Frontiers in Ecol & Environ 2023, 21, 251–259. [Google Scholar] [CrossRef]
- Kowarik, I.; Fischer, L.K.; Haase, D.; Kabisch, N.; Kleinschroth, F.; Konijnendijk, C.; Straka, T.M.; Von Haaren, C. Promoting Urban Biodiversity for the Benefit of People and Nature. Nat. Rev. Biodivers. 2025, 1, 214–232. [Google Scholar] [CrossRef]
- Bagheri, A. Blue/Green Infrastructures: A Dual Solution for Urban Heat Island and Urban Flooding. Environ. Rev. 2025, 33, 1–14. [Google Scholar] [CrossRef]
- Liao, K.-H.; Deng, S.; Tan, P.Y. Blue-Green Infrastructure: New Frontier for Sustainable Urban Stormwater Management. In Greening Cities; Tan, P.Y., Jim, C.Y., Eds.; Advances in 21st Century Human Settlements; Springer Singapore: Singapore, 2017. [Google Scholar] [CrossRef]
- Iojă, C.I.; Badiu, D.L.; Haase, D.; Hossu, A.C.; Niță, M.R. How about Water? Urban Blue Infrastructure Management in Romania. Cities 2021, 110, 103084. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Zerega, A.; Simões, N.E.; Feio, M.J. How to Improve the Biological Quality of Urban Streams? Reviewing the Effect of Hydromorphological Alterations and Rehabilitation Measures on Benthic Invertebrates. Water 2021, 13, 2087. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. Journal of the North American Benthological Society 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Hughes, R.M.; Dunham, S.; Maas-Hebner, K.G.; Yeakley, J.A.; Schreck, C.; Harte, M.; Molina, N.; Shock, C.C.; Kaczynski, V.W.; Schaeffer, J. A Review of Urban Water Body Challenges and Approaches: (1) Rehabilitation and Remediation. Fisheries 2014, 39, 18–29. [Google Scholar] [CrossRef]
- Booth, D.B.; Roy, A.H.; Smith, B.; Capps, K.A. Global Perspectives on the Urban Stream Syndrome. Freshwater Science 2016, 35, 412–420. [Google Scholar] [CrossRef]
- Richardson, M.; Soloviev, M. The Urban River Syndrome: Achieving Sustainability Against a Backdrop of Accelerating Change. IJERPH 2021, 18, 6406. [Google Scholar] [CrossRef] [PubMed]
- Ranta, E.; Vidal-Abarca, M.R.; Calapez, A.R.; Feio, M.J. Urban Stream Assessment System (UsAs): An Integrative Tool to Assess Biodiversity, Ecosystem Functions and Services. Ecological Indicators 2021, 121, 106980. [Google Scholar] [CrossRef]
- Zacharias, I.; Liakou, P.; Biliani, I. A Review of the Status of Surface European Waters Twenty Years after WFD Introduction. Environ. Process. 2020, 7, 1023–1039. [Google Scholar] [CrossRef]
- Vitecek, S.; Johnson, R.; Poikane, S. Assessing the Ecological Status of European Rivers and Lakes Using Benthic Invertebrate Communities: A Practical Catalogue of Metrics and Methods. Water 2021, 13, 346. [Google Scholar] [CrossRef]
- Feio, M.J.; Hughes, R.M.; Serra, S.R.Q.; Nichols, S.J.; Kefford, B.J.; Lintermans, M.; Robinson, W.; Odume, O.N.; Callisto, M.; Macedo, D.R.; et al. Fish and Macroinvertebrate Assemblages Reveal Extensive Degradation of the World’s Rivers. Global Change Biology 2023, 29, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.D.; Castillo, M.M.; Capps, K.A. Trophic Relationships. In Stream ecology: structure and function of running waters; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Etemi, F.Z.; Bytyçi, P.; Ismaili, M.; Fetoshi, O.; Ymeri, P.; Shala–Abazi, A.; Muja-Bajraktari, N.; Czikkely, M. The Use of Macroinvertebrate Based Biotic Indices and Diversity Indices to Evaluate the Water Quality of Lepenci River Basin in Kosovo. Journal of Environmental Science and Health, Part A 2020, 55, 748–758. [Google Scholar] [CrossRef]
- Etriieki, A.M.O.; Küçükbasmacı, İ. Using Macroinvertebrate-based Biotic Indices and Diversity Indices to Assess Water Quality: A Case Study on the Karasu Stream (Kastamonu, Türkiye). Ecohydrology 2024, 17, e2627. [Google Scholar] [CrossRef]
- Calapez, R.A.; Serra, S.R.Q.; Mortágua, A.; Almeida, S.F.P.; João Feio, M. Unveiling Relationships between Ecosystem Services and Aquatic Communities in Urban Streams. Ecological Indicators 2023, 153, 110433. [Google Scholar] [CrossRef]
- Bonada, N.; Prat, N.; Resh, V.H.; Statzner, B. DEVELOPMENTS IN AQUATIC INSECT BIOMONITORING: A Comparative Analysis of Recent Approaches. Annu. Rev. Entomol. 2006, 51, 495–523. [Google Scholar] [CrossRef]
- Carrasco-Badajoz, C.; Rayme-Chalco, C.; Arana-Maestre, J.; Álvarez-Tolentino, D.; Ayala-Sulca, Y.; Sanchez-Peña, M. Aquatic Macroinvertebrate Trophic Guilds, Functional Feeding Groups, and Water Quality of an Andean Urban River. Front. Environ. Sci. 2022, 10, 1003207. [Google Scholar] [CrossRef]
- Ofogh, E.A.R.; Dorche, E.E.; Birk, S.; Fathi, P.; Shahraki, Z.M.; Bruder, A. Improving the Performance of Macroinvertebrate Based Multi-Metric Indices by Incorporating Functional Traits and an Index Performance-Driven Approach. Science of The Total Environment 2024, 931, 172850. [Google Scholar] [CrossRef]
- Perşoiu, I.; Rădoane, M. Spatial and Temporal Controls on Historical Channel Responses – Study of an Atypical Case: Someşu Mic River, Romania. Earth Surf Processes Landf 2011, 36, 1391–1409. [Google Scholar] [CrossRef]
- Dolean, B.-E.; Bilașco, Ș.; Petrea, D.; Moldovan, C.; Vescan, I.; Roșca, S.; Fodorean, I. Evaluation of the Built-Up Area Dynamics in the First Ring of Cluj-Napoca Metropolitan Area, Romania by Semi-Automatic GIS Analysis of Landsat Satellite Images. Applied Sciences 2020, 10, 7722. [Google Scholar] [CrossRef]
- Suvărășan, O.; Roșian, G.; Martonoș, I.M. Someşul Mic River (Cluj County, Romania) Water Quality Assessment under Anthropogenic Impact. Studia UBB Ambientum 2020, 87–96. [Google Scholar] [CrossRef]
- Barhoumi, B.; Beldean-Galea, M.S.; Al-Rawabdeh, A.M.; Roba, C.; Martonos, I.M.; Bălc, R.; Kahlaoui, M.; Touil, S.; Tedetti, M.; Driss, M.R.; et al. Occurrence, Distribution and Ecological Risk of Trace Metals and Organic Pollutants in Surface Sediments from a Southeastern European River (Someşu Mic River, Romania). Science of The Total Environment 2019, 660, 660–676. [Google Scholar] [CrossRef]
- Gheorghe, S.; Stoica, C.; Harabagiu, A.M.; Neidoni, D.-G.; Mighiu, E.D.; Bumbac, C.; Ionescu, I.A.; Pantazi, A.; Enache, L.-B.; Enachescu, M. Laboratory Assessment for Determining Microplastics in Freshwater Systems—Characterization and Identification along the Somesul Mic River. Water 2024, 16, 233. [Google Scholar] [CrossRef]
- Cîmpean, M. Evaluarea Influenţei Antropice Asupra Calităţii Apei Râului Someşul Mic Şi a Afluenţilor Săi Utilizând Indicele Biotic Extins (I.B.E.). [Assessment of Human Impact on the Water Quality of the Someșul Mic River and Its Tributaries Using the Extended Biotic Index (EBI), in Romanian]. Brukenthal Museum Studies & Communications, Natural Sciences 2004, 29, 179–190. [Google Scholar]
- Avram, A.; Cîmpean, M.; Jurcă, A.; Timuş, N. Water Quality Assessment Using Biotic Indices Based on Benthic Macroinvertebrates in the Someşul Mic Catchment Area. Studia UBB Biologia 2009, 54, 61–70. [Google Scholar]
- Florescu, H.M.; Cîmpean, M.; Momeu, L.; Leonte, L.; Bodea, D.; Battes, K.P. Ecological Analyses on Benthic Diatom and Invertebrate Communities from the Someșul Mic Catchment Area (Transylvania, Romania). 2015, 60, 69–87.
- Cîmpean, M. Studiul taxonomic şi ecologic asupra comunităţilor de acarieni acvatici (Acari Hydrachnidia)din bazinul de drenaj al râului Someşul Mic şi rolul lor ca indicatori ai calităţii apei [Taxonomic and ecological study of water mites (Acari, Hydrachnidia) from the Someșul Mic River basin and their role as water quality indicators, in Romanian]; Presa Universitară Clujeană: Cluj-Napoca, 2018. [Google Scholar]
- Nagy, A.A.; Erős, N.; Imecs, I.; Bóné, G.; Fülöp, A.; Pap, P.L. Distribution and Diversity of Fishes and Lampreys in Transylvania (Romania): A Complete Survey and Suggestions for New Protected Areas. ZK 2023, 1166, 351–373. [Google Scholar] [CrossRef] [PubMed]
- Lukács, J. Clujul renascentist. Aspecte privind viața cotidiană în Cluj în secolul al XVI-lea și al XVII-lea. Alimentația și gastronomia [Renaissance Cluj: Aspects of Daily Life in the 16th and 17th Centuries — Food and Gastronomy, in Romanian]. PhD Thesis, Babeș-Bolyai University, Faculty of History and Phylosophy, Cluj-Napoca Romania, 2012. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System, 2024. http://qgis.org.
- Paisley, M.F.; Trigg, D.J.; Walley, W.J. Revision of the Biological Monitoring Working Party (BMWP) Score System: Derivation of Present-only and Abundance-related Scores from Field Data. River Research & Apps 2014, 30, 887–904. [Google Scholar] [CrossRef]
- Callisto, M.; Mugnai, R.; Castro, D.M.P.; Linares, M.S. Sampling Methods for Aquatic Insects. In Measuring Arthropod Biodiversity; Santos, J.C., Fernandes, G.W., Eds.; Springer International Publishing: Cham, 2021. [Google Scholar] [CrossRef]
- Kriska, G. Freshwater Invertebrates in Central Europe: A Field Guide; Springer International Publishing: Cham, 2022. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Gerecke, R.; Martin, P. The Biology and Ecology of Lotic Water Mites (Hydrachnidia). Freshwater Biology 2000, 44, 47–62. [Google Scholar] [CrossRef]
- Mihuc, T.B. The Functional Trophic Role of Lotic Primary Consumers: Generalist versus Specialist Strategies. Freshwater Biology 1997, 37, 455–462. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, 2001. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. Trophic Relationships of Macroinvertebrates. In Methods in Stream Ecology, Volume 1; Elsevier, 2017; pp 413–433. [CrossRef]
- Hébert, M.; Beisner, B.E.; Maranger, R. A Meta-analysis of Zooplankton Functional Traits Influencing Ecosystem Function. Ecology 2016, 97, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, S.J.; Wolf, L.L. Dominance and the Niche in Ecological Systems: Dominance Is an Expression of Ecological Inequalities Arising out of Different Exploitation Strategies. Science 1970, 167, 131–139. [Google Scholar] [CrossRef]
- De Vries, J.; Kraak, M.H.S.; Verdonschot, P.F.M. Complementarity of Community Indices in Characterizing Aquatic Macroinvertebrate Assemblages. Global Ecology and Conservation 2023, 46, e02604. [Google Scholar] [CrossRef]
- Jost, L. Entropy and Diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Bo, T.; Doretto, A.; Laini, A.; Bona, F.; Fenoglio, S. Biomonitoring with Macroinvertebrate Communities in Italy: What Happened to Our Past and What Is the Future? J Limnol 2016, 76. [Google Scholar] [CrossRef]
- Gower, J.C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 1971, 27, 857. [Google Scholar] [CrossRef]
- Scrucca, L. GA : A Package for Genetic Algorithms in R. J. Stat. Soft. 2013, 53. [Google Scholar] [CrossRef]
- De Bello, F.; Botta-Dukát, Z.; Lepš, J.; Fibich, P. Towards a More Balanced Combination of Multiple Traits When Computing Functional Differences between Species. Methods Ecol Evol 2021, 12, 443–448. [Google Scholar] [CrossRef]
- De Bello, F.; Carmona, C.P.; Dias, A.T.C.; Götzenberger, L.; Moretti, M.; Berg, M.P. Handbook of Trait-Based Ecology: From Theory to R Tools, 1st ed.; Cambridge University Press, 2021. [CrossRef]
- Mammola, S.; Carmona, C.P.; Guillerme, T.; Cardoso, P. Concepts and Applications in Functional Diversity. Functional Ecology 2021, 35, 1869–1885. [Google Scholar] [CrossRef]
- Cummins, K.W.; Wilzbach, M.; Kolouch, B.; Merritt, R. Estimating Macroinvertebrate Biomass for Stream Ecosystem Assessments. IJERPH 2022, 19, 3240. [Google Scholar] [CrossRef] [PubMed]
- ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0., 2012.
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5, Second edition.; Cambridge University Press: Cambridge, United Kingdom ; New York, 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria., 2025. https://www.R-project.org.
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package; 2025.
- Peterson, B.G.; Carl, P. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis; 2024.
- Haines-Young, R. Common Internatonal Classificaton of Ecosystem Services (CICES) V5.2 and Guidance on the Applicaton of the Revised Structure, 2023. www.cices.eu (accessed 2025-09-25).
- Yeakley, A.J.; Ervin, D.; Chang, H.; Granek, E.F.; Dujon, V.; Shandas, V.; Brown, D. Ecosystem Services of Streams and Rivers. In River Science; Gilvear, D.J., Greenwood, M.T., Thoms, M.C., Wood, P.J., Eds.; Wiley, 2016; pp 335–352. [CrossRef]
- Sousa, M.C.; Martins, R.; Simões, N.E.; Feio, M.J. Ecosystem Services of Urban Rivers: A Systematic Review. Aquat Sci 2025, 87, 10. [Google Scholar] [CrossRef]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River Restoration, Habitat Heterogeneity and Biodiversity: A Failure of Theory or Practice? Freshwater Biology 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Martin, F.-M.; Janssen, P.; Bergès, L.; Dupont, B.; Evette, A. Higher Structural Connectivity and Resistance against Invasions of Soil Bioengineering over Hard-Engineering for Riverbank Stabilisation. Wetlands Ecol Manage 2021, 29, 27–39. [Google Scholar] [CrossRef]
- Leblois, S.; Piton, G.; Recking, A.; Jaymond, D.; Buffet, A.; Evette, A. Riverbank Fascines Mostly Fail Due to Scouring: Consistent Evidence from Field and Flume Observations. River Research & Apps 2025, 41, 108–119. [Google Scholar] [CrossRef]
- Tang, V.T.; Fu, D.; Singh, R.P.; Rene, E.R.; Binh, T.N.; Sharma, A.K. Evaluating the Effectiveness of Ecological Restoration of Hard Bank Rivers: A Case Study from Shedu River Port, China. Journal of Water Supply: Research and Technology-Aqua 2018, 67, 824–833. [Google Scholar] [CrossRef]
- Francis, R.A.; Hoggart, S.P.G. Waste Not, Want Not: The Need to Utilize Existing Artificial Structures for Habitat Improvement Along Urban Rivers. Restoration Ecology 2008, 16, 373–381. [Google Scholar] [CrossRef]
- Palt, M.; Hering, D.; Kail, J. Context-specific Positive Effects of Woody Riparian Vegetation on Aquatic Invertebrates in Rural and Urban Landscapes. Journal of Applied Ecology 2023, 60, 1010–1021. [Google Scholar] [CrossRef]
- Weber, A.; Garcia, X.-F.; Wolter, C. Habitat Rehabilitation in Urban Waterways: The Ecological Potential of Bank Protection Structures for Benthic Invertebrates. Urban Ecosyst 2017, 20, 759–773. [Google Scholar] [CrossRef]
- Wenger, S.J.; Roy, A.H.; Jackson, C.R.; Bernhardt, E.S.; Carter, T.L.; Filoso, S.; Gibson, C.A.; Hession, W.C.; Kaushal, S.S.; Martí, E.; et al. Twenty-Six Key Research Questions in Urban Stream Ecology: An Assessment of the State of the Science. Journal of the North American Benthological Society 2009, 28, 1080–1098. [Google Scholar] [CrossRef]
- He, F.; Zarfl, C.; Tockner, K.; Olden, J.D.; Campos, Z.; Muniz, F.; Svenning, J.-C.; Jähnig, S.C. Hydropower Impacts on Riverine Biodiversity. Nat Rev Earth Environ 2024, 5, 755–772. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management 2002, 30, 492–507. [Google Scholar] [CrossRef]
- <i>Nature-Based Solutions to Address Global Societal, Challenges</i>; Cohen-Shacham, E. Nature-Based Solutions to Address Global Societal Challenges; Cohen-Shacham, E., Walters, G., Janzen, C., Maginnis, S., Eds.; IUCN International Union for Conservation of Nature, 2016. [CrossRef]
- Askarizadeh, A.; Rippy, M.A.; Fletcher, T.D.; Feldman, D.L.; Peng, J.; Bowler, P.; Mehring, A.S.; Winfrey, B.K.; Vrugt, J.A.; AghaKouchak, A.; et al. From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome. Environ. Sci. Technol. 2015, 49, 11264–11280. [Google Scholar] [CrossRef]
- Aivazidou, E.; Banias, G.; Lampridi, M.; Vasileiadis, G.; Anagnostis, A.; Papageorgiou, E.; Bochtis, D. Smart Technologies for Sustainable Water Management: An Urban Analysis. Sustainability 2021, 13, 13940. [Google Scholar] [CrossRef]
- Gourbesville, P.; Ma, Q. Smart River Management: What Is Next? River 2022, 1, 37–46. [Google Scholar] [CrossRef]
- Chien, H. Adaptive Management in Urban Stream Governance: A Review and an Urban Commoning Scenario-Building Exercise. LEX 2021, 19, 659–688. [Google Scholar] [CrossRef]
- Ahern, J. Urban Landscape Sustainability and Resilience: The Promise and Challenges of Integrating Ecology with Urban Planning and Design. Landscape Ecol 2013, 28, 1203–1212. [Google Scholar] [CrossRef]
- Shao, G.P.; Bishop, I.J. Citizen Science in River Monitoring: A Systematic Literature Review of the Whys and Hows. Front. Environ. Sci. 2025, 13, 1609084. [Google Scholar] [CrossRef]
- Dohotaru, A. Soluţii bazate pe natură la Someş; Presa Universitară Clujeană: Cluj-Napoca, 2024. [Google Scholar]
- Costea, G.; Pusch, M.T.; Bănăduc, D.; Cosmoiu, D.; Curtean-Bănăduc, A. A Review of Hydropower Plants in Romania: Distribution, Current Knowledge, and Their Effects on Fish in Headwater Streams. Renewable and Sustainable Energy Reviews 2021, 145, 111003. [Google Scholar] [CrossRef]
- Pop, N.; Pop, S.B. Reducing the Effects Caused by Floods, through Hydrological Measurements Made at the Cluj-Napoca Hydrometric Station. Agricultura 2022, 124, (3–4). [Google Scholar]
- Serra, S.R.Q.; Calapez, A.R.; Simões, N.E.; Sá Marques, J.A.A.; Laranjo, M.; Feio, M.J. Effects of Variations in Water Quantity and Quality in the Structure and Functions of Invertebrates’ Community of a Mediterranean Urban Stream. Urban Ecosyst 2019, 22, 1173–1186. [Google Scholar] [CrossRef]
- Medupin, C. Spatial and Temporal Variation of Benthic Macroinvertebrate Communities along an Urban River in Greater Manchester, UK. Environ Monit Assess 2020, 192, 84. [Google Scholar] [CrossRef]
- Ludlam, J.P.; Welsh, D.P.; Clark, E.V.; Downs, E.L.; Gordon, E.S.; Huang, J.X.; Levy, B.; O’Connor, A.M. Assessing Taxonomic and Functional Responses of Stream Macroinvertebrate Communities to Multi-Scale Influences of Urban Land Cover. River Research & Apps, 0045. [Google Scholar] [CrossRef]
- Barbosa, G.P.; Siqueira, T. Direct and Indirect Relationships of Climate and Land Use Change with Food Webs in Lakes and Streams. Global Ecol Biogeogr 2023, 32, 2153–2163. [Google Scholar] [CrossRef]
- Czerniawski, R.; Sługocki, Ł.; Krepski, T.; Wilczak, A.; Pietrzak, K. Spatial Changes in Invertebrate Structures as a Factor of Strong Human Activity in the Bed and Catchment Area of a Small Urban Stream. Water 2020, 12, 913. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. In Urban Ecology; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer US: Boston, MA, 2008. [Google Scholar] [CrossRef]
- Vehkaoja, M.; Niemi, M.; Väänänen, V.-M. Effects of Urban Infrastructure on Aquatic Invertebrate Diversity. Urban Ecosyst 2020, 23, 831–840. [Google Scholar] [CrossRef]
- Davidson, J.; Gunn, J. Effects of Land Cover Disturbance on Stream Invertebrate Diversity and Metal Concentrations in a Small Urban Industrial Watershed. Human and Ecological Risk Assessment: An International Journal 2012, 18, 1078–1095. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Williams-Subiza, E.A.; Brand, C.; Horak, C.N.; Assef, Y.A. Macroinvertebrate Functional Traits Differed with Land Use Practices at Patagonian Streams. Aquat Sci 2025, 87, 3. [Google Scholar] [CrossRef]
- Lansac-Tôha, F.A.; Velho, L.F.M.; Higuti, J.; Takahashi, E.M. Cyclopidae (Crustacea, Copepoda) from the Upper Paraná River Floodplain, Brazil. Braz. J. Biol. 2002, 62, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Szałkiewicz, E.; Kałuża, T.; Grygoruk, M. Detailed Analysis of Habitat Suitability Curves for Macroinvertebrates and Functional Feeding Groups. Sci Rep 2022, 12, 10757. [Google Scholar] [CrossRef]
- Chen, S.; Brokhausen, F.; Wiesner, P.; Hegyi, D.; Citir, M.; Huth, M.; Park, S.; Rabe, J.; Thamsen, L.; Tscheikner-Gratl, F.; et al. Coupled Simulation of Urban Water Networks and Interconnected Critical Urban Infrastructure Systems: A Systematic Review and Multi-Sector Research Agenda. Sustainable Cities and Society 2024, 104, 105283. [Google Scholar] [CrossRef]
- Ilovan, O.-R.; Măgerușan, A.; Boțan, C.N.; Dulamă, M.E.; Ursu, C.-D.; Mutică, P.; Jucu, I.S. Experiencing And Bringing Back The River In The Urban Flow: Someș Delivery; 2020; pp 262–272. [CrossRef]
- Lucaciu, M. Territorial Flood Defense: A Romanian Perspective. In Transboundary Floods: Reducing Risks Through Flood Management; Marsalek, J., Stancalie, G., Balint, G., Eds.; Nato Science Series: IV: Earth and Environmental Sciences; Kluwer Academic Publishers: Dordrecht, 2006. [Google Scholar] [CrossRef]
- Violin, C.R.; Cada, P.; Sudduth, E.B.; Hassett, B.A.; Penrose, D.L.; Bernhardt, E.S. Effects of Urbanization and Urban Stream Restoration on the Physical and Biological Structure of Stream Ecosystems. Ecological Applications 2011, 21, 1932–1949. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]






| Predictor | Model 1: Eff.tx |
Model 2: No.tx |
Model 3: ID |
Model 4: EPT% |
Model 5: OCH% |
Model 6: MNWH-AR |
|---|---|---|---|---|---|---|
| Intercept |
4.61 (p < 0.001) |
–2.94 (p = 0.642) |
0.57 (p < 0.001) |
–41.90 (p = 0.002) |
529.75 (p = 0.013) |
43.93 (p < 0.001) |
| Wav | 3.31 (p = 0.014) |
– | – |
130.16 (p < 0.001) |
– | – |
| Psp | –0.32 (p = 0.015) |
– | 0.029 (p = 0.016) |
–4.46 (p = 0.011) |
– | – |
| Nba | 1.84 (p = 0.009) |
– | –0.052 (p = 0.289) |
25.92 (p = 0.006) |
– | 32.12 (p = 0.066) |
| Pbp | – |
0.32 (p = 0.006) |
– | – | – | – |
| Cnd | – | – | – |
0.017 (p = 0.005) |
– | – |
| pH | – | – | – | – | –69.23 (p = 0.023) |
– |
| Oxg | – | – | – | – | 9.33 (p = 0.076) |
– |
| Raw | – | – | – | – | –1.31 (p = 0.002) |
1.22 (p = 0.002) |
|
Model fit: Model 1: R² = 0.88, Adjusted R² = 0.82, F(3,6) = 14.86, p = 0.0035 Model 2: R² = 0.63, Adjusted R² = 0.58, F(1,8) = 13.53, p = 0.0062 Model 3: R² = 0.65, Adjusted R² = 0.55, F(2,7) = 6.50, p = 0.0254 Model 4: R² = 0.97, Adjusted R² = 0.95, F(4,5) = 42.22, p < 0.001 Model 5: R² = 0.85, Adjusted R² = 0.78, F(3,6) = 11.48, p = 0.0067 Model 6: R² = 0.83, Adjusted R² = 0.78, F(2,7) = 16.71, p = 0.0022 | ||||||
| Type | Code | Ecosystem Service |
|---|---|---|
| Provisioning | P1 | Production of energy; |
| P2 | Riverfront restaurants, cafes, shops; | |
| P3 | Changes in riverfront property values; | |
| P4 | Recreational bathing; | |
| P5 | Irrigation of crops (urban gardens); | |
| P6 | Groundwater recharge. | |
| Regulation & Maintenance |
RM1 | Bio-remediation made by biota (micro-organisms, algae, plants, animals); |
| RM2 | Filtration of toxic substances by biota (macrophytes); | |
| RM3 | Sequestration of CO2 by primary producers; | |
| RM4 | Sink for organic and inorganic substances (nutrients, metals, organic pollutants); | |
| RM5 | Regulation of water chemistry made by biota (bio-geo-chemical cycles); | |
| RM6 | Support for pollinators; | |
| RM7 | Maintaining viable populations and gene pool; | |
| RM8 | Maintaining habitats (aquatic & riparian); | |
| RM9 | Regulation of temperature and humidity (climate regulation); | |
| RM10 | Control of erosion rates; | |
| RM11 | Sediment transport regulation; | |
| RM12 | Hydrological cycle - including flood regulation. | |
| Cultural | C1 | River traits that allow activities sustaining human health (walks, jogging, water sports etc.); |
| C2 | River traits that promote mental health (temporary getaway, tranquil location, meditation, feeling of safety etc.); | |
| C3 | River traits that promote social activities (festivals, artistic events etc.); | |
| C4 | River traits that allow educational & training activities (environmental awareness, nature laboratory, bird-watching, healthy value systems etc.); | |
| C5 | River traits that allow recreational activities (recreational fishing, picnics etc.); | |
| C6 | River traits with historical/heritage importance (water mills, historical bridges, places connected to the history of the city); | |
| C7 | Aesthetic experiences (panoramic viewpoint, scenic beauty, natural sounds, charismatic fauna, lack of foul odors etc.). |
| # | Mitigation measure | Output / Details | Nbs | Targeted ES |
Sources |
|---|---|---|---|---|---|
| 1. | Enhancement of in-stream habitat heterogeneity | Addition of boulders, large cobbles, gravel and/or wooden structures, artificial riffles and meanders; Using combined remediation techniques, addressing pollution sources in the catchment and maintaining refugia within the riverbed are crucial for the successful recolonization of new substrates. |
yes | RM1, RM3-8, C2, C4, C5 |
[18,72] |
| 2. | Replacement of impervious surfaces, in/near the river with more natural substrates | Impervious surfaces (e.g., concrete riverbed / banks) disrupt the connection between river and groundwater through the hyporheic zone (which acts as a refuge and a regulator of water quality and floods); There is a direct connection between the flow of the Someșul Mic River and the groundwater level beneath Cluj-Napoca; until the late 19th century, the river served as the primary water source in the city, with its discharge directly determining the water supply; More natural substrates should be used (e.g., gravel, fascines & geotextiles, porous concrete, ripraps, mixed-techniques like lower-bank ripraps with upper-bank plantings); Positive effects: urban stormwater runoff reduction; riparian habitat heterogeneity increase; in-stream habitat heterogeneity increase; unlimited connections between riverbed and riparian communities (lateral connectivity). |
yes | P6, RM1-9, RM12 C1, C2, C4, C5 |
[18,44,73,74,75] |
| 3. | Establishment and/or maintenance of riparian vegetation | Herbs, shrub or trees, native species, living directly on the river banks or on artificial substrates (like walls), acting as riparian buffers; Positive effects: urban stormwater runoff reduction and filtration, floodplain habitat increase; constant food source in the river coming from terrestrial vegetation; increased shading leading to less extreme temperatures; decreased heat stress. |
yes | P3, P6, RM1-3, RM5-12, C1-5 |
[18,76,77,78,79] |
| 4. | Maintenance of a stable flow regime, downstream Florești II Dam | The Florești II Dam regulates the flow on the Someșul Mic, in Cluj-Napoca, to its confluence with the Someșul Mare. Intermittent water releases often generate hydropeaking effects in downstream sections; high flows lead to organism removal, reduction of habitat, increases in turbidity and disturbed sediments; low flows lead to reduction of habitat and food, increased concentrations of nutrients or pollutants and decreased oxygenation. | no | P1, RM4-5, RM7-9, C2-5 |
[1,18,80,81] |
| 5. | Reduction of pollutant loads, at the catchment scale | Addressing pollution problems upstream of the city and within the tributary catchments is essential to secure good physico-chemical quality along the urban river reach. | yes | P2-6, RM2, RM4-5, C7 | [18] |
| 6. | Blue-Green Infrastructure BGI and Low-Impact Development LID technologies in the city | Examples of BGI and LID: permeable pavements, urban tree planting, green roofs, bioswales, rain gardens, infiltration trenches, biofilters, rain tanks etc.; Positive effects: reduction of runoff, filtering pollutants, and enhancing natural infiltration processes. |
yes | P5, RM6, RM9, RM12, C1-2, C4-5 | [20,82,83] |
| 7. | Continuous research & monitoring; adaptative & ecosystem-based management & design | Smart water management: the use of sensors, Internet of Things, machine learning, big data analyses, digital twins concept - in order to monitor, detect changes, predict, support decision makers etc.; Adaptive design in urban planning, together with focus of biodiversity, multifunctionality, redundancy and modularization are strategies for increasing urban resilience capacity. |
no | RM7-8, C4 |
[82,84,85,86,87] |
| 8. | Citizen & stakeholder involvement | Active involvement of the general public (including citizen science) and of all stakeholders, such as: authorities (the Romanian Waters National Administration - Someș-Tisa Water Basin Administration, the Someș Water Company, Hidroelectrica S.A., Cluj-Napoca Municipality); the County Association of Anglers, various NGOs, civic activists, riparian residents etc. | no | P2-5, C1-7 |
[88,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
