Submitted:
14 October 2025
Posted:
15 October 2025
You are already at the latest version
Abstract
Dysregulated platelet function contributes to various pathological conditions, including diabetes mellitus (DM), a metabolic disorder characterized by elevated blood glucose, due to impaired insulin action. In type 2 diabetes mellitus (T2DM), hyperglycemia, insulin resistance, oxidative stress, and inflammation impair endothelial function and platelet regulation, promoting a prothrombotic state. Platelet hyperreactivity is associated with T2DM cardiovascular complications, a leading cause of mortality in patients. Antiplatelet therapies often prove ineffective for a subset of T2DM patients due to aspirin resistance, necessitating alternative therapeutic strategies. Resveratrol, a natural polyphenol, is a potential therapeutic agent for T2DM, including inhibition of platelet aggregation. One of the pleiotropic actions of resveratrol is to modulate the FoF1-ATP synthase rotational catalysis. Platelet chemical energy demand during the activation phase is achieved through oxidative phosphorylation. Both mitochondrial and extra-mitochondrial oxidative phosphorylation drive aerobic energy production in activated platelets, utilizing fatty acids and glucose, respectively. Hyperglycemia can cause an overwork of the oxidative phosphorylation, producing oxidative stress. Targeting FoF1-ATP synthase with resveratrol may reduce platelet hyperreactivity in aspirin-resistant cases. This paper reviews the implications of resveratrol ability to inhibit platelet FoF1-ATP synthase on its potential as a novel alternative or synergistic antiplatelet strategy for aspirin-resistant T2DM patients.
Keywords:
1. Type 2 Diabetes Mellitus (T2DM) and Its Complications
2. Platelets
3. Platelet Hyperactivation and Aspirin Resistance in T2DM
3.1. Endothelial Dysfunction in Type 2 Diabetes
4. Resveratrol
4.1. Clinical use of Resveratrol in Diabetes
5. The F₁Fo-ATP Synthase
5.1. Resveratrol Inhibition of ATP Synthase and Its Relevance in AR
6. Conclusion
| CVD | Cardiovascular Disease |
| DM | Diabetes mellitus |
| ETC | Electron Trasport Chain |
| RSV | Resveratrol |
| AR | Aspirin Resistance |
| T2DM | Type 2 Diabetes mellitus |
| TXA₂ | Thromboxane A₂ |
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| CVD | Cardiovascular Disease |
| DM | Diabetes mellitus |
| ETC | Electron Trasport Chain |
| RSV | Resveratrol |
| AR | Aspirin Resistance |
| T2DM | Type 2 Diabetes mellitus |
| TXA₂ | Thromboxane A₂ |
References
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 Diabetes. The Lancet 2014, 383, 69–82. [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Kaabi, J. Al Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health 2020, 10, 107–111. [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet 2023, 402, 203–234. [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat Rev Endocrinol 2018, 14, 88–98. [CrossRef]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev 2020, 2020. [CrossRef]
- Garcia-Souza, L.F.; Oliveira, M.F. Mitochondria: Biological Roles in Platelet Physiology and Pathology. Int J Biochem Cell Biol 2014, 50, 156–160. [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018, 98, 2133. [CrossRef]
- Ghosh, R.; Colon-Negron, K.; Papa, F.R. Endoplasmic Reticulum Stress, Degeneration of Pancreatic Islet β-Cells, and Therapeutic Modulation of the Unfolded Protein Response in Diabetes. Mol Metab 2019, 27, S60–S68. [CrossRef]
- Lu, Y.; Wang, W.; Liu, J.; Xie, M.; Liu, Q.; Li, S. Vascular Complications of Diabetes: A Narrative Review. Medicine 2023, 102, E35285. [CrossRef]
- Konieczyńska, M.; Bryk, A.H.; Malinowski, K.P.; Draga, K.; Undas, A. Interplay between Elevated Cellular Fibronectin and Plasma Fibrin Clot Properties in Type 2 Diabetes. Thromb Haemost 2017, 117, 1671–1678. [CrossRef]
- Kakouros, N.; Rade, J.J.; Kourliouros, A.; Resar, J.R. Platelet Function in Patients with Diabetes Mellitus: From a Theoretical to a Practical Perspective. Int J Endocrinol 2011, 2011. [CrossRef]
- Pretorius, E. Platelets as Potent Signaling Entities in Type 2 Diabetes Mellitus. Trends in Endocrinology and Metabolism 2019, 30, 532–545. [CrossRef]
- Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular Disease in Type 2 Diabetes Mellitus: Progress toward Personalized Management. Cardiovasc Diabetol 2022, 21. [CrossRef]
- Capodanno, D.; Angiolillo, D.J. Aspirin for Primary Cardiovascular Risk Prevention and Beyond in Diabetes Mellitus. Circulation 2016, 134, 1579–1594. [CrossRef]
- Tian, Y.; Zong, Y.; Pang, Y.; Zheng, Z.; Ma, Y.; Zhang, C.; Gao, J. Platelets and Diseases: Signal Transduction and Advances in Targeted Therapy. Signal Transduct Target Ther 2025, 10, 1–29. [CrossRef]
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the Interface of Thrombosis, Inflammation, and Cancer. Blood 2015, 126, 582–588.
- Broos, K.; Feys, H.B.; De Meyer, S.F.; Vanhoorelbeke, K.; Deckmyn, H. Platelets at Work in Primary Hemostasis. Blood Rev 2011, 25, 155–167. [CrossRef]
- Xu, X.R.; Carrim, N.; Neves, M.A.D.; McKeown, T.; Stratton, T.W.; Coelho, R.M.P.; Lei, X.; Chen, P.; Xu, J.; Dai, X.; et al. Platelets and Platelet Adhesion Molecules: Novel Mechanisms of Thrombosis and Anti-Thrombotic Therapies. Thromb J 2016, 14, 37–46. [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Platelet Activation and Prothrombotic Mediators at the Nexus of Inflammation and Atherosclerosis: Potential Role of Antiplatelet Agents. Blood Rev 2021, 45. [CrossRef]
- Jena, S.; Raizada, N.; Kalra, S.; Bhattacharya, S. Platelet Indices as Predictors of Glycaemic Status and Complications in Diabetes Mellitus. Apollo Medicine 2025, 22, 214–219. [CrossRef]
- Kaur, R.; Kaur, M.; Singh, J. Endothelial Dysfunction and Platelet Hyperactivity in Type 2 Diabetes Mellitus: Molecular Insights and Therapeutic Strategies. Cardiovasc Diabetol 2018, 17.
- Zhang, F.; Zheng, H. Clinical Predictors of Aspirin Resistance in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Rev Cardiovasc Med 2025, 26. [CrossRef]
- Sagar, R.C.; Yates, D.M.; Pearson, S.M.; Kietsiriroje, N.; Hindle, M.S.; Cheah, L.T.; Webb, B.A.; Ajjan, R.A.; Naseem, K.M. Insulin Resistance in Type 1 Diabetes Is a Key Modulator of Platelet Hyperreactivity. Diabetologia 2025, 68, 1544–1558. [CrossRef]
- Petrucci, G.; Rizzi, A.; Bellavia, S.; Dentali, F.; Frisullo, G.; Pitocco, D.; Ranalli, P.; Rizzo, P.A.; Scala, I.; Silingardi, M.; et al. Stability of the Thromboxane B2 Biomarker of Low-Dose Aspirin Pharmacodynamics in Human Whole Blood and in Long-Term Stored Serum Samples. Res Pract Thromb Haemost 2024, 8. [CrossRef]
- Nielsen, H.L.; Kristensen, S.D.; Hvas, A.-M. Is the New Point-of-Care Test VerifyNow® Aspirin Able To Identify Aspirin Resistance Using the Recommended Cut-Off?. Blood 2007, 110, 3896–3896. [CrossRef]
- Reny, J.L.; De Moerloose, P.; Dauzat, M.; Fontana, P. Use of the PFA-100TM Closure Time to Predict Cardiovascular Events in Aspirin-Treated Cardiovascular Patients: A Systematic Review and Meta-Analysis. Journal of Thrombosis and Haemostasis 2008, 6, 444–450. [CrossRef]
- Renda, G.; Zurro, M.; Malatesta, G.; Ruggieri, B.; de Caterina, R. Inconsistency of Different Methods for Assessing Ex Vivo Platelet Function: Relevance for the Detection of Aspirin Resistance. Haematologica 2010, 95, 2095–2101. [CrossRef]
- Pretorius, L.; Thomson, G.J.A.; Adams, R.C.M.; Nell, T.A.; Laubscher, W.A.; Pretorius, E. Platelet Activity and Hypercoagulation in Type 2 Diabetes. Cardiovasc Diabetol 2018, 17. [CrossRef]
- Razmara, M.; Hjemdahl, P.; Östenson, C.G.; Li, N. Platelet Hyperprocoagulant Activity in Type 2 Diabetes Mellitus: Attenuation by Glycoprotein IIb/IIIa Inhibition. Journal of Thrombosis and Haemostasis 2008, 6, 2186–2192. [CrossRef]
- Hu, L.; Chang, L.; Zhang, Y.; Zhai, L.; Zhang, S.; Qi, Z.; Yan, H.; Yan, Y.; Luo, X.; Zhang, S.; et al. Platelets Express Activated P2Y12 Receptor in Patients with Diabetes Mellitus. Circulation 2017, 136, 817–833. [CrossRef]
- Violi, F.; Pignatelli, P. Platelet Oxidative Stress and Thrombosis. Thromb Res 2012, 129, 378–381. [CrossRef]
- Committee, A.D.A.P.P.; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Ekhlaspour, L.; Hilliard, M.E.; Johnson, E.L.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S179–S218. [CrossRef]
- Bethel, M.A.; Harrison, P.; Sourij, H.; Sun, Y.; Tucker, L.; Kennedy, I.; White, S.; Hill, L.; Oulhaj, A.; Coleman, R.L.; et al. Randomized Controlled Trial Comparing Impact on Platelet Reactivity of Twice-Daily with Once-Daily Aspirin in People with Type 2 Diabetes. Diabet Med 2016, 33, 224–230. [CrossRef]
- Dillinger, J.-G.; Pezel, T.; Batias, L.; Angoulvant, D.; Goralski, M.; Ferrari, E.; Cayla, G.; Silvain, J.; Gilard, M.; Lemesle, G.; et al. Twice-a-Day Administration of Aspirin in Patients with Diabetes Mellitus or Aspirin Resistance after Acute Coronary Syndrome: Rationale and Design of the Randomized ANDAMAN Trial. Am Heart J 2025, 288, 101–110. [CrossRef]
- Narcisse, D.I.; Kim, H.; Wruck, L.M.; Stebbins, A.L.; Muñoz, D.; Kripalani, S.; Effron, M.B.; Gupta, K.; Anderson, R.D.; Jain, S.K.; et al. Comparative Effectiveness of Aspirin Dosing in Cardiovascular Disease and Diabetes Mellitus: A Subgroup Analysis of the ADAPTABLE Trial. Diabetes Care 2024, 47, 81–88. [CrossRef]
- Krüger-Genge, A.; Blocki, A.; Franke, R.P.; Jung, F. Vascular Endothelial Cell Biology: An Update. International Journal of Molecular Sciences 2019, Vol. 20, Page 4411 2019, 20, 4411. [CrossRef]
- Vaidya, A.R.; Wolska, N.; Vara, D.; Mailer, R.K.; Schröder, K.; Pula, G. Diabetes and Thrombosis: A Central Role for Vascular Oxidative Stress. Antioxidants 2021, Vol. 10, Page 706 2021, 10, 706. [CrossRef]
- Lum, H.; Roebuck, K.A. Oxidant Stress and Endothelial Cell Dysfunction. Am J Physiol Cell Physiol 2001, 280.
- Al-Sofiani, M.E.; Yanek, L.R.; Faraday, N.; Kral, B.G.; Mathias, R.; Becker, L.C.; Becker, D.M.; Vaidya, D.; Kalyani, R.R. Diabetes and Platelet Response to Low-Dose Aspirin. J Clin Endocrinol Metab 2018, 103, 4599–4608. [CrossRef]
- Duttaroy, A.K. Functional Foods in Preventing Human Blood Platelet Hyperactivity-Mediated Diseases-An Updated Review. Nutrients 2024, 16. [CrossRef]
- Camont, L.; Cottart, C.H.; Rhayem, Y.; Nivet-Antoine, V.; Djelidi, R.; Collin, F.; Beaudeux, J.L.; Bonnefont-Rousselot, D. Simple Spectrophotometric Assessment of the Trans-/Cis-Resveratrol Ratio in Aqueous Solutions. Anal Chim Acta 2009, 634, 121–128. [CrossRef]
- Maier-Salamon, A.; Böhmdorfer, M.; Riha, J.; Thalhammer, T.; Szekeres, T.; Jaeger, W. Interplay between Metabolism and Transport of Resveratrol. Ann N Y Acad Sci 2013, 1290, 98–106. [CrossRef]
- Vitaglione, P.; Sforza, S.; Galaverna, G.; Ghidini, C.; Caporaso, N.; Vescovi, P.P.; Fogliano, V.; Marchelli, R. Bioavailability of Trans-Resveratrol from Red Wine in Humans. Mol Nutr Food Res 2005, 49, 495–504. [CrossRef]
- Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al. Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomedicine and Pharmacotherapy 2021, 143. [CrossRef]
- Szymkowiak, I.; Marcinkowska, J.; Kucinska, M.; Regulski, M.; Murias, M. Resveratrol Bioavailability After Oral Administration: A Meta-Analysis of Clinical Trial Data. Phytother Res 2025, 39, 453–464. [CrossRef]
- La Porte, C.; Voduc, N.; Zhang, G.; Seguin, I.; Tardiff, D.; Singhal, N.; Cameron, D.W. Steady-State Pharmacokinetics and Tolerability of Trans-Resveratrol 2000 Mg Twice Daily with Food, Quercetin and Alcohol (Ethanol) in Healthy Human Subjects. Clin Pharmacokinet 2010, 49, 449–454. [CrossRef]
- Su, M.; Zhao, W.; Xu, S.; Weng, J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022, 11. [CrossRef]
- Koushki, M.; Farahani, M.; Yekta, R.F.; Frazizadeh, N.; Bahari, P.; Parsamanesh, N.; Chiti, H.; Chahkandi, S.; Fridoni, M.; Amiri-Dashatan, N. Potential Role of Resveratrol in Prevention and Therapy of Diabetic Complications: A Critical Review. Food Nutr Res 2024, 68. [CrossRef]
- Kim, Y.H.; Kim, Y.S.; Roh, G.S.; Choi, W.S.; Cho, G.J. Resveratrol Blocks Diabetes-Induced Early Vascular Lesions and Vascular Endothelial Growth Factor Induction in Mouse Retinas. Acta Ophthalmol 2012, 90, e31-7.
- Cui, W.; Wang, Y.; Zhang, L.; Liu, F.; Duan, G.; Chen, S.; Long, J.; Jin, Y.; Yang, H. Recent Advances in the Use of Resveratrol against Staphylococcus Aureus Infections (Review). Medicine international 2024, 4. [CrossRef]
- Kubatka, P.; Mazurakova, A.; Koklesova, L.; Samec, M.; Sokol, J.; Samuel, S.M.; Kudela, E.; Biringer, K.; Bugos, O.; Pec, M.; et al. Antithrombotic and Antiplatelet Effects of Plant-Derived Compounds: A Great Utility Potential for Primary, Secondary, and Tertiary Care in the Framework of 3P Medicine. EPMA J 2022, 13, 407. [CrossRef]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr Issues Mol Biol 2023, 45, 6651. [CrossRef]
- Huang, D.D.; Shi, G.; Jiang, Y.; Yao, C.; Zhu, C. A Review on the Potential of Resveratrol in Prevention and Therapy of Diabetes and Diabetic Complications. Biomedicine and Pharmacotherapy 2020, 125. [CrossRef]
- Mohammed, A.; Tajuddeen, N.; Olatunde, A.; Isah, M.B.; Katsayal, B.S.; Forcados, G.E.; Muhammad, A.; Islam, M.S.; Ibrahim, M.A. The Roles of Flavonoids and Other Plant-Based Phenolics in Mitigating Diabetes-Induced Macrovascular Complications. Phytother Res 2025. [CrossRef]
- Michno, A.; Grużewska, K.; Ronowska, A.; Gul-Hinc, S.; Zyśk, M.; Jankowska-Kulawy, A. Resveratrol Inhibits Metabolism and Affects Blood Platelet Function in Type 2 Diabetes. Nutrients 2022, 14. [CrossRef]
- Kaštelan, S.; Konjevoda, S.; Sarić, A.; Urlić, I.; Lovrić, I.; Čanović, S.; Matejić, T.; Šešelja Perišin, A. Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges. Molecules 2025, 30, 3262. [CrossRef]
- Zhu, P.; Jin, Y.; Sun, J.; Zhou, X. The Efficacy of Resveratrol Supplementation on Inflammation and Oxidative Stress in Type-2 Diabetes Mellitus Patients: Randomized Double-Blind Placebo Meta-Analysis. Front Endocrinol (Lausanne) 2025, 15. [CrossRef]
- Mahjabeen, W.; Khan, D.A.; Mirza, S.A. Role of Resveratrol Supplementation in Regulation of Glucose Hemostasis, Inflammation and Oxidative Stress in Patients with Diabetes Mellitus Type 2: A Randomized, Placebo-Controlled Trial. Complement Ther Med 2022, 66. [CrossRef]
- Ma, N.; Zhang, Y. Effects of Resveratrol Therapy on Glucose Metabolism, Insulin Resistance, Inflammation, and Renal Function in the Elderly Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Clinical Trial Protocol. Medicine 2022, 101, E30049. [CrossRef]
- Parsamanesh, N.; Asghari, A.; Sardari, S.; Tasbandi, A.; Jamialahmadi, T.; Xu, S.; Sahebkar, A. Resveratrol and Endothelial Function: A Literature Review. Pharmacol Res 2021, 170. [CrossRef]
- Boyer, P.D. The ATP Synthase--a Splendid Molecular Machine. Annu Rev Biochem 1997, 66, 717–749.
- Walker, J.E. The ATP Synthase: The Understood, the Uncertain and the Unknown. Biochem Soc Trans 41, 1–16.
- Campanella, M.; Casswell, E.; Chong, S.; Farah, Z.; Wieckowski, M.R.; Abramov, A.Y.; Tinker, A.; Duchen, M.R. Regulation of Mitochondrial Structure and Function by the F1Fo-ATPase Inhibitor Protein, IF1. Cell Metab 2008, 8, 13–25.
- Bernardino Gomes, T.M.; Ng, Y.S.; Pickett, S.J.; Turnbull, D.M.; Vincent, A.E. Mitochondrial DNA Disorders: From Pathogenic Variants to Preventing Transmission. Hum Mol Genet 2021, 30, R245–R253. [CrossRef]
- Panfoli, I.; Ravera, S.; Bruschi, M.; Candiano, G.; Morelli, A. Proteomics Unravels the Exportability of Mitochondrial Respiratory Chains. Expert Rev Proteomics 2011, 8, 231–239.
- Stockwin, L.H.; Blonder, J.; Bumke, M.A.; Lucas, D.A.; Chan, K.C.; Conrads, T.P.; Issaq, H.J.; Veenstra, T.D.; Newton, D.L.; Rybak, S.M. Proteomic Analysis of Plasma Membrane from Hypoxia-Adapted Malignant Melanoma. J Proteome Res 2006, 5, 2996–3007. [CrossRef]
- Jung, K.-H.; Song, S.-H.; Paik, J.-Y.; Koh, B.-H.; Choe, Y.S.; Lee, E.J.; Kim, B.-T.; Lee, K.-H. Direct Targeting of Tumor Cell F(1)F(0) ATP-Synthase by Radioiodine Angiostatin in Vitro and in Vivo. Cancer Biother Radiopharm 2007, 22, 704–712. [CrossRef]
- Chang, H.Y.; Huang, H.C.; Huang, T.C.; Yang, P.C.; Wang, Y.C.; Juan, H.F. Ectopic ATP Synthase Blockade Suppresses Lung Adenocarcinoma Growth by Activating the Unfolded Protein Response. Cancer Res 2012, 72, 4696–4706. [CrossRef]
- Yamamoto, K.; Shimizu, N.; Obi, S.; Kumagaya, S.; Taketani, Y.; Kamiya, A.; Ando, J. Involvement of Cell Surface ATP Synthase in Flow-Induced ATP Release by Vascular Endothelial Cells. Am J Physiol Heart Circ Physiol 2007, 293. [CrossRef]
- Arakaki, N.; Kita, T.; Shibata, H.; Higuti, T. Cell-Surface H+-ATP Synthase as a Potential Molecular Target for Anti-Obesity Drugs. FEBS Lett 2007, 581, 3405–3409. [CrossRef]
- Mangiullo, R.; Gnoni, A.; Leone, A.; Gnoni, G. V.; Papa, S.; Zanotti, F. Structural and Functional Characterization of FoF1-ATP Synthase on the Extracellular Surface of Rat Hepatocytes. Biochim Biophys Acta Bioenerg 2008, 1777, 1326–1335. [CrossRef]
- Panfoli, I.; Ravera, S.; Podestà, M.; Cossu, C.; Santucci, L.; Bartolucci, M.; Bruschi, M.; Calzia, D.; Sabatini, F.; Bruschettini, M.; et al. Exosomes from Human Mesenchymal Stem Cells Conduct Aerobic Metabolism in Term and Preterm Newborn Infants. FASEB Journal 2016, 30. [CrossRef]
- Bruschi, M.; Santucci, L.; Ravera, S.; Bartolucci, M.; Petretto, A.; Calzia, D.; Ghiggeri, G.M.; Ramenghi, L.A.; Candiano, G.; Panfoli, I. Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. Proteomics Clin Appl 2018, 12, 1700082. [CrossRef]
- Ravera, S.; Bartolucci, M.; Calzia, D.; Morelli, A.M.; Panfoli, I. Efficient Extra-Mitochondrial Aerobic ATP Synthesis in Neuronal Membrane Systems. J Neurosci Res 2021, 99, 2250–2260. [CrossRef]
- Ravera, S.; Signorello, M.G.; Bartolucci, M.; Ferrando, S.; Manni, L.; Caicci, F.; Calzia, D.; Panfoli, I.; Morelli, A.; Leoncini, G. Extramitochondrial Energy Production in Platelets. Biol Cell 2018, 110, 97–108. [CrossRef]
- Ravera, S.; Signorello, M.G.; Panfoli, I. Platelet Metabolic Flexibility: A Matter of Substrate and Location. Cells 2023, 12. [CrossRef]
- Ravera, S.; Panfoli, I. Platelet Aerobic Metabolism: New Perspectives. Journal of Unexplored Medical Data 2019, 2019. [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes Mellitus and Oxidative Stress-A Concise Review. Saudi Pharm J 2016, 24, 547–553. [CrossRef]
- Fidler, T.P.; Campbell, R.A.; Funari, T.; Dunne, N.; Balderas Angeles, E.; Middleton, E.A.; Chaudhuri, D.; Weyrch, A.S.; Abel, E.D. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function. Cell Rep 2017, 20, 881–894. [CrossRef]
- Brand, M.D. Mitochondrial Generation of Superoxide and Hydrogen Peroxide as the Source of Mitochondrial Redox Signaling. Free Radic Biol Med 2016, 100, 14–31. [CrossRef]
- Gledhill, J.R.; Montgomery, M.G.; Leslie, A.G.; Walker, J.E. Mechanism of Inhibition of Bovine F1-ATPase by Resveratrol and Related Polyphenols. Proc Natl Acad Sci U S A 2007, 104, 13632–13637.
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial Dysfunction: Mechanisms and Advances in Therapy. Signal Transduct Target Ther 2024, 9, 1–29. [CrossRef]
- Wang, H.; Hu, L.; Li, H.; Lai, Y.T.; Wei, X.; Xu, X.; Cao, Z.; Cao, H.; Wan, Q.; Chang, Y.Y.; et al. Mitochondrial ATP Synthase as a Direct Molecular Target of Chromium(III) to Ameliorate Hyperglycaemia Stress. Nat Commun 2023, 14, 1–15. [CrossRef]
- Martinez, L.O.; Genoux, A.; Ferrières, J.; Duparc, T.; Perret, B. Serum Inhibitory Factor 1, High-Density Lipoprotein and Cardiovascular Diseases. Curr Opin Lipidol 2017, 28, 337–346. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
