Submitted:
14 October 2025
Posted:
15 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Sources and Research Tools
3. Xeric Environments and Xerophytic Vegetation
3.1. Edaphoclimatic Characterization of Xeric Environments
- Edaphoxerophilous, xerophytic vegetation that develops on soils such as leptosls, lithosols, arenosols, gypsisols, etc., characterized by water deficit, where the water received form precipitation is rapidly drained.
- Climatophilous, mesophtytic vegetation that develops on mature soils that only receive water only through precipitation.
- Temporihygrophilous, mesohygrophytic vegetation that grows only on soils that are wet or swampy for part of the year and well drained for the rest.
- Edaphohygrophilous, edaphohygrophilic vegetation that develops in hydromorphic conditions, such as permanently wet or swampy soils.
3.2. Characterization of Xerophytic Vegetation
- Arid-passive species – species whose photosynthetic tissues remain inactive during the summer months. In the case of annuals, the challenge posed by xericity is surmounted through the synchronisation of their life cycle with periods of increased precipitation. During the hot and dry season, the plant survives in the form of bulbs or seeds, germinating only when conditions become favourable, as in the case of subterranean clover (e.g., Lupinus cosentinii). Perennial species, on the other hand, may undergo a deciduous phase during the summer months, thereby reallocating their reserves to underground organs until the subsequent wet season (e.g., Prunus dulcis). Certain species have persistent sclerophyllous foliage, which plays a crucial role in regulating transpiration rates during the hot season (e.g., Quercus rotundifolia);
- Arid-active species – species with tissues adapted for water storage, such as succulents. These species accumulate water in their tissues during periods of sufficient moisture and subsequently utilize this water reserve during the arid season, when they exhibit reduced metabolic rates and maintain their biomass.

- Succulence, i.e., the ability to store water in hydrenchyma cells, predominantly in thick, fleshy leaves and stems, which can reach 90–95 % water content.
- Epidermal appendages, such as waxes and trichomes (e.g., Kalanchoe spp.), which can significantly reduce water loss through transpiration.
- Low surface-area-to-volume ratio (SA:V), that means small, fleshy leaves, as seen in Echeveria, which are less prone to water losses. This also includes leaf modifications like spines in cacti, which reduce losses by transpiration.
- CAM photosynthesis, is a physiological adaptation mechanism, where the Calvin Cycle is carried out at different times. In this photosynthetic mechanism, the stomata only open during the night, absorbing CO2, which is then stored during the night and only transformed into sugars during the day, with radiation. Thus, by opening the stomata only at night, when the temperature is lower and the relative humidity higher, excessive water loss through transpiration are significantly reduced [91].
- High capacity for asexual reproduction, mainly through leaf cuttings or stem segments.
- High thermal capacity, allowing the plant to gradually release stored heat at night, protecting tissues from low nocturnal temperatures.Parte inferior do formulário
3.3. Xerophytic Vegetation in Urban Green Spaces
- Social and human health benefits – related to the aesthetic, recreational, educational and human health values provided by vegetation (e.g., beauty derived from the visual impact of green spaces, physical and mental well-being, the promotion of social relationships and environmental awareness [95];
- Economic benefits – related to energy efficiency and reduced dependence on artificial climatization (e.g., tourism, as a leisure or recreational attraction, and property valuation [98]).
4. Drought in the Mediterranean and Study Area Context
- Meteorological drought is associated with a lack of precipitation. It is intrinsically related to the regional conditions, as it depends on factors such as wind speed, temperature, relative humidity and solar radiation. It is defined as the measure of deviation in precipitation relative to the climatic norm [125];
- Agricultural drought results from an imbalance between the water available in the soil, the water needs of crops and evapotranspiration [125]. According to Kulik (1962), periods of agricultural drought are considered to occur when only 19 mm of water is available in the topsoil layer (0.20m) [126]. When only 9 mm is available, a situation of severe agricultural drought is considered [123], typically lasting between 3 and 9 months [127];
- Agrometeorological drought results from the combination of meteorological and agricultural drought, i.e., drought induced by an imbalance between the water available in the soil, the water needs of crops, and their transpiration rates [125];
- Hydrological drought is related to the reduction of surface and groundwater storage [125]. Typically, this type of drought does not occur at the same time as meteorological drought, as the effects of low precipitation are not immediately apparent [1]. It occurs later and usually lasts for periods longer than 9 months [127];
- Socioeconomic drought occurs when the availability of water is so restricted that it begins to have a negative impact on economic activities.
4.1. Drought in the Mediterranean Basin

4.2. Drought in the Algarve Region and Study Area
5. How to Address the Drought Challenges in the Study Area
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMAL | Associação Intermunicipal do Algarve |
| APA | Agência Portuguesa do Ambiente |
| EEA | European Environmental agency |
| ERSAR | Entidade Reguladora dos Serviços de Águas e Resíduos |
| EU | European Union |
| FAO | Food and Agriculture Organisation |
| GPP | Gabinete de Planeamento, Políticas e Administração Geral |
| IPCC | Intergovernmental Panel on Climate Change |
| IPMA | Instituto Português do Mar e da Atmosfera |
| MedECC | Mediterranean Experts on Climate and Environmental Change |
| UN | United Nations |
| UNCCD | United Nations Development Programme |
| WMO | World Meteorological Organisation |
| WWF | World Wide Fund for Nature |
Appendix A
- −
- Acacia L. (Mill)
- −
- Carprobotus edulis (L.) N.E.Br.
- −
- Centaurea occasus Fern. Casas
- −
- Cistus L.
- −
- Genista hirsuta (Vahl) subsp. algarbiensis (Brot.) Rivas Mart., T.E. Díaz & Fern. Gonz.
- −
- Kalanchoe L.
- −
- Linaria algaviana Chav.
- −
- Linaria bimaculata (L.) Chav.
- −
- Lupinus cosentinii Guss.
- −
- Myrtus communis L.
- −
- Narcissus gaditanus Boiss. & Reut.
- −
- Narcissus willkommii (Samp.) A. Fern.
- −
- Olea europaea L.
- −
- Pistacia lentiscus L.
- −
- Pittosporum tobira (Thunb.) W. T. Aiton
- −
- Plantago algarbiensis Samp.
- −
- Prunus dulcis (Mill.) D.A. Webb
- −
- Quercus L.
- −
- Quercus coccifera L.
- −
- Quercus rotundifolia Lam.
- −
- Rosmarinus L.
- −
- Rosmarinus officinalis L. prostratus Pasq.
- −
- Scilla odorata Link
- −
- Sideritis algarbiensis Obón & Rivera subsp. lusitanica (Font Quer) Rivas Mart., T.E. Díaz & Fern Gonz.
- −
- Stipa L.
- −
- Teucrium fruticans L.
- −
- Thymus L.
- −
- Thymus lotocephalus G.López & R.Morales
- −
- Tuberaria major Willk. P. Silva & Rozeira
- −
- Ulex argenteus Welw. ex Webb
Appendix B
- −
- Allium multiflorum Desf.
- −
- Asparagus acutifolius L.
- −
- Asparagus albus L.
- −
- Asparagus aphyllus L.
- −
- Antirrhinum onubensis (Fern. Casas) Fern. Casas
- −
- Aristolochia baetica L.
- −
- Arrhenatherum album var. erianthum (Boiss. & Reuter) Romero Zarco
- −
- Bituminaria bitubinosa (L.) C.H. Stirt
- −
- Carex hallerana Asso
- −
- Centaurea ornata Willd.
- −
- Celtica gigantea (Link) F.M. Vázquez & Barkworth
- −
- Ceratonia siliqua L.
- −
- Chamaerops humilis L.
- −
- Cistus albidus L.
- −
- Cistus crispus L.
- −
- Cistus libanotis L.
- −
- Clematis flammula L.
- −
- Coronilla juncea L.
- −
- Corynephorus canescens (L.) P. Beauv. var. maritimus Godr.
- −
- Cytisus grandiflorus (DC.) subsp. cabezudoi Talavera
- −
- Dactylis hispanica Roth
- −
- Delphinium pentagynum Lam.
- −
- Delphinium staphisagria L.
- −
- Dianthus broteri Boiss. & Reuter
- −
- Dipcadi serotinum (L.) Medik.
- −
- Dorycnium pentaphyllum Scop.
- −
- Euphorbia boetica Boiss.
- −
- Fumana thymifolia (L.) Spach ex Webb
- −
- Halimium calycinum (L.) K. Koch
- −
- Halimium halimifolium (L.) Willk.
- −
- Helianthemum apenninum (L.) Mill. subsp. stoechadifolium (Brot.) Samp.
- −
- Helianthemum marifolium (L.) Mill.
- −
- Helichrysum picardi Boiss. & Reut.
- −
- Helichrysum stoechas (L.) Moench
- −
- Hyparrhenia hirta (L.) Stapf
- −
- Hyparrhenia sinaica (Delile) G. Lopez
- −
- Iberis welwitshii Boiss.
- −
- Juniperus turbinata Guss.
- −
- Lathyrus clymenum L.
- −
- Lavandula sampaiona (Rozeira) Rivas Mart., T.E. Díaz & Fern. Gonz. subsp. lusitanica (Chatyor) Rivas Mart., T.E. Díaz & Fern. Gonz.
- −
- Lavandula luisieri (Rozeira) Rivas Mart.
- −
- Lavandula multifida L.
- −
- Lobularia maritima (L.) Desv.
- −
- Macrochloa tenacissima (L.) Kunth
- −
- Melica ciliata (L.) subsp. magnolii (Godr. & Gren.) K. Richt.
- −
- Melica minuta L.
- −
- Olea europaea L. var. sylvestris (Mill.) Rouy ex Hegi
- −
- Ononis ramosissima Desf.
- −
- Phillyrea angustifolia L.
- −
- Phagnalon saxatile (L.) Cass.
- −
- Phlomis lychnitis L.
- −
- Phlomis purpurea
- −
- Pistacia lentiscus L.
- −
- Pistacia terebinthus L.
- −
- Prasium majus L.
- −
- Pycnocomon rutifolium (Vahl) Hoffmanns. & Link
- −
- Rhamnus oleoides L.
- −
- Ophrys lutea Cav.
- −
- Osyris quadripartitae Decne
- −
- Quercus coccifera L.
- −
- Rosmarinus officinalis L.
- −
- Rubia peregrina L.
- −
- Sedum album L.
- −
- Sedum mucizonia (Ortega) Raym.-Hamet
- −
- Sedum rubens L.
- −
- Sedum sediforme (Jacq.) Pau
- −
- Teucrium haenseleri Boiss.
- −
- Teucrium lusitanicum Schreb.
- −
- Teucrium pseudochamaepitys L.
- −
- Thymbra capitata (L.) Cav.
- −
- Thymus mastichina (L.) L.
- −
- Tulipa sylvestris L.
- −
- Umbilicus rupestris (Salisb.) Dandy
References
- Vilão, R.; Venâncio, C.; Lopes, M.A.; Ferreira, M.J. Relatório Do Estado Do Ambiente; LIsboa, 2023.
- Vivas, E.; Maia, R. A gestão de escassez e secas enquadrando as alterações climáticas. Rev. Recur. Hídricos 2010, 31, 25–37.
- Alho, A. do Ó.P. Gestão do risco de seca no Algarve; Fundação Calouste Gulbenkian : Fundação para a ciência e a tecnologia: Lisboa, 2013; ISBN 978-972-31-1467-6.
- MedECC Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First Mediterranean Assessment Report; First Mediterranean Assessment Report [Cramer, W., Guiot, J., Marini, K. (eds.)]; Union for the Mediterranean: Marseille, France, 2020.
- FAO AQUASTAT. www.fao.org (accessed on 13th of June 2024).
- Noto, L.V.; Cipolla, G.; Pumo, D.; Francipane, A. Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses. Water Resour. Manag. 2023, 37, 2307–2323. [CrossRef]
- IPMA. Situação de seca meteorológica. Instituto Português do Mar e da Atmosfera (IPMA): Lisboa, 2024.
- INE. Estatísticas Do Turismo 2023. Instituto Nacional de Estatística (INE): LIsboa, 2024;
- Almutawa, A.A. Native and Xeric Plant Recommendations for Urban Landscapes in Kuwait. Technol. Hortic. 2022, 2, 1–16. [CrossRef]
- Bresch, C.; Mailleret, L.; Muller, M.M.; Poncet, C.; Parolin, P. Invasive Plants in the Mediterranean Basin: Which Traits Do They Share? 2013, 12.
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A Typology for the Classification, Description and Valuation of Ecosystem Functions, Goods and Services. Ecol. Econ. 2002, 41, 393–408. [CrossRef]
- Chapter 1 Nature-Based Solutions to Climate Change Adaptation in Urban Areas—Linkages Between Science, Policy and Practice. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing: Cham, 2017 ISBN 978-3-319-53750-4.
- Wheeler, M.M.; Larson, K.L.; Bergman, D.; Hall, S.J. Environmental Attitudes Predict Native Plant Abundance in Residential Yards. Landsc. Urban Plan. 2022, 224, 104443. [CrossRef]
- Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 12, 4247. [CrossRef]
- Rocha, B.; Paço, T.; Luz, A.; Palha, P.; Milliken, S.; Kotzen, B.; Branquinho, C.; Pinho, P.; De Carvalho, R. Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water 2021, 13, 94. [CrossRef]
- Rivas-Martínez, S. Mapa de series, geoseries y geopermaseries de vegetación de España - memoria del mapa de vegetación potencial de España. Itinera Geobotanica, Parte II, 18 (1) 2007.
- Rundel, P.W.; Arroyo, M.T.K.; Cowling, R.M.; Keeley, J.E.; Lamont, B.B.; Vargas, P. Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 383–407. [CrossRef]
- Spampinato, G.; Musarella, C.M.; Cano-Ortiz, A.; Signorino, G. Habitat, Occurrence and Conservation Status of the Saharo-Macaronesian and Southern-Mediterranean Element Fagonia Cretica L. (Zygophyllaceae) in Italy. J. Arid Land 2018, 10, 140–151. [CrossRef]
- IPCC. Climate Change 2023 – Impacts, Adaptation and Vulnerability; 1st ed.; Cambridge University Press, 2023; ISBN 978-1-009-32584-4.
- Xarepe, D. A Reinvenção Dos Jardins Xerófilos No Algarve Com Recurso Às Suculenatas Xeromórficas. Dissertação para a obtenção do grau de mestre, Universidade do Algarve: Faro, 2023.
- Ward, D. The Biology of Deserts; Oxford University Press, 2009;
- Reyes-Paecke, S.; Gironás, J.; Melo, O.; Vicuña, S.; Herrera, J. Irrigation of Green Spaces and Residential Gardens in a Mediterranean Metropolis: Gaps and Opportunities for Climate Change Adaptation. Landsc. Urban Plan. 2019, 182, 34–43. [CrossRef]
- Musarella, C.M.; Laface, V.L.A.; Angiolini, C.; Bacchetta, G.; Bajona, E.; Banfi, E.; Barone, G.; Biscotti, N.; Bonsanto, D.; Calvia, G.; et al. New Alien Plant Taxa for Italy and Europe: An Update. Plants 2024, 13, 620. [CrossRef]
- Kettunen, M.; Genovesi, P.; Gollasch, S.; Pagad, S.; Starfinger, U. Technical Support to EU Strategy on Invasive Species (IAS) - Assessment of the Impacts of IAS in Europe and the EU IEEP 2008.
- Global Strategy on Invasive Alien Species; McNeely, J.A., Global Invasive Species Programme, International Union for Conservation of Nature and Natural Resources, International Council of Scientific Unions, CAB International, Eds.; IUCN: Gland, 2001; ISBN 978-2-8317-0609-2.
- Gritti, E.S.; Smith, B.; Sykes, M.T. Vulnerability of Mediterranean Basin Ecosystems to Climate Change and Invasion by Exotic Plant Species. J. Biogeogr. 2006, 33, 145–157. [CrossRef]
- Ferreira, V.; Barreira, A.; Loures, L.; Antunes, D.; Panagopoulos, T. Stakeholders’ Engagement on Nature-Based Solutions: A Systematic Literature Review. Sustainability 2020, 12, 640. [CrossRef]
- Gillham, B. Case Study Research Methods; 2a edição.; Continnum: London and New York, 2000.
- Bell, J. Doing Your Research Project: A Guide for First-Time Researchers in Education, Health and Social Science; Open UP study skills; 5. ed.; McGraw-Hill, Open Univ. Press: Maidenhead, 2010; ISBN 978-0-335-23582-7.
- Baker, H.K.; Singleton, J.C.; Veit, E.T. Survey Research in Corporate Finance - Bridging the Gap between Theory and Practice; Oxford University Press: New York, USA, 2011.
- Levy, P.S.; Lemeshow, S. Sampling of Populations: Methods and Applications; 4th edition.; Wiley: New Jersey, USA, 2008; ISBN 978-0-470-04007-2.
- Hill, M.M.; Hill, A. Investigação Por Questionário; 2a Edi.; Edições Sílabo: Lisboa, 2008.
- Chard, J.; van Iersel, M.; Bugbee, B. Mini-Lysimeters to Monitor Transpiration and Control Drought Stress: System Design and Unique Applications; Utah State University: Logan, USA, 2010.
- McCauley, D.; Keller, S.; Transue, K.; Wiman, N.; Nackley, L. A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers. Sensors 2024, 24, 7764. [CrossRef]
- Santagostini, P.; Demotes-Mainard, S.; Huché-Thélier, L.; Leduc, N.; Bertheloot, J.; Guérin, V.; Bourbeillon, J.; Sakr, S.; Boumaza, R. Assessment of the Visual Quality of Ornamental Plants: Comparison of Three Methodologies in the Case of the Rosebush. Sci. Hortic. 2014, 168, 17–26. [CrossRef]
- Carita, H.; Cardoso, A. André Jordan - 25 Anos de Realizações Em Portugal; Invesplano.; Madrid, 1999.
- INE Instituto Nacional de Estatística - Densidade Populaciona Algarve 2025.
- Brito, S. Território e turismo no Algarve; Edições Colibri : Centro Internacional de Investigação em Território e Turismo da Universidade do Algarve: Lisboa, 2009; ISBN 978-972-772-871-8.
- Rivas-Martínez, S. Les Étages Bioclimatiques de la Végétation de la Péninsule Ibérique. Anal Jard Bot Madr. 1981, 37, 251–268.
- Rivas-Martinez, S. Etages bioclimatiques, secteurs chorologiques et séries de végétation de l’Espagne méditerranéenne. Ecol. Mediterr. 1982, 8, 275–288. [CrossRef]
- Rivas-Martínez, S. Memoria del mapa de las series de vegetación de España 1987.
- Rivas-Martínez, S. Geobotánica y Bioclimatologia. Granada, 1996.
- Rivas-Martínez, S. Avances En Geobotánica. Real Acad Farm. 2005, 142p.
- Rivas-Martínez, S. Global Bioclimatics (Classificacion Bioclimatica de La Tierra). 2008.
- Rivas-Martínez, S.; Sáenz, S.R.; Penas, A. Global Geobotany. 2011, pp. 1–634.
- Rivas-Martínez, S. Bioclimatologia, Biogeografía y Series de Vegetación de Andalucía Occidental. Lagascalia 1988, 15, 91–119.
- Rivas-Martínez, S. Bioclimatología, Biogeografia y Series de vegetación de andalucía Occidental. Lagascalia 1990, 15 (Extra):, 91–119.
- Rivas-Martínez, S. Global bioclimatics (Classificacion bioclimatica de la Tierra). 2004.
- IPMA Normal Climatológica - Faro 1991-2020 2025.
- Rivas-Martínez, S.; Penas, Á.; del Río, S.; González, T.E.D.; Rivas-Sáenz, S. Chapter 2 - Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula; Plant and Vegetation; Springer: Utrecht, Netherlands, 2017; Vol. 1, pp. 29–80.
- CCDR PROTAlgarve - Caracterização e Diagnóstico; Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional / Comissão de Coordenação e Desenvolvimento Regional do Algarve: Faro, 2006;
- Manuppella, G. Nota Explicativa Da Carta Geológica Da Região Do Algarve, Escala 1:100 000.; Serviços Geológicos de Portugal: Lisboa, 1992.
- Pouyat, R.V.; Day, S.D.; Brown, S.; Schwarz, K.; Shaw, R.E.; Szlavecz, K.; Trammell, T.L.E.; Yesilonis, I.D. Urban Soils. In Forest and Rangeland Soils of the United States Under Changing Conditions; Pouyat, R.V., Page-Dumroese, D.S., Patel-Weynand, T., Geiser, L.H., Eds.; Springer International Publishing: Cham, 2020; pp. 127–144 ISBN 978-3-030-45215-5.
- Direção-Geral do Território. Especificações Técnicas Da Carta de Uso e Ocupação Do Solo (COS) de Portugal Continental Para 2018; Direção-Geral do Território: Lisboa, 2019.
- Plano de Urbanização Da Quinta Do Lago, Aprovado Pela Resolução Do Conselho de Ministros n.o 160/2003; 8 de outubro;
- Almeida, C.; Mendonça, J.J.L.; Jesus, M.R.; Gomes, A.J. Sistema de Aquíferos de Portugal Continental; Centro de Geologia da Universidade de Lisboa&Instituto Nacional da Água.; Lisboa, 2000; Vol. III;
- APA. Elaboração dos Estudos de Base, Dociumentos para a Consulta Pública e Relatórios Finais. Agência Port. Ambiente APA 2020, I-Memória descritiva.
- Caetano, J.; Oliveira, M.; Silva, E.; Fernandez, H.; Lança, R. Resilience of Water Supply Systems - Case of Study of Quinta Do Lago. In Proceedings of the Sustainability and Innovation for the Future; Albufeira, 2016.
- Dados.gov Rede Natura 2000 2025.
- Ramsar Sites Information Service 2025.
- Madureira, H.; Andresen, T.; Monteiro, A. Green Structure and Planning Evolution in Porto. Urban For. Urban Green. 2011, 10, 141–149. [CrossRef]
- InfraQuinta Plano de Atividades e Orçamento 2025; InfraQuinta Plano de Atividades e Orçamento 2025; InfraQuinta E.M: Loulé, 2024;
- Wade, G.; et al. Xeriscape - a Guide to Developing a Water-Wise Landscape; Cooperative Extension, 2007;
- Pinto Gomes, C.; Ferreira, R. Flora e Vegetação Do Barrocal Algarvio; Comissão de Coordenação e Desenvolvimento Regional do Algarve.; Ingrasa-Artes Gráficas: Faro, 2005.
- Monteiro-Henriques, T.; Martins, M.J.; Cerdeira, J.O.; Silva, P.; Arsénio, P.; Silva, Á.; Bellu, A.; Costa, J.C. Bioclimatological Mapping Tackling Uncertainty Propagation: Application to Mainland Portugal: BIOCLIMATOLOGICAL MAPPING TACKLING UNCERTAINTY PROPAGATION. Int. J. Climatol. 2016, 36, 400–411. [CrossRef]
- Benedict, M.E.; McMahon, E.T. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2006.
- ERSAR Relatório Anual Dos Serviços de Águas e Resíduos Em Portugal; Volume 1 - Carcaterização do setor de água e resíduos; Lisboa, 2023.
- Costa, J.C.; Neto, C.; Aguiar, C.; Capelo, J.; Santo, M.D.E.; Honrado, J.; Pinto-Gomes, C.; Monteiro-Henriques, T.; Sequeira, M.; Lousã, M. VASCULAR PLANT COMMUNITIES IN PORTUGAL (CONTINENTAL, THE AZORES AND MADEIRA). Glob. Geobot. 2012, 2, 1–180.
- Flora-On. www.flora-On.pt (accessed on 18th of July 2025).
- POWO Royal Botanic Gardens Kew - Plants of the World Online (accessed on 18th of July 2025).
- Whitford, W.G. Ecology of Desert Systems; Elsevier Science Ltd.: Londres, UK, 2002.
- Duriyaprapan, S.; Britten, E.J. The Effects of Solar Radiation on Plant Growth, Oil Yield and Oil Quality of Japanese Mint. J. Exp. Bot. 1982, 33, 1319–1324.
- Gildemeister, H. Mediterranean Gardening: A Waterwise Approach; 1st Calif. ed.; University of California Press: Berkeley, 2002; ISBN 978-0-520-23603-5.
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; 15aedição.; Pearson: Columbus, USa, 2016;
- Engel, R.J.; Witty, J.E.; Eswaran, H. The Classification, Distribution, and Extent of Soils with a Xeric Moisture Regime in the United States. CATENA 1997, 28, 203–209. [CrossRef]
- Mainguet, M. Aridity, Droughts and Human Development; Springer Science & Business Media: Nova Iorque, USA, 1999.
- The Vegetation of the Iberian Peninsula; Loidi, J., Ed.; Plant and Vegetation; Springer International Publishing: Cham, 2017; Vol. 13; ISBN 978-3-319-54866-1.
- Brouwer, C.; Prins, K.; Kay, M.; Heibloem, M. Irrigation Water Management: Irrigation Methods; FAO: Roma, 1986;
- Silva; Nogueira, R.J.M.C.; Silva, M.A.; Albuquerque, M.B. Global Science Books. 2011, pp. 32–41.
- Weinstein, G. Xeriscape Handbook: A How-to Guide to Natural, Resource-Wise Gardening; Fulcrum Pub: Golden, Colo, 1999; ISBN 978-1-55591-346-5.
- Rai, N.; Morales, L.O.; Aphalo, P.J. Perception of Solar UV Radiation by Plants: Photoreceptors and Mechanisms. Plant Physiol. 2021, 186, 1382–1396. [CrossRef]
- Lee, S.D.; Kim, S.J.; Jung, S.I.; Son, K.-C.; Kays, S.J. Diurnal CO2 Assimilation Patterns in Nine Species of CAM-Type Succulent Plants. HortScience 2006, 41, 1373–1376. [CrossRef]
- Noy-Meir, I. Desert Ecosystems: Environment and Producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [CrossRef]
- Suc, J.-P. Origin and Evolution of the Mediterranean Vegetation and Climate in Europe. Nature 1984, 307, 429–432. [CrossRef]
- Lavorel, S. Ecological Diversity and Resilience of Mediterranean Vegetation to Disturbance. Divers. Distrib. 1999, 5, 3–13. [CrossRef]
- Quinto Canas, R.; Cano-Ortiz, A.; Musarella, C.M.; Del Río, S.; Raposo, M.; Fuentes, J.C.P.; Gomes, C.P. Quercus Rotundifolia Lam. Woodlands of the Southwestern Iberian Peninsula. Land 2021, 10, 268. [CrossRef]
- Joffre, R.; Rambal, S. Mediterranean Ecosystems. In Encyclopedia of Life Sciences; Wiley, 2001 ISBN 978-0-470-01617-6.
- Mahr, D.L. Some Major Families and Genera OF Succulent Plants. 2017.
- Griffiths, H.; Males, J. Succulent Plants. Curr. Biol. 2017, 27, R890–R896. [CrossRef]
- Arakaki, M.; Christin, P.-A.; Nyffeler, R.; Lendel, A.; Eggli, U.; Ogburn, R.M.; Spriggs, E.; Moore, M.J.; Edwards, E.J. Contemporaneous and Recent Radiations of the World’s Major Succulent Plant Lineages. Proc. Natl. Acad. Sci. 2011, 108, 8379–8384. [CrossRef]
- Heyduk, K. The Genetic Control of Succulent Leaf Development. Curr. Opin. Plant Biol. 2021, 59, 101978. [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology; 4th ed.; Elsevier/Academic Press: Amsterdam Boston, 2009; ISBN 978-0-12-374143-1.
- ONU World Population Prospects 2024; United Nations Department of Economic and Social Affairs, Population Division: Nova Iorque, USA, 2024.
- Gonçalves, P. Linking biological and cultural diversity: a novel approach for urban greenspaces planning and management, Universidade do Porto: Porto, 2020.
- Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., Wilkinson, C., Eds. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Springer Netherlands: Dordrecht, 2013; ISBN 978-94-007-7087-4.
- Gaertner, M.; Wilson, J.R.U.; Cadotte, M.W.; MacIvor, J.S.; Zenni, R.D.; Richardson, D.M. Non-Native Species in Urban Environments: Patterns, Processes, Impacts and Challenges. Biol. Invasions 2017, 19, 3461–3469. [CrossRef]
- Cao Pinna, L.; Axmanová, I.; Chytrý, M.; Malavasi, M.; Acosta, A.T.R.; Giulio, S.; Attorre, F.; Bergmeier, E.; Biurrun, I.; Campos, J.A.; et al. The Biogeography of Alien Plant Invasions in the Mediterranean Basin. J. Veg. Sci. 2021, 32, e12980. [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manage. 2014, 146, 107–115. [CrossRef]
- Saatkamp, A.; Argagnon, O.; Noble, V.; Finocchiaro, M.; Meineri, E. Climate Change Impacts on Mediterranean Vegetation Are Amplified at Low Altitudes. Glob. Ecol. Biogeogr. 2023, 32, 1113–1126. [CrossRef]
- Girot, C. The Course of Landscape Architecture; Thames & Hudson: Londres, 2016.
- Webster, E.; Cameron, R.; Culham, A. Gardening in a Changing Climate; Royal Horticultural Society: Londres, 2017.
- Paudel, S.; States, S.L. Urban Green Spaces and Sustainability: Exploring the Ecosystem Services and Disservices of Grassy Lawns versus Floral Meadows. Urban For. Urban Green. 2023, 84, 127932. [CrossRef]
- Vardoulakis, E.; Karamanis, D.; Fotiadi, A.; Mihalakakou, G. The Urban Heat Island Effect in a Small Mediterranean City of High Summer Temperatures and Cooling Energy Demands. Sol. Energy 2013, 94, 128–144. [CrossRef]
- Dearborn, D.C.; Kark, S. Motivations for Conserving Urban Biodiversity. Conserv. Biol. 2010, 24, 432–440. [CrossRef]
- Snethlage, M.; Jones-Walters, L. Interaction between Policy Concerning Spatial Planning and Ecological Networks in Europe (SPEN – Spatial Planning and Ecological Networks)); ECNC - European Centre for Nature Conservation: Tilburg, Netherlands, 2008.
- Cameron, R.W.F.; Blanuša, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B.; Thompson, K. The Domestic Garden – Its Contribution to Urban Green Infrastructure. Urban For. Urban Green. 2012, 11, 129–137. [CrossRef]
- Mahmoudi Farahani, L.; Maller, C.; Phelan, K. Private Gardens as Urban Greenspaces: Can They Compensate for Poor Greenspace Access in Lower Socioeconomic Neighbourhoods? Landsc. Online 2018, 59, 1–18. [CrossRef]
- Fernández-Cañero, R.; Ordovás, J.; Herrera Machuca, M.Á. Domestic Gardens as Water-Wise Landscapes: A Case Study in Southwestern Europe. HortTechnology 2011, 21, 616–623. [CrossRef]
- Mimet, A.; Kerbiriou, C.; Simon, L.; Julien, J.-F.; Raymond, R. Contribution of Private Gardens to Habitat Availability, Connectivity and Conservation of the Common Pipistrelle in Paris. Landsc. Urban Plan. 2020, 193, 103671. [CrossRef]
- Hanson, H.I.; Eckberg, E.; Widenberg, M.; Alkan Olsson, J. Gardens’ Contribution to People and Urban Green Space. Urban For. Urban Green. 2021, 63, 127198. [CrossRef]
- Chapter 2 Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing: Cham, 2017 ISBN 978-3-319-53750-4.
- Bilgili, B.C.; Sahin, S. Evaluation of Urban Green Areas on “The City Climate - Case Study of Ataturk Forest Farm.; Artvin, Turquía, 2013.
- Goméz, A.L. El Clima en las ciudades. Arbor, 13-32, 1990.
- Estes, M.; Quattrochi, D.; Stasiak, E. How Its Effects Can Influence Environmental Decision Making in Your Community 2003.
- Teixeira, M. Reposição da Permeabilidade dos Solos - Desafios para o Urbanismo Futuro. Dissertação para a obtenção do grau de mestre em Planeamento e Projeto do Ambiente Urbano, Universidade do Porto: Porto, 2005.
- Chapter 6 Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change Adaptation and Risk Reduction. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing: Cham, 2017 ISBN 978-3-319-53750-4.
- European Commission (EC) Horizon 2020 Expert Group on Nature-Basedsolutions and Re-Naturing Cities. Final Report: Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; Publications Office: Bruxelas, 2015.
- Yaşlı, R.; Yücedağ, C.; Ayan, S.; Simovski, B. The Role of Urban Trees in Reducing Land Surface Temperature. SilvaWorld 2023, 2, 36–49. [CrossRef]
- Akbari, H.; Kurn, D.M.; Bretz, S.E.; Hanford, J.W. Peak Power and Cooling Energy Savings of Shade Trees. Energy Build. 1997, 25, 139–148. [CrossRef]
- Raihan, A. A Review on the Role of Green Vegetation in Improving Urban Environmental Quality. Eco Cities 2024, 4, 2387. [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of Green Space Spatial Pattern on Land Surface Temperature: Implications for Sustainable Urban Planning and Climate Change Adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [CrossRef]
- EEA (European Environment Agency) Drought Definition. swww.eea.europa.eu (accessed on 24th of July 2025).
- Wilhite, D.; Glantz, M. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. - WATER INT 1985, 10, 111–120. [CrossRef]
- APA Plano de Prevenção, Monitorização e Contingência Para Situações de Seca 2017.
- Leal, G. de F.; et al. Elaboração dos Estudos de Base, Documentos para Consulta Pública e Relatórios Finais; APA: Lisboa, 2020.
- Kulik, M.S. Agroclimatic Indices of Drought. Meteorol. Transl. 1962, 75–81.
- Essa, Y.H.; Hirschi, M.; Thiery, W.; El-Kenawy, A.M.; Yang, C. Drought Characteristics in Mediterranean under Future Climate Change. Npj Clim. Atmospheric Sci. 2023, 6, 133. [CrossRef]
- GPP. Monitorização Agrometeorológica e Hidrológica; APA: Lisboa, 2023; p. 68.
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [CrossRef]
- WMO State of the Global Climate 2023; United Nations: Geneva, Suiça, 2024; Vol. 1; ISBN 978-92-63-11347-4.
- Boletim Anual 2023; Instituto Português do Mar e da Atmosfera, IP Divisão Clima e Alterações Climáticas: Lisboa, 2024.
- Miranda, P.M.A.; Valente, M.A.; Tomé, A.; Trigo, R. Alterações Climáticas em Portugal - Cenários, Impactos e Medidas de Adaptação - Projecto SIAM_II; Gradiva.; Lisboa, 2006;
- IPMA Normal Climatológica 1971-200 Faro/Aeroporto (554) 1971-2000 2024.
- IPMA Normal Climatológica 1981-2010 Faro/Aeroporto (554) 1981-2010 2024.
- IPMA Normal Climatológica 1991-2020 Faro/Aeroporto (554) 1991-2020 2025.
- APA. Água Que Une - Estratégia Nacional Para a Gestão Da Água. APA: Lisboa, 2025.
- AMAL Plano Intermunicipal de Adaptação Às Alterações Climáticas Da CI-AMAL; AMAL: Faro, 2019;
- Baião, C.M. Perceção Ambiental sobre os Charcos Temporários da Costa Sudoeste de Portugal. Tese de mestrado, Universidade de Évora: Évora, 2015.
- Meireles, C.; Baião, C.; Ferreira, L.; Pinto Gomes, C. LIfe-Relict: O Adelfeiral Da Serra de Monchique - Uma Relíquia Da Laurissilva 2023.
- APA Plano de Gestão de Rede Hidrográfica - Guadiana (RH7) 2023.
- Martins, J.P.; Godinho, F. Medidas Sustentáveis Para Evitar a Escassez de Água Em Contexto de Secas Prolongadas 2023.
- Canas, R.Q.; Neiva, J.; Xarepe, D.; Cano-Ortiz, A.; Raposo, M.; Gomes, C.P. Alien and Invasive Flora in Algarve (Southern Portugal). In Networks, Markets & People Communities, Institutions and Enterprises Towards Post-humanism Epistemologies and AI Challenges; Springer: Switzerland, 2024; Vol. 1.
- INE. Caracterização estatística da população residente na Quinta Lago, Loulé. Instituto Naciol de Estatística (INE). 2025.
- Costa, J.C.; Capelo, J.H.; Lousã, M.; Aguiar, C. Biogeografia de Portugal. Quercetea 1998, 0, 5–56.
- Ismaeil, E.M.H.; Sobaih, A.E.E. Assessing Xeriscaping as a Retrofit Sustainable Water Consumption Approach for a Desert University Campus. Water 2022, 14, 1681. [CrossRef]
- Resolução n.o 26-A/2024 Resolução Do Conselho de Ministros n.o 26-A/2024 - Medidas de Resposta, Para o Quadro de Situação de Alerta Na Região Do Algarve, Por Motivo de Seca; 2024.








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
