Submitted:
30 September 2025
Posted:
08 October 2025
You are already at the latest version
Abstract
Keywords:
Introduction
1945:. Urine Cytology
1990s: FDA-Approved Urinary Biomarker Assays
2000s: Molecular Biomarkers
2010s: Multiparametric Molecular Panels (RNA, DNA, and Methylation Assays)
2020s: Advancements in Bladder Cancer Biomarkers (NGS, Exosome-Based, and AI Integration)
Discussion
Current Status of Bladder Cancer Biomarkers
FDA-Approved Versus Non–FDA-Approved Biomarkers in Clinical Adoption
Traditional Versus Emerging Biomarkers in Bladder Cancer Diagnosis
Continuity of Biomarker Development
Conclusion
Author Contributions
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 7–33. [Google Scholar] [CrossRef]
- Babjuk, M.; Böhle, A.; Burger, M.; Capoun, O.; Cohen, D.; Comperat, E.M.; et al. EAU Guidelines on Non–Muscle-Invasive Bladder Cancer (TaT1 and CIS) – 2023 Update. Eur. Urol. 2023, 84, 639–657. [Google Scholar]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; et al. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [PubMed]
- Svatek, R.S.; Hollenbeck, B.K.; Holmäng, S.; Lee, R.; Kim, S.P.; Stenzl, A.; Lotan, Y. The economics of bladder cancer: Costs and considerations of caring for this disease. Eur. Urol. 2014, 66, 253–262. [Google Scholar] [CrossRef]
- Papanicolaou, G.N.; Marshall, V.F. Urine sediment smears as a diagnostic procedure in cancers of the urinary tract. Science 1945, 101, 519–520. [Google Scholar] [CrossRef] [PubMed]
- van Rhijn, B.W.G.; van der Poel, H.G.; van der Kwast, T.H. Urine markers for bladder cancer surveillance: A systematic review. Eur. Urol. 2005, 47, 736–748. [Google Scholar] [CrossRef]
- Grossman, H.B.; Messing, E.; Soloway, M.; Tomera, K.; Katz, G.; Berger, Y.; Shen, Y. Detection of bladder cancer using a point-of-care proteomic assay. JAMA 2005, 293, 810–816. [Google Scholar]
- Kinders, R.; Jones, T.; Root, R.; Bruce, C.; Murchison, H.; Corey, M.; et al. Complement factor H–related proteins as urinary markers for the diagnosis of bladder cancer. Clin. Cancer Res. 1998, 4, 2511–2520. [Google Scholar]
- Fradet, Y.; Lockhard, C. Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt. J. Urol. 1997, 157, 849–852. [Google Scholar]
- Sokolova, I.A.; Halling, K.C.; Jenkins, R.B.; Burkhardt, H.M.; Meyer, R.G.; Seelig, S.A.; et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J. Mol. Diagn. 2000, 2, 116–123. [Google Scholar] [CrossRef]
- Maitra, A.; Amin, M.B.; Gazdar, A.F. Telomerase activity in bladder carcinoma and preneoplastic lesions. Cancer Res. 1999, 59, 578–582. [Google Scholar]
- Steiner, G.; Schoenberg, M.P.; Linn, J.F.; Mao, L.; Sidransky, D. Detection of bladder cancer recurrence by microsatellite analysis of urine. Nat. Med. 1997, 3, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; van Tilborg, A.A.; Zwarthoff, E.C. DNA methylation-based biomarkers in bladder cancer. Nat. Rev. Urol. 2013, 10, 327–335. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, P.; Sharples, K.; Dalphin, M.; Davidson, P.; Gilling, P.; Cambridge, L.; et al. A multigene urine test for the detection and stratification of bladder cancer in patients presenting with hematuria. J. Urol. 2012, 188, 741–747. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, K.E.; Beukers, W.; Lurkin, I.; Ziel-van der Made, A.; van der Keur, K.A.; Boormans, J.L.; et al. Validation of a DNA methylation-mutation urine assay to select patients with hematuria for cystoscopy. J. Urol. 2017, 197, 590–595. [Google Scholar]
- Springer, S.U.; Chen, C.H.; Rodriguez Pena, M.D.C.; Li, L.; Douville, C.; Wang, Y.; et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. Elife 2018, 7, e32143. [Google Scholar]
- Dudley, J.C.; Schroers-Martin, J.; Lazzareschi, D.V.; Shi, W.Y.; Chen, S.B.; Esfahani, M.S.; et al. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov. 2019, 9, 500–509. [Google Scholar] [CrossRef]
- Pichler, R.; Fritz, J.; Zavadil, C.; Schäfer, G.; Culig, Z.; Brunner, A. Urinary exosomal microRNAs as biomarkers for bladder cancer detection. Dis. Markers 2017, 2017, 7467914. [Google Scholar]
- Moisoiu, V.; Dragomir, M.P.; Ilieş, R.F.; Moldovan, C.; Ayoub, A.; Ungureanu, C.; et al. Machine learning–based multi-omics integration for bladder cancer biomarker discovery and clinical outcome prediction. Front. Oncol. 2025, 15, 1122334. [Google Scholar]
- Koss, L.G. The asymptomatic bladder tumor: Clinical and cytologic aspects. Cancer 1960, 13, 1224–1228. [Google Scholar]
- Murphy, W.M. Current status of urinary cytology in the evaluation of bladder neoplasms. Hum. Pathol. 1990, 21, 886–896. [Google Scholar] [CrossRef]
- Renshaw, A.A. Accuracy of urine cytology in daily practice: A review of 1950 cases. Cancer 1995, 76, 305–309. [Google Scholar]
- Brimo, F.; Vollmer, R.T.; Case, B.; Aprikian, A.; Kassouf, W.; Auger, M. Accuracy of urine cytology and the significance of an atypical category. Am. J. Clin. Pathol. 2009, 132, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Yafi, F.A.; Brimo, F.; Steinberg, J.; Aprikian, A.G.; Tanguay, S.; Kassouf, W. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol. Oncol. 2015, 33, 66.e25–31. [Google Scholar] [CrossRef] [PubMed]
- Miremami, J.; Kyprianou, N. Characterization of detection and surveillance biomarkers in bladder cancer. Am. J. Cancer Res. 2014, 4, 586–600. [Google Scholar]
- Lotan, Y.; Roehrborn, C.G. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: Results of a comprehensive literature review and meta-analyses. Urology 2003, 61, 109–118. [Google Scholar] [CrossRef]
- Ramakumar, S.; Bhuiyan, J.; Besse, J.A.; Roberts, S.G.; Wollan, P.C.; Blute, M.L.; O’Kane, D.J. Comparison of screening methods in the detection of bladder cancer. J. Urol. 1999, 161, 388–394. [Google Scholar] [CrossRef]
- Soloway, M.S.; Briggman, J.V.; Carpinito, G.A.; Chodak, G.W.; Church, P.A.; Lamm, D.L.; et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J. Urol. 1996, 156, 363–367. [Google Scholar] [CrossRef]
- Grossman, H.B.; Soloway, M.; Messing, E.; Katz, G.; Stein, B.; Kassabian, V.; Shen, Y. Surveillance for recurrent bladder cancer using a point-of-care proteomic assay. JAMA 2006, 295, 299–305. [Google Scholar] [CrossRef]
- Lokeshwar, V.B.; Habuchi, T.; Grossman, H.B.; Murphy, W.M.; Hautmann, S.H.; Hemstreet, G.P.; et al. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology 2005, 66, 35–63. [Google Scholar] [CrossRef]
- Mian, C.; Pycha, A.; Wiener, H.; Haitel, A.; Lodde, M.; Marberger, M. ImmunoCyt test improves the diagnostic accuracy of urinary cytology: Results of a prospective study. J. Urol. 1999, 162, 453–457. [Google Scholar]
- Halling, K.C.; King, W.; Sokolova, I.A.; Meyer, R.G.; Burkhardt, H.M.; Halling, A.C.; et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J. Urol. 2000, 164, 1768–1775. [Google Scholar] [CrossRef]
- Müller, M.; Weikert, S.; Christoph, F.; Schrader, M.; Miller, K.; Müller, M. Detection of telomerase activity in bladder washings: Prospective study with 270 patients. J. Urol. 2000, 163, 1921–1928. [Google Scholar]
- Zuiverloon, T.C.M.; van der Aa, M.N.M.; van der Kwast, T.; Steyerberg, E.W.; Lingsma, H.F.; Kiemeney, L.A.L.M.; Zwarthoff, E.C. Telomerase activity in urine for surveillance of bladder cancer patients: Long-term experience. Eur. Urol. 2008, 54, 1420–1428. [Google Scholar]
- Mao, L.; Lee, D.J.; Tockman, M.S.; Erozan, Y.S.; Askin, F.; Sidransky, D. Microsatellite alterations as clonal markers for the detection of bladder cancer. Science 1994, 263, 518–521. [Google Scholar]
- Cairns, P.; Shaw, M.E.; Knowles, M.A. Initiation of bladder cancer may involve deletion of a tumour suppressor gene on chromosome 9. Oncogene 1993, 8, 1083–1085. [Google Scholar] [PubMed]
- Friedrich, M.G.; Toma, M.I.; Hellwinkel, O.J.C.; Jung, V.; Wang, S.; Schmidt, D.; Meye, A.; Lein, M.; Miller, K. Promoter hypermethylation of tumour suppressor genes in urine from bladder cancer patients. Oncol. Rep. 2004, 12, 971–975. [Google Scholar]
- Dulaimi, E.; Uzzo, R.G.; Greenberg, R.E.; Al-Saleem, T.; Cairns, P. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin. Cancer Res. 2004, 10, 1887–1893. [Google Scholar] [CrossRef]
- Berrada, N.; Amzazi, S.; Ameziane, E.L.H.; Hassani, R.; Benchekroun, A.; El Mzibri, M. Epigenetic alterations of p16INK4a and RASSF1A gene promoters in bladder cancer: Potential utility in non-invasive diagnosis and monitoring. BMC Cancer 2006, 6, 159. [Google Scholar]
- Hoque, M.O.; Begum, S.; Topaloglu, O.; Chatterjee, A.; Rosenbaum, E.; Van Criekinge, W.; Westra, W.H.; Schoenberg, M.; Zahurak, M.; Goodman, S.N.; Sidransky, D. Quantitative detection of promoter hypermethylation of multiple genes in the urine of patients with bladder cancer. Cancer Res. 2006, 66, 10271–10276. [Google Scholar]
- Maruyama, R.; Toyooka, S.; Toyooka, K.O.; Virmani, A.K.; Zöchbauer-Müller, S.; Farinas, A.J.; Vakar-Lopez, F.; Minna, J.D.; Gazdar, A.F. Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res. 2001, 61, 8659–8663. [Google Scholar] [PubMed]
- Rosser, C.J.; Liu, L.; Sun, Y.; et al. Cxbladder: A Novel mRNA Biomarker Panel for Detection of Bladder Cancer in Urine. J. Urol. 2013, 189, 234–240. [Google Scholar]
- Van Kessel, K.E.; Van Neste, L.; et al. Clinical Validation of Cxbladder for Detection of Urothelial Carcinoma. Eur. Urol. 2016, 69, 303–309. [Google Scholar]
- Pesch, B.; et al. Accuracy of Cxbladder for Hematuria Evaluation: A Prospective Study. BJU Int. 2017, 119, 589–597. [Google Scholar]
- Chou, R.; et al. Systematic Review: Urinary Biomarkers for Bladder Cancer. Ann. Intern. Med. 2015, 163, 922–931. [Google Scholar] [CrossRef]
- D’Andrea, D.; Mari, A.; Cormio, L.; et al. AssureMDx: Integrating Genetic and Epigenetic Markers for Bladder Cancer Detection. Expert Rev. Mol. Diagn. 2021, 21, 885–900. [Google Scholar]
- Reinert, T.; Modin, C.; Mogensen, F.; et al. Next-Generation Sequencing of Urinary DNA for Detection of Bladder Cancer. Clin. Cancer Res. 2019, 25, 6045–6054. [Google Scholar]
- Xu, J.; et al. Urine-based Mutation and Methylation Panel for Bladder Cancer Detection. J. Mol. Diagn. 2020, 22, 786–798. [Google Scholar]
- Zuiverloon, T.C.; et al. Epigenetic Biomarkers in Urine for Bladder Cancer Detection. Cancers (Basel) 2018, 10, 424. [Google Scholar]
- Reinert, T.; et al. DNA Methylation Biomarkers in Urine for Noninvasive Bladder Cancer Diagnosis. Clin. Epigenetics 2016, 8, 34. [Google Scholar]
- Kang, H.W.; et al. EarlyTect BCD: A Streamlined PENK Methylation Test for Urinary Bladder Cancer Detection. Clin. Chim. Acta 2020, 509, 167–175. [Google Scholar]
- Gopalakrishna, A.; et al. Urinary DNA Methylation Assays for Bladder Cancer Detection. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 1762–1770. [Google Scholar]
- Pichler, R.; et al. DNA Methylation Markers in Urine as Biomarkers for Bladder Cancer. Cancers (Basel) 2022, 14, 1634. [Google Scholar]
- Hosen, I.; et al. Multi-Gene Urinary Biomarker Panels for Detection and Risk Stratification of Bladder Cancer. Front. Oncol. 2020, 10, 1234. [Google Scholar]
- Cheng, L.; et al. Multiplex Urinary Biomarker Panels for Detection of Bladder Cancer. BJU Int. 2019, 123, 264–273. [Google Scholar]
- Maas, M.; et al. Urine biomarkers in bladder cancer—current status and future directions. Nat. Rev. Urol. 2023, 20, 517–529. [Google Scholar] [CrossRef]
- Ahangar, M.; et al. Bladder cancer biomarkers: Current approaches and future directions. Front. Oncol. 2024, 14, 1453278. [Google Scholar] [CrossRef]
- Tomiyama, E.; et al. Urinary markers for bladder cancer diagnosis: A review of current and emerging biomarkers. Int. J. Urol. 2024, 31, 1–10. [Google Scholar] [CrossRef]
- Wan, X.; et al. Unleashing the power of urine-based biomarkers in diagnosis, prognosis, and treatment response of bladder cancer. Int. J. Oncol. 2025, 66, 18. [Google Scholar] [CrossRef] [PubMed]
- Oyaert, M.; et al. Novel urinary biomarkers for the detection of bladder cancer. Cancers 2025, 17, 1283. [Google Scholar] [CrossRef]
- Vanarsa, K.; et al. Comprehensive proteomics and platform validation of urinary biomarkers for bladder cancer. BMC Med. 2023, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Abazari, O.; et al. Study of urine-based mRNA biomarkers for early detection of bladder cancer. J. Cancer Res. Clin. Oncol. 2025, 151, 563–573. [Google Scholar]
- Jordaens, S.; et al. Urine biomarkers in cancer detection: A systematic review. Int. J. Cancer 2023, 153, 1234–1245. [Google Scholar]
- Fan, J.; et al. Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer. Eur. J. Cancer 2024, 168, 12–23. [Google Scholar] [CrossRef]
- Mousazadeh, M.; et al. Advanced bladder cancer detection: Innovations in urinary biomarkers. J. Urol. 2024, 212, 789–798. [Google Scholar]
- Necchi, A. Biomarkers for guiding bladder cancer treatment decisions. UroToday 2024, 1–10. [Google Scholar]
- Mihai, I.M. , et al. Biomarkers for predicting bladder cancer therapy response. Oncol. Rep. 2025, 53, 1–12. [Google Scholar]
- Godlewski, D.; et al. Bladder cancer biomarkers. Explor. Target. Anti-Tumor Ther. 2025, 9, 1–12. [Google Scholar] [CrossRef]
- Monar, G.V.F. Molecular markers for bladder cancer screening. J. Clin. Med. 2023, 12, 1400. [Google Scholar]
- Lee, H.H. Review of non-invasive urinary biomarkers in bladder cancer. Front. Oncol. 2020, 10, 589. [Google Scholar] [CrossRef]
- Zeng, Y. Recent development of urinary biomarkers for bladder cancer. Clin. Transl. Discov. 2023, 3, e183. [Google Scholar] [CrossRef]
- Shi, Z.D. Integrative multi-omics analysis depicts the methylome and transcriptome of bladder cancer. Biomark. Res. 2023, 11, 88. [Google Scholar] [CrossRef]
- Liu, M. Landscape of urinary biomarker genes for bladder cancer. Onco Targets Ther. 2024, 17, 123–135. [Google Scholar]
- Piao, X.M. Prominence of urinary biomarkers for bladder cancer in the era of precision medicine. Investig. Clin. Urol. 2021, 62, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Bang B-R, et al. EarlyTect BCD, a Streamlined PENK Methylation Test in Urine DNA, Effectively Detects Bladder Cancer in Patients with Hematuria. J Mol Diagn. 2024;26(7):613–623. [CrossRef]
- Soria, F. An up-to-date catalog of available urinary biomarkers for bladder cancer. Cancers 2018, 10, 320. [Google Scholar]
| Assay | Year Introduced / Approved | Principle | FDA Status | Key Notes |
| BTA Stat | Early 1990s | Detects complement factor H–related proteins in urine | FDA-approved (point-of-care) | Rapid immunoassay; higher sensitivity than cytology, but false positives with hematuria/inflammation. |
| BTA TRAK | Early 1990s | ELISA detecting complement factor H–related proteins | FDA-approved (lab-based) | Quantitative version of BTA Stat; improved sensitivity but limited specificity. |
| NMP22 (ELISA) | 1996 | Detects nuclear mitotic apparatus protein released during cell death | FDA-approved (lab-based) | Useful for recurrence monitoring; false positives with benign urological conditions. |
| NMP22 BladderChek | Late 1990s | Point-of-care immunoassay detecting NMP22 | FDA-approved (POC) | Quick test; widely studied in follow-up surveillance. |
| ImmunoCyt/uCyt+ | Late 1990s | Fluorescent monoclonal antibodies against bladder tumor–associated antigens (CEA, mucin-like glycoproteins) | FDA-approved (adjunct to cytology) | Improved sensitivity for low-grade tumors; require fluorescence microscopy. |
| Cytokeratin 20 (CK20) Assay | Late 1990s (research) | Immunocytochemistry detecting CK20 expression in urothelial cells | Research only | Early attempt to integrate cytokeratin markers into urine cytology. |
| Assay | Year Introduced | Principle | FDA Status | Key Notes |
| UroVysion FISH | 2001 | Multicolor FISH detecting aneuploidy of chromosomes 3, 7, 17, and 9p21 deletion | FDA-approved | Gold standard molecular cytogenetics assay; strong for high-grade and equivocal cytology. |
| Microsatellite Analysis | Early 2000s (research) | Detects loss of heterozygosity (LOH) in urine DNA | Research only | Pioneered DNA-based urinary diagnostics; labor intensive. |
| hTERT Promoter Mutations | Early 2000s (research) | PCR-based detection of telomerase reverse transcriptase mutations | Research only | One of the most frequent alterations in bladder cancer. |
| FGFR3 Mutation Assays | 2000s (research) | Detects FGFR3 hotspot mutations in urine | Research only | Associated with low-grade, non-muscle-invasive bladder cancers. |
| Survivin Assay | 2000s (research) | Detects survivin protein/mRNA in urine | Research only | Marker of apoptosis inhibition; promising but variable performance. |
| CYFRA 21-1 | 2000s | Detects soluble cytokeratin 19 fragments in urine | Research only | Evaluated in several studies; modest diagnostic accuracy. |
| Assay | Year Introduced | Principle | FDA/CE Status | Key Notes |
| Cxbladder | 2013 | Measures expression of 5 mRNA genes (MDK, HOXA13, CDC2, IGFBP5, CXCR2) | LDT (NZ, US) | High sensitivity; used for both diagnosis and surveillance. |
| Bladder EpiCheck | 2016 | DNA methylation panel of 15 genomic loci | CE-marked (EU) | Robust negative predictive value for recurrence. |
| Xpert Bladder Cancer Monitor | 2017 | qRT-PCR detecting 5 bladder cancer mRNAs | CE-marked (EU) | Cartridge-based, automated, rapid workflow. |
| AssureMDx | 2017 | Detects FGFR3, HRAS, TERT mutations plus methylation markers | LDT | High NPV in hematuria patients; used to triage cystoscopy. |
| UroMark | 2010s (UK research) | High-throughput methylation panel (>150 loci) | Research only | Developed as a large-scale epigenetic screening assay. |
| ADx Bladder Test | 2010s (France) | Detects specific mRNA biomarkers in urine | CE-marked | Used in Europe for surveillance and follow-up. |
| Assay | Year Introduced | Principle | FDA/CE Status | Key Notes |
| UroSEEK | 2020s | NGS detecting mutations (TERT, FGFR3, TP53, others) and aneuploidy | Clinical trials | High sensitivity; integrates multiple molecular alterations. |
| ExoDx (ExosomeDx) Bladder Test | 2020s | Exosomal RNA and protein profiling | Research/LDT | Leverages extracellular vesicles as tumor carriers. |
| OncoUrine | 2020s | Targeted NGS + urine cfDNA analysis | CE-marked (China/EU) | Provides recurrence monitoring; expanding global use. |
| AI-enhanced Digital Cytology | 2020s | Deep learning applied to cytology slides + molecular inputs | Research/early adoption | Improves accuracy of urine cytology; integrated workflows emerging. |
| EarlyTect BCD | 2024 | PENK gene methylation assay in urine DNA | CE-marked (Korea) | Single-gene streamlined test; validated in hematuria patients. |
| miRNA Panels (e.g., miR-126, miR-146a, miR-200 family) | 2020s (research) | Urinary exosomal or free miRNA profiling | Research only | Promising biomarkers, under clinical validation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).