Submitted:
07 October 2025
Posted:
08 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- (a)
- Synthesize methodological advances in AI-based IAQ monitoring, prediction, and control, including the use of (ML), (DL), and hybrid models;
- (b)
- Assess outcomes across diverse geographical and socio-technical contexts, drawing on twenty representative international case studies that span North America, Europe, Asia, and Oceania;
- (c)
- Identify systemic barriers—technical (e.g. data scarcity, model generalizability), economic (e.g. cost of deployment and maintenance), and ethical (e.g. privacy and trust)—that constrain the broader adoption of AI in schools;
- (d)
- Highlight pathways for future research and implementation, emphasizing scalability, sustainability, and equity in educational settings.
2. Indoor Air Quality in School Environments: Key Considerations and Determinants
2.1. Classification and Sources of Indoor Air Pollutants
2.2. Impacts of IAQ on Health and Educational Performance
2.3. Regulatory Framework and Standards for IAQ in School Environments
2.4. IAQ in educational environments: Challenges, Innovations, and Policy Prospects
3. Artificial Intelligence Approaches for IAQ Assessment in Educational Environments
3.1. Machine Learning Methods
3.2. Deep Learning Approaches
3.3. Hybrid AI Models
4. AI Applications for Indoor Air Quality in Educational Environments
5. Concluding Remarks, Limitations and Future Challenges
| AI | Artificial Intelligence |
| ANN | Artificial Neural Networks |
| ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |
| BO | Bayesian Optimization |
| CNN | Convolutional Neural Networks |
| DL | Deep Learning |
| DT | Decision Tree |
| EPA | Environmental Protection Agency |
| EU | European Union |
| GRU | Gated Recurrent Units |
| HVAC | Heating, Ventilation, and Air Conditioning |
| IAQ | Indoor Air Quality |
| KNN | K-Nearest Neighbors |
| LSTM | Long Short-Term Memory |
| ML | Machine Learning |
| PM | Particulate Matter |
| RH | Relative Humidity |
| RNN | Recurrent Neural Networks |
| SL | Supervised Learning |
| SVM | Support Vector Machine |
| SVR | Support Vector Regression |
| T | Temperature |
| TCN | Temporal Convolutional Network |
| VOCs | Volatile Organic Compounds |
| WHO | World Health Organization |
References
- Giannadakis, A.; Romeos, A.; Kalogirou, I.; Dimopoulos, D.I.; Trachanas, G.P.; Marinakis, V.; Mihalakakou, G. Energy performance analysis of a passive house building. Energy Sources, Part B: Econ. Planning, Policy 2025, 20. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Global Status Report for Buildings and Construction 2024/25: Not just another brick in the wall. Global Alliance for Buildings and Construction 2025. [CrossRef]
- United Nations Environment Programme. Global Status Report for Buildings and Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector. Global Alliance for Buildings and Construction 2019. https://www.unep. 2019.
- Santamouris, M.; Vasilakopoulou, K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. e-Prime 2021, 1. [Google Scholar] [CrossRef]
- Paravantis, J.A.; Malefaki, S.; Nikolakopoulos, P.; Romeos, A.; Giannadakis, A.; Giannakopoulos, E.; Mihalakakou, G.; Souliotis, M. Statistical and machine learning approaches for energy efficient buildings. Energy Build. 2025, 330. [Google Scholar] [CrossRef]
- Makris, D.; Antzoulatou, A.; Romaios, A.; Malefaki, S.; Paravantis, J.A.; Giannadakis, A.; Mihalakakou, G. Optimizing Energy and Cost Performance in Residential Buildings: A Multi-Objective Approach Applied to the City of Patras, Greece. Energies 2025, 18, 3361. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Halkos, G.; Paravantis, J.; Makridis, S.; Papaefthimiou, S. Applications of earth-to-air heat exchangers: A holistic review. Renew. Sustain. Energy Rev. 2022, 155. [Google Scholar] [CrossRef]
- Skouras, E.D.; Tsolou, G.; Kalarakis, A.N. Hierarchical Modeling of the Thermal Insulation Performance of Novel Plasters with Aerogel Inclusions. Energies 2024, 17, 5898. [Google Scholar] [CrossRef]
- Mirasgedis, S.; Cabeza, L.F.; Vérez, D. Contribution of buildings climate change mitigation options to sustainable development. Sustain. Cities Soc. 2024, 106. [Google Scholar] [CrossRef]
- Karimi, H.; Adibhesami, M.A.; Bazazzadeh, H.; Movafagh, S. Green Buildings: Human-Centered and Energy Efficiency Optimization Strategies. Energies 2023, 16, 3681. [Google Scholar] [CrossRef]
- Jarrahi, A.; Aflaki, A.; Khakpour, M.; Esfandiari, M. Enhancing indoor air quality: Harnessing architectural elements, natural ventilation and passive design strategies for effective pollution reduction — A comprehensive review. Sci. Total. Environ. 2024, 954, 176631. [Google Scholar] [CrossRef]
- Branco, P.T.; Sousa, S.I.; Dudzińska, M.R.; Ruzgar, D.G.; Mutlu, M.; Panaras, G.; Papadopoulos, G.; Saffell, J.; Scutaru, A.M.; Struck, C.; et al. A review of relevant parameters for assessing indoor air quality in educational facilities. Environ. Res. 2024, 261, 119713. [Google Scholar] [CrossRef]
- Synnefa, A.; Polichronaki, E.; Papagiannopoulou, E.; Santamouris, M.; Mihalakakou, G.; Doukas, P.; Siskos, P.; Bakeas, E.; Dremetsika, A.; Geranios, A.; et al. An Experimental Investigation of the Indoor Air Quality in Fifteen School Buildings in Athens, Greece. Int. J. Vent. 2003, 2, 185–201. [Google Scholar] [CrossRef]
- Slezakova, K.; Kotlík, B.; Pereira Mdo, C. Air pollution in primary educational environments in a European context; 2022, ISBN 979-888697181-1; pages: 37-51. https://sigarra.up.pt/cdup/en/pub_geral.pub_view? 7160. [Google Scholar]
- Kephalopoulos S, Geiss O, Barrero-Moreno J, Agostino DD’, Paci D. Promoting healthy and highly energy performing buildings in the European Union 2017. [CrossRef]
- World Health Organization, Atkinson J, Chartier Y, Pessoa-Silva CL, Jensen P, Li Y, Seto W-H. Natural Ventilation for Infection Control in Health-Care Settings 2009, https://www.ncbi.nlm.nih.gov/books/NBK143284/.
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2Concentrations on Human Decision-Making Performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO guidelines for indoor air quality: selected pollutants; Chapter 5. Nitrogen dioxide. World Health Organization Regional Office for Europe 2010, 201–48. https://www.ncbi.nlm.nih.gov/books/NBK138707/.
- Simoni, M.; Annesi-Maesano, I.; Sigsgaard, T.; Norback, D.; Wieslander, G.; Nystad, W.; Canciani, M.; Sestini, P.; Viegi, G. School air quality related to dry cough, rhinitis and nasal patency in children. Eur. Respir. J. 2010, 35, 742–749. [Google Scholar] [CrossRef]
- World Health Organization. WHO global air quality guidelines. Particulate Matter (PM25 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide 2021, 1–360, https://www.who.int/europe/publications/i/item/9789240034228.
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to ozone in school and office indoor environments. Environ. Int. 2018, 119, 503–514. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to NO2 in school and office indoor environments. Environ. Int. 2019, 130, 104887. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 1–12. [Google Scholar] [CrossRef]
- Garcia, A.; Saez, Y.; Harris, I.; Huang, X.; Collado, E. Advancements in air quality monitoring: a systematic review of IoT-based air quality monitoring and AI technologies. Artif. Intell. Rev. 2025, 58, 1–67. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Ige, A.O.; Egbewole, B.I.; Olojo, A.; Oladapo, B.I. Artificial intelligence in environmental monitoring: Advancements, challenges, and future directions. Hyg. Environ. Heal. Adv. 2024, 12. [Google Scholar] [CrossRef]
- Dong, J.; Goodman, N.; Rajagopalan, P. A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools. Int. J. Environ. Res. Public Heal. 2023, 20, 6441. [Google Scholar] [CrossRef]
- Sadrizadeh, S.; Yao, R.; Yuan, F.; Awbi, H.; Bahnfleth, W.; Bi, Y.; Cao, G.; Croitoru, C.; de Dear, R.; Haghighat, F.; et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. J. Build. Eng. 2022, 57. [Google Scholar] [CrossRef]
- Amangeldy, B.; Tasmurzayev, N.; Imankulov, T.; Baigarayeva, Z.; Izmailov, N.; Riza, T.; Abdukarimov, A.; Mukazhan, M.; Zhumagulov, B. AI-Powered Building Ecosystems: A Narrative Mapping Review on the Integration of Digital Twins and LLMs for Proactive Comfort, IEQ, and Energy Management. Sensors 2025, 25, 5265. [Google Scholar] [CrossRef] [PubMed]
- El-Afifi, M.I.; Abdelhafeez, A.; Amein, A.S.; Elbehiery, H.; Sakr, H.A. AI-driven innovations: transforming air filtration for sustainable and healthy buildings. Discov. Appl. Sci. 2025, 7, 1–30. [Google Scholar] [CrossRef]
- Aghili, S.A.; Rezaei, A.H.M.; Tafazzoli, M.; Khanzadi, M.; Rahbar, M. Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review. Buildings 2025, 15, 1008. [Google Scholar] [CrossRef]
- Himeur, Y.; Elnour, M.; Fadli, F.; Meskin, N.; Petri, I.; Rezgui, Y.; Bensaali, F.; Amira, A. AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artif. Intell. Rev. 2022, 56, 4929–5021. [Google Scholar] [CrossRef]
- Gouseti, A.; James, F.; Fallin, L.; Burden, K. The ethics of using AI in K-12 education: a systematic literature review. Technol. Pedagog. Educ. 2024, 34, 161–182. [Google Scholar] [CrossRef]
- Huang, L. Ethics of Artificial Intelligence in Education: Student Privacy and Data Protection. Sci. Insights Educ. Front. 2023, 16, 2577–2587. [Google Scholar] [CrossRef]
- Ogundiran, J.; Asadi, E.; da Silva, M.G. A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings. Sustainability 2024, 16, 3627. [Google Scholar] [CrossRef]
- Sadrizdeh, S. Leveraging Artificial Intelligence in Indoor Air Quality Management_ A Review of Current Status, Opportunities, and Future Challenges 2024. https://www.rehva.eu/rehva-journal/chapter/leveraging-artificial-intelligence-in-indoor-air-quality-management-a-review-of-current-status-opportunities-and-future-challenges.
- Honan, D.; Gallagher, J.; Garvey, J.; Littlewood, J. Indoor Air Quality in Naturally Ventilated Primary Schools: A Systematic Review of the Assessment & Impacts of CO2 Levels. Buildings 2024, 14, 4003. [Google Scholar] [CrossRef]
- ANSI/ASHRAE 62.1-2022, Ventilation for Indoor Air Quality - The ANSI Blog n.d. https://blog.ansi.org/ansi/ansi-ashrae-62-1-2022-ventilation-indoor-air.
- Rawat, N.; Kumar, P. Interventions for improving indoor and outdoor air quality in and around schools. Sci. Total. Environ. 2022, 858, 159813. [Google Scholar] [CrossRef]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable air purification: Review of impacts on indoor air quality and health. Sci. Total. Environ. 2021, 766, 142585. [Google Scholar] [CrossRef] [PubMed]
- Chithra, V.S.; Shiva Nagendra, S.M. A Review Of Scientific Evidence On Indoor Air Of School Building: Pollutants, Sources, Health Effects And Management. Asian J. Atmos. Environ. 2018, 12, 87–108. [Google Scholar] [CrossRef]
- Mendell, M.J.; Eliseeva, E.A.; Davies, M.M.; Spears, M.; Lobscheid, A.; Fisk, W.J.; Apte, M.G. Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools. Indoor Air 2013, 23, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M.; Synnefa, A.; Asssimakopoulos, M.; Livada, I.; Pavlou, K.; Papaglastra, M.; Gaitani, N.; Kolokotsa, D.; Assimakopoulos, V. Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy Build. 2008, 40, 1833–1843. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Providing better thermal and air quality conditions in school classrooms would be cost-effective. Build. Environ. 2013, 59, 581–589. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor air quality in schools and its relationship with children's respiratory symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef]
- Ma, X.; Longley, I.; Gao, J.; Salmond, J. Assessing schoolchildren's exposure to air pollution during the daily commute - A systematic review. Sci. Total. Environ. 2020, 737, 140389. [Google Scholar] [CrossRef]
- Osborne, S.; Uche, O.; Mitsakou, C.; Exley, K.; Dimitroulopoulou, S. Air quality around schools: Part II - Mapping PM2.5 concentrations and inequality analysis. Environ. Res. 2021, 197, 111038. [Google Scholar] [CrossRef]
- Osborne, S.; Uche, O.; Mitsakou, C.; Exley, K.; Dimitroulopoulou, S. Air quality around schools: Part I - A comprehensive literature review across high-income countries. Environ. Res. 2021, 196, 110817. [Google Scholar] [CrossRef] [PubMed]
- Salthammer, T.; Uhde, E.; Schripp, T.; Schieweck, A.; Morawska, L.; Mazaheri, M.; Clifford, S.; He, C.; Buonanno, G.; Querol, X.; et al. Children's well-being at schools: Impact of climatic conditions and air pollution. Environ. Int. 2016, 94, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Seppanen, O.A.; Fisk, W.J.; Mendell, M.J. Association of Ventilation Rates and CO2 Concentrations with Health andOther Responses in Commercial and Institutional Buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef] [PubMed]
- Energy Performance of Building Center. EN 16798–1, EPB Center 2019. https://epb.center/document/en-16798-1/.
- Creating Healthy Indoor Air Quality in Schools | US EPA n.d. https://www.epa.
- Morawska, L.; Ayoko, G.; Bae, G.; Buonanno, G.; Chao, C.; Clifford, S.; Fu, S.; Hänninen, O.; He, C.; Isaxon, C.; et al. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 2017, 108, 75–83. [Google Scholar] [CrossRef]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmospheric Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Volatile Organic Compounds Impact on Indoor Air Quality. 2017. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality#Health_Effects (accessed on day month year).
- Palacios Temprano J, Eichholtz P, Willeboordse M, Kok N. Indoor environmental quality and learning outcomes: Protocol on large-scale sensor deployment in schools. BMJ Open 2020;10. https://www.researchgate.net/publication/340033287_Indoor_environmental_quality_and_learning_outcomes_protocol_on_large-scale_sensor_deployment_in_schools.
- Zhang, Y.; Mo, J.; Li, Y.; Sundell, J.; Wargocki, P.; Zhang, J.; Little, J.C.; Corsi, R.; Deng, Q.; Leung, M.H.; et al. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environ. 2011, 45, 4329–4343. [Google Scholar] [CrossRef]
- CDC: Centers for Disease Control and Prevention, Homeowners and Renters Guide to Mold Cleanup After Disasters | Mold | CDC n.d. https://www.cdc.gov/mold-health/communication-resources/guide-to-mold-cleanup.
- Wargocki, P.; Wyon, D.P. The Effects of Moderately Raised Classroom Temperatures and Classroom Ventilation Rate on the Performance of Schoolwork by Children (RP-1257). HVAC&R Res. 2007, 13, 193–220. [Google Scholar] [CrossRef]
- CDC: Centers for Disease Control and Prevention, About Ventilation and Respiratory Viruses. https://www.cdc.gov/niosh/ventilation/about/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fcommunity%2Fventilation.
- Adamopoulos, I.P.; Syrou, N.F.; Mijwil, M.; Thapa, P.; Ali, G.; Dávid, L.D. Quality of indoor air in educational institutions and adverse public health in Europe: A scoping review. Electron. J. Gen. Med. 2025, 22, em632. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832–105832. [Google Scholar] [CrossRef]
- Weschler, C.J. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry. Environ. Heal. Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef]
- Haddad, S.; Synnefa, A.; Marcos, M.Á.P.; Paolini, R.; Delrue, S.; Prasad, D.; Santamouris, M. On the potential of demand-controlled ventilation system to enhance indoor air quality and thermal condition in Australian school classrooms. Energy Build. 2021, 238, 110838. [Google Scholar] [CrossRef]
- Hulin, M.; Simoni, M.; Viegi, G.; Annesi-Maesano, I. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur. Respir. J. 2012, 40, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Cogliano, V.J.; Grosse, Y.; Baan, R.A.; Straif, K.; Secretan, M.B.; El Ghissassi, F. ; the Working Group for Volume 88 Meeting Report: Summary of IARC Monographs on Formaldehyde, 2-Butoxyethanol, and 1- tert -Butoxy-2-Propanol. Environ. Heal. Perspect. 2005, 113, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- Fisk, W.J.; Lei-Gomez, Q.; Mendell, M.J. Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air 2007, 17, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environ. Heal. Perspect. 2011, 119, 748–756. [Google Scholar] [CrossRef]
- Carrer, P.; Wargocki, P.; Fanetti, A.; Bischof, W.; Fernandes, E.D.O.; Hartmann, T.; Kephalopoulos, S.; Palkonen, S.; Seppänen, O. What does the scientific literature tell us about the ventilation–health relationship in public and residential buildings? Build. Environ. 2015, 94, 273–286. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S.; Bahnfleth, W. The relationships between classroom air quality and children’s performance in school. Build. Environ. 2020, 173. [Google Scholar] [CrossRef]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect health effects of relative humidity in indoor environments. Environ. Heal. Perspect. 1986, 65, 351–361. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Creating Healthy Indoor Air Quality in Schools | US EPA 2025. https://www.epa.gov/iaq-schools.
- ASHRAE, Standards 62.1 & 62.2 n.d., https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2.
- Ding, E.; Zhang, D.; Bluyssen, P.M. Ventilation regimes of school classrooms against airborne transmission of infectious respiratory droplets: A review. Build. Environ. 2022, 207. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Baiz, N.; Banerjee, S.; Rudnai, P.; Rive, S. Indoor Air Quality and Sources in Schools and Related Health Effects. J. Toxicol. Environ. Health Part B Crit. Rev. 2013, 16, 491–550. [Google Scholar] [CrossRef] [PubMed]
- Ezeamii, V.C.; Egbuchiem, A.N.; Obianyo, C.M.; Nwoke, P.; Okwuonu, L. Air Quality Monitoring in Schools: Evaluating the Effects of Ventilation Improvements on Cognitive Performance and Childhood Asthma. Cureus 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, R.J.; Haverinen-Shaughnessy, U.; Nevalainen, A.; Moschandreas, D. A preliminary study on the association between ventilation rates in classrooms and student performance. Indoor Air 2006, 16, 465–468. [Google Scholar] [CrossRef]
- Directive 2018/844/EU of the European Parliament and the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L0844 (accessed on 16 August 2021).
- Canha, N.; Correia, C.; Mendez, S.; Gamelas, C.A.; Felizardo, M. Monitoring Indoor Air Quality in Classrooms Using Low-Cost Sensors: Does the Perception of Teachers Match Reality? Atmosphere 2024, 15, 1450. [Google Scholar] [CrossRef]
- Fretes, G.; Llurba, C.; Palau, R.; Rosell-Llompart, J. Influence of Particulate Matter and Carbon Dioxide on Students’ Emotions in a Smart Classroom. Appl. Sci. 2024, 14, 11109. [Google Scholar] [CrossRef]
- Karaiskos, P.; Munian, Y.; Martinez-Molina, A.; Alamaniotis, M. Indoor air quality prediction modeling for a naturally ventilated fitness building using RNN-LSTM artificial neural networks. Smart Sustain. Built Environ. ahead of print. 2024. [Google Scholar] [CrossRef]
- Kataria, A.; Puri, V. AI- and IoT-based hybrid model for air quality prediction in a smart city with network assistance. IET Networks 2022, 11, 221–233. [Google Scholar] [CrossRef]
- Kallio, J.; Tervonen, J.; Räsänen, P.; Mäkynen, R.; Koivusaari, J.; Peltola, J. Forecasting office indoor CO2 concentration using machine learning with a one-year dataset. Build. Environ. 2021, 187. [Google Scholar] [CrossRef]
- Garcia-Pinilla, P.; Jurio, A.; Paternain, D. A Comparative Study of CO2 Forecasting Strategies in School Classrooms: A Step Toward Improving Indoor Air Quality. Sensors 2025, 25, 2173. [Google Scholar] [CrossRef]
- Wei, Y.; Jang-Jaccard, J.; Xu, W.; Sabrina, F.; Camtepe, S.; Boulic, M. LSTM-Autoencoder-Based Anomaly Detection for Indoor Air Quality Time-Series Data. IEEE Sensors J. 2023, 23, 3787–3800. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.; Kumar, A.; Singh, M.K.; Mahanta, P.; Mukhopadhyay, S.C. Sensing Technologies for Monitoring Intelligent Buildings: A Review. IEEE Sensors J. 2018, 18, 4847–4860. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Giannadakis, A.; Malefaki, S.; Souliotis, M.; Georgiou, P.; Romaios, A.; Antzoulatou, A.; Nikolakopoulos, P.; Paravantis, J. Coupling simulation-based and machine learning methodologies for energy optimization and environmental impact mitigation in buildings. J. Build. Eng. 2025, 112. [Google Scholar] [CrossRef]
- Kumari, S.; Choudhury, A.; Karki, P.; Simon, M.; Chowdhry, J.; Nandra, A.; Sharma, P.; Sengupta, A.; Yadav, A.; Raju, M.P.; et al. Next-Generation Air Quality Management: Unveiling Advanced Techniques for Monitoring and Controlling Pollution. Aerosol Sci. Eng. 2025, 1–22. [Google Scholar] [CrossRef]
- Wei, W.; Ramalho, O.; Malingre, L.; Sivanantham, S.; Little, J.C.; Mandin, C. Machine learning and statistical models for predicting indoor air quality. Indoor Air 2019, 29, 704–726. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning. McGraw-Hill; 1997.
- Bishop, C.M. Pattern recognition and machine learning. Springer Science + Business Media; 2009.
- Murphy, K.P. Machine learning : a probabilistic perspective. MIT Press; 2012.
- Zhu, X.; Goldberg, A.B. Introduction to Semi-Supervised Learning; Springer Nature: Durham, NC, United States, 2009; ISBN 9783031004209. [Google Scholar]
- Sutton Richard Barto Andrew, G. Reinforcement Learning: An Introduction, Second edition, 2014, 2014.
- Amado, T.M. Air Quality Characterization Using k-Nearest Neighbors Machine Learning Algorithm via Classification and Regression Training in R. 2018.
- Balta D, Yalçın N, Balta M, Özmen A. Online Monitoring of Indoor Air Quality and Thermal Comfort Using a Distributed Sensor-Based Fuzzy Decision Tree Model. Internet of Things 2022:111–34. [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Fleischer, Y.; Podworny, S.; Biehler, R. TEACHING AND LEARNING TO CONSTRUCT DATA-BASED DECISION TREES USING DATA CARDS AS THE FIRST INTRODUCTION TO MACHINE LEARNING IN MIDDLE SCHOOL. Stat. Educ. Res. J. 2024, 23, 3–3. [Google Scholar] [CrossRef]
- Zhang X, Gu C, Lin J. Support vector machines for anomaly detection. Proceedings of the World Congress on Intelligent Control and Automation (WCICA) 2006; 1:2594–8. https://doi.org/10.1109/WCICA.2006.1712831.
- Zhao, Z.; Qin, J.; He, Z.; Li, H.; Yang, Y.; Zhang, R. Combining forward with recurrent neural networks for hourly air quality prediction in Northwest of China. Environ. Sci. Pollut. Res. 2020, 27, 28931–28948. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Godasiaei, S.H.; Ejohwomu, O.A.; Zhong, H.; Booker, D. Integrating experimental analysis and machine learning for enhancing energy efficiency and indoor air quality in educational buildings. Build. Environ. 2025, 276. [Google Scholar] [CrossRef]
- Muiruri, D. Modelling Indoor Air Quality Using Sensor Data and Machine Learning Methods 2021. 10138/328527.
- Marzouk, M.; Atef, M. Assessment of Indoor Air Quality in Academic Buildings Using IoT and Deep Learning. Sustainability 2022, 14, 7015. [Google Scholar] [CrossRef]
- Michelucci, U. Convolutional and Recurrent Neural Networks. Applied Deep Learning 2018:323–64. [CrossRef]
- Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep Learning with Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 308–318. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Esposito, E.; De Vito, S.; Salvato, M.; Bright, V.; Jones, R.; Popoola, O. Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems. Sensors Actuators B: Chem. 2016, 231, 701–713. [Google Scholar] [CrossRef]
- Muthuraj, K.; Othmani, C.; Krause, R.; Oppelt, T.; Merchel, S.; Altinsoy, M.E. A convolutional neural network to control sound level for air conditioning units in four different classroom conditions. Energy Build. 2024, 324. [Google Scholar] [CrossRef]
- Saad, S.M.; Andrew, A.M.; Shakaff, A.Y.M.; Saad, A.R.M.; Kamarudin, A.M.Y. @.; Zakaria, A. Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN). Sensors 2015, 15, 11665–11684. [Google Scholar] [CrossRef]
- Zivelonghi, A.; Giuseppi, A. Smart Healthy Schools: An IoT-enabled concept for multi-room dynamic air quality control. Internet Things Cyber-Physical Syst. 2024, 4, 24–31. [Google Scholar] [CrossRef]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet. Program. Evolvable Mach. 2017, 19, 305–307. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Kapoor NR, Kumar A, Kumar A, Kumar A, Arora HC. Prediction of Indoor Air Quality Using Artificial Intelligence. Machine Intelligence, Big Data Analytics, and IoT in Image Processing: Practical Applications 2023:447–69. [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef]
- Sudniks, R.; Ziemelis, A.; Nikitenko, A.; Soares, V.N.G.J.; Supe, A. Indoor Microclimate Monitoring and Forecasting: Public Sector Building Use Case. Information 2025, 16, 121. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Chen, Y. An innovative decision making method for air quality monitoring based on big data-assisted artificial intelligence technique. J. Innov. Knowl. 2023, 8. [Google Scholar] [CrossRef]
- Rosa-Bilbao, J.; Butt, F.S.; Merkl, D.; Wagner, M.F.; Schäfer, J.; Boubeta-Puig, J. IoT-Based Indoor Air Quality Management System for Intelligent Education Environments. IEEE Internet Things J. 2025, 12, 18031–18041. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, H.; Duan, Z. A novel hybrid model for multi-step daily AQI forecasting driven by air pollution big data. Air Qual. Atmosphere Heal. 2020, 13, 197–207. [Google Scholar] [CrossRef]
- Boquillod, Yann. Artificial intelligence and indoor air quality: better health with new technologies. Institut Veolia; 2020. https://journals.openedition.org/factsreports/6104.
- Yang, Q.; Luo, L.; Zhang, H.; Peng, H.; Chen, Z. SAMN: A Sample Attention Memory Network Combining SVM and NN in One Architecture 2023. https://arxiv.org/abs/2309. 1393. [Google Scholar]
- Wong, L.-T.; Mui, K.-W.; Tsang, T.-W. Updating Indoor Air Quality (IAQ) Assessment Screening Levels with Machine Learning Models. Int. J. Environ. Res. Public Heal. 2022, 19, 5724. [Google Scholar] [CrossRef]
- Li P, Wang X, Qin Z, Metzler D. Combining decision trees and neural networks for learning-to-rank in personal search. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2019:2032–40. [CrossRef]
- Mead, M.; Popoola, O.; Stewart, G.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.; McLeod, M.; Hodgson, T.; Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmospheric Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef]
- Weyers R, Jang-Jaccard J, Moses A, Wang Y, Boulic M, Chitty C, Phipps R, Cunningham C. Low-cost Indoor Air Quality (IAQ) Platform for Healthier Classrooms in New Zealand: Engineering Issues 2018. [CrossRef]
- Ge, B.; Tieskens, K.; Vyas, P.; Martinez, M.P.B.; Yuan, Y.; Walsh, K.H.; Main, L.; Bolton, L.; Yajima, M.; Fabian, M.P. Decision tools for schools using continuous indoor air quality monitors: a case study of CO2 in Boston Public Schools. Lancet Reg. Heal. - Am. 2025, 48, 101148. [Google Scholar] [CrossRef]
- Facilities Management BPS Indoor Air Quality Monitoring and Response Action Plan. n.d. https://bostongreenschools.org/wp-content/uploads/2025/04/BPS-IAQ-Management-Plan_2025.
- Schilling, M. (PDF) Air quality monitoring survey in German school classrooms during the COVID-19 pandemic 2021 2021. https://www.researchgate.net/publication/359506363_Air_quality_monitoring_survey_in_german_school_classrooms_during_the_COVID-19_pandemic_2021.
- Dai, Z.; Yuan, Y.; Zhu, X.; Zhao, L. A Method for Predicting Indoor CO2 Concentration in University Classrooms: An RF-TPE-LSTM Approach. Appl. Sci. 2024, 14, 6188. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Dovrou, E.; Androulakis, S.; Seitanidi, K.; Georgopoulou, M.P.; Matrali, A.; Argyropoulou, G.; Kaltsonoudis, C.; Fouskas, G.; Pandis, S.N. Monitoring of Indoor Air Quality in a Classroom Combining a Low-Cost Sensor System and Machine Learning. Chemosensors 2025, 13, 148. [Google Scholar] [CrossRef]
- Yang, G.; Yuan, E.; Wu, W. Predicting the long-term CO2 concentration in classrooms based on the BO–EMD–LSTM model. Build. Environ. 2022, 224. [Google Scholar] [CrossRef]
- Rawat, N.; Kumar, P.; Hama, S.; Williams, N.; Zivelonghi, A. Improving classroom air quality and ventilation with IoT-driven acoustic and visual CO2 feedback system. Sci. Total. Environ. 2025, 980, 179543. [Google Scholar] [CrossRef]
- Vornanen-Winqvist, C.; Järvi, K.; Andersson, M.A.; Duchaine, C.; Létourneau, V.; Kedves, O.; Kredics, L.; Mikkola, R.; Kurnitski, J.; Salonen, H. Exposure to indoor air contaminants in school buildings with and without reported indoor air quality problems. Environ. Int. 2020, 141, 105781. [Google Scholar] [CrossRef]
- Cho, J.; Heo, Y.; Moon, J.W. An intelligent HVAC control strategy for supplying comfortable and energy-efficient school environment. Adv. Eng. Informatics 2023, 55. [Google Scholar] [CrossRef]
- Lan, H.; Hou, H. (.; Gou, Z.; Wong, M.S.; Wang, Z. Computer vision-based smart HVAC control system for university classroom in a subtropical climate. Build. Environ. 2023, 242. [Google Scholar] [CrossRef]
- Yan, S.; Zou, J.; Shu, C.; Berquist, J.; Brochu, V.; Veillette, M.; Hou, D.; Duchaine, C.; Zhou, L. (.; Zhai, Z.(.; et al. Implementing Bayesian inference on a stochastic CO2-based grey-box model. Indoor Environ. 2025, 2. [Google Scholar] [CrossRef]
- Maciá-Pérez, F.; Lorenzo-Fonseca, I.; Berná-Martínez, J.V. Dynamic ventilation certificate for smart universities using artificial intelligence techniques. Comput. Methods Programs Biomed. 2023, 236, 107572–107572. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.; Dias Pereira, L.; Rodrigues Gaspar, A.; Gomes, Á.; Carlos, M.; Da Silva, G.; Rodrigues, E.; Dias Pereira, L.; Gaspar, A.R.; Gomes, Á.; Gameiro Da Silva, M.C. ESTIMATION OF CLASSROOMS OCCUPANCY USING A MULTI-LAYER PERCEPTRON. n.d. https://arxiv.org/abs/1702.02125.
- Zhang, H.; Srinivasan, R.; Yang, X.; Ahrentzen, S.; Coker, E.S.; Alwisy, A. Factors influencing indoor air pollution in buildings using PCA-LMBP neural network: A case study of a university campus. Build. Environ. 2022, 225. [Google Scholar] [CrossRef]
- Van Quang, T.; Doan, D.T.; Ngarambe, J.; Ghaffarianhoseini, A.; Zhang, T. AI management platform for privacy-preserving indoor air quality control: Review and future directions. J. Build. Eng. 2025, 100. [Google Scholar] [CrossRef]
- Shu, Z.; Yuan, F.; Wang, J.; Zang, J.; Li, B.; Shahrestani, M.; Essah, E.; Awbi, H.; Holland, M.; Fang, F.; et al. Prioritising Actions for Improving Classroom Air Quality Based on the Analytic Hierarchy Process: Case Studies in China and the UK. Indoor Air 2024, 2024. [Google Scholar] [CrossRef]
- Demanega, I.; Mujan, I.; Singer, B.C.; Anđelković, A.S.; Babich, F.; Licina, D. Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions. Build. Environ. 2021, 187. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A.; Wojcikowski, M.; Pankiewicz, B. Efficient field correction of low-cost particulate matter sensors using machine learning, mixed multiplicative/additive scaling and extended calibration inputs. Sci. Rep. 2025, 15, 1–18. [Google Scholar] [CrossRef]
- Pei, G.; Freihaut, J.D.; Rim, D. Long-term application of low-cost sensors for monitoring indoor air quality and particle dynamics in a commercial building. J. Build. Eng. 2023, 79. [Google Scholar] [CrossRef]
- García, M.R.; Spinazzé, A.; Branco, P.T.; Borghi, F.; Villena, G.; Cattaneo, A.; Di Gilio, A.; Mihucz, V.G.; Álvarez, E.G.; Lopes, S.I.; et al. Review of low-cost sensors for indoor air quality: Features and applications. Appl. Spectrosc. Rev. 2022, 57, 747–779. [Google Scholar] [CrossRef]
- Tham, K.W. Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Yu, Y.; Gola, M.; Settimo, G.; Buffoli, M.; Capolongo, S. Feasibility and Affordability of Low-Cost Air Sensors with Internet of Things for Indoor Air Quality Monitoring in Residential Buildings: Systematic Review on Sensor Information and Residential Applications, with Experience-Based Discussions. Atmosphere 2024, 15, 1170. [Google Scholar] [CrossRef]
- Aguado, A.; Rodríguez-Sufuentes, S.; Verdugo, F.; Rodríguez-López, A.; Figols, M.; Dalheimer, J.; Gómez-López, A.; González-Colom, R.; Badyda, A.; Fermoso, J. Verification and Usability of Indoor Air Quality Monitoring Tools in the Framework of Health-Related Studies. Air 2025, 3, 3. [Google Scholar] [CrossRef]
- Qian J, Dai Y, Liu B, Shi Z. Challenges and Opportunities in Monitoring Indoor Air Quality with Low-Cost Sensors 2025. [CrossRef]
- Barros, N.; Sobral, P.; Moreira, R.S.; Vargas, J.; Fonseca, A.; Abreu, I.; Guerreiro, M.S. SchoolAIR: A Citizen Science IoT Framework Using Low-Cost Sensing for Indoor Air Quality Management. Sensors 2023, 24, 148. [Google Scholar] [CrossRef]
- Chen, L.; Xia, C.; Zhao, Z.; Fu, H.; Chen, Y. AI-Driven Sensing Technology: Review. Sensors 2024, 24, 2958. [Google Scholar] [CrossRef]
- Edwards, J.; Bunker, K. Artificial Intelligence-Powered HVAC Systems for Enhancing Comfort and Energy Efficiency in Smart Buildings. vol. 4. n.d. https://iscsitr.in/index.php/ISCSITR-IJCA/article/view/ISCSITR-IJCA_2023_04_02_001.
- Alhitmi, H.K.; Mardiah, A.; Al-Sulaiti, K.I.; Abbas, J. Data security and privacy concerns of AI-driven marketing in the context of economics and business field: an exploration into possible solutions. Cogent Bus. Manag. 2024, 11. [Google Scholar] [CrossRef]




| Reference | Pollutant | Primary sources in schools | Main health and performance impacts |
|---|---|---|---|
| [18,19] | Carbon dioxide (CO₂) | Occupant respiration, inadequate ventilation, combustion from heating | Fatigue, drowsiness, impaired concentration, reduced cognitive performance |
| [48] | PM (PM₂.₅ / PM₁₀) | Chalk dust, resuspension of settled particles, outdoor traffic and exhaust fumes, indoor cleaning activities | Respiratory tract irritation, asthma exacerbation, increased absenteeism |
| [19,56,67,68] | VOCs | Cleaning products, paints, adhesives, furniture, carpets, wooden materials | Headaches, allergic reactions, mucosal irritation, long-term carcinogenic potential |
| [69,70] | Fungi (mould) | Elevated humidity, water damage, poor maintenance and cleanliness | Allergies, asthma onset and attacks, respiratory symptoms |
| [62,64] | Bacteria and viruses | Occupants, contaminated surfaces, airborne droplets | Respiratory infections, influenza, COVID-19, school absenteeism |
| [22,65] | Tropospheric Ozone (O3) | Outdoor infiltration from ambient air (particularly in urban areas with high photochemical smog), Indoor generation from certain devices, Secondary chemical reactions indoors | Eye and airway irritation, asthma aggravation, reduced attention, absenteeism |
| [23] | Nitrogen Dioxide (NO2) | Outdoor traffic emissions, Indoor combustion sources, Proximity to parking areas or bus drop-off zones. | Respiratory irritation, asthma exacerbation, reduced lung function, absenteeism |
| Reference | Key determinant | Description | Recommended Measures |
|---|---|---|---|
| [19,40,41,47,75] | Pollutant load | Particulate matter, volatile organic compounds, allergens (e.g., mould, dust mites), and chemical residues. | Use air purifiers; limit the use of high-emission cleaning products and chemical agents. |
| [16,76] | Thermal and moisture conditions | Elevated temperature and humidity favour microbial growth, while excessively low temperatures can cause respiratory discomfort | Maintain indoor temperature within comfort ranges; regulate relative humidity between 30–60% using humidifiers/dehumidifiers. |
| [15,17,77] | Ventilation efficiency | Adequate aeration removes pollutants and contaminants while supplying oxygenated air. | Implement sufficient natural or mechanical ventilation; install and maintain high-efficiency particulate filters. |
| [15,16] | Pollution sources | Emissions from smoking, cleaning products, building materials, furniture, and appliances degrade IAQ. | Prohibit indoor smoking; select low-emission, eco-certified materials; store cleaning agents safely. |
| [38,53] | Building operation and maintenance | Proper HVAC design, operation, and cleanliness directly influence IAQ levels. | Conduct regular HVAC inspection and maintenance; clean or replace filters periodically. |
| Reference | Focus area | Innovation highlight | Identified gaps | Future prospects |
|---|---|---|---|---|
| [37] | Natural ventilation and CO₂ management | Classroom-level CO₂ thresholds applied in naturally ventilated schools | Lack of enforcement and standardization for natural ventilation practices | Integration of smart alerts and continuous CO₂ feedback systems |
| [13,40,78] | Health impacts of pollutants in schools | Evidence linking IAQ to pediatric respiratory and allergic outcomes | Absence of child-specific IAQ exposure thresholds | Development of health-integrated IAQ criteria in building and education policies |
| [79] | Ventilation strategies and monitoring | Deployment of low-cost sensor-based ventilation control | Lack of harmonized IAQ monitoring protocols across schools | Establishment of standardized sensor networks for large-scale monitoring |
| [58] | Indoor environment and learning outcomes | Integration of IAQ metrics with cognitive and academic performance indicators | Limited availability of long-term outcome data | Longitudinal studies linking IAQ to learning achievements and curriculum design |
| [53] | Sensor technologies for IAQ | Advances in sensor calibration for deployment in schools | Absence of unified protocols for sensor placement and validation | Creation of open-access IAQ dashboards and data-sharing frameworks |
| [63] | Public health implications in EU schools | Regional mapping of IAQ inequalities | Low policy prioritization in disadvantaged regions | EU-level mandates and funding schemes to reduce IAQ disparities |
| [79] | CO₂ and cognition in naturally ventilated schools | Statistical modelling of CO₂ effects on student performance | Over-reliance on CO₂ as the sole IAQ indicator | Hybrid ventilation strategies integrating multi-pollutant assessment |
| [57,79] | Ventilation and cognitive performance | Quantified effects of IAQ on brain function and task performance | Limited field validation across diverse climatic and socio-economic contexts | Development of neurodevelopmental IAQ indices for schools |
| [58] | Productivity and IAQ | Meta-analyses linking CO₂ thresholds with student productivity | Insufficient attention to equity-related outcomes | Incorporation of IAQ metrics into indicators of educational access and equality |
| [53] | Governance and policy frameworks | EPA’s IAQ Tools for Schools providing an operational framework | Voluntary implementation with no binding legal effect | Introduction of mandatory IAQ audits supported by federal or state funding |
| [46,83] | IAQ–energy trade-offs and smart management | AI-driven demand-controlled ventilation and predictive IAQ–energy modelling | Limited integration of IAQ and energy metrics in existing standards | Systemic frameworks combining IAQ monitoring, adaptive ventilation, and energy efficiency for sustainable school operation |
| References | Description | Advantages | Implementation Strategy |
|---|---|---|---|
| [93,124] | Integration of traditional ML with DL models enhances robustness across varying classroom conditions. | Reliability | Ensemble outputs from multiple algorithms to reduce bias and improve stability. |
| [93,108] | Classical ML methods reduce the data demands of deep models. | Effectiveness | Preprocessing and feature reduction with ML before DL training. |
| [27,129] | Combines lightweight ML with high-precision DL. | Analysis Speed | Parallel use of fast ML classifiers with DL networks for real-time operation. |
| [118,130] | Models adapt to shifts in occupancy and environment. | Adaptability | Online or incremental learning for continuous updating. |
| [99,107] | Statistical preprocessing mitigates unreliable sensor signals. | Noise Reduction | Data cleaning and smoothing to handle noisy or incomplete datasets. |
| [84,104] | Detects hazardous IAQ deviations beyond normal ranges. | Anomaly Detection | Integration of unsupervised learning (e.g., autoencoders) for early detection of outliers. |
| [27,79] | Forecasts improve continuously as new data arrives. | Real-Time Improvement | Implementation of reinforcement learning and incremental parameter updates. |
| Reference | Location/Year | AI Method | Parameters Monitored | Sample size | Main results/Critical insights |
|---|---|---|---|---|---|
| [131,132], | Boston USA (2023) |
ML (Decision Trees) | CO₂, PM₂.₅, PM₁₀, CO, T, RH | 4,400 classrooms, 3,659 sensors |
|
| [88] | Dunedin New Zealand (2022) |
Hybrid DL (LSTM + Autoencoder) | CO₂ | 74 sensors, 247k readings |
|
| [53,135] | Athens Greece (2024) |
SVR | PM₂.₅, CO, NO₂, O₃, CO₂ | 1 classroom (25 students) |
|
| [82] | Ponte de Sor Portugal (2023) | Statistical Analysis + Teacher Surveys | CO₂, PM₁₀, T, RH | 9 classrooms, 171 sessions |
|
| [87] | Navarra Spain (2022) |
DL (TCN)&ML Forecasting | CO₂ | 15 schools |
|
| [145] | Smart Classrooms (SITA) Asia (2023) |
Privacy-preserving ML (SITA, edge AI) | CO₂, PM, VOCs, T | IoT deployment |
|
| Reference | Location/Year | AI Method | Parameters Monitored | Sample size | Main results/Critical insights |
| [146] | Beijing China (2023) |
AHP + ML-supported decision | PM₂.₅, CO₂, TVOCs, T, RH | 15 schools |
|
| [138] | Finland (2017) | Supervised ML + participatory feedback | CO₂, VOCs, T, RH, bioaerosols | 6 schools + national program |
|
| [133] | Lower Saxony Germany (2021) | Continuous monitoring, trend analysis | CO₂, noise, T, RH | 329 classrooms, 50 schools |
|
| [137] | Guilford UK (2024) |
IoT-based visual and visual-acoustic CO₂ feedback systems (real-time AI feedback) | CO₂, PM₂.₅, PM₁₀ | 1 classroom |
|
| [142] | Alicante Spain (2023) |
Artificial Neural Networks (ANN) | CO₂, Real-time occupancy, Environmental variables | University classrooms |
|
| [106] | Codsall UK (2025) |
Machine Learning (ML) models: RNN, LSTM, GRU, CNN | CO₂, PM, T, RH, Formaldehyde, environmental variables | Two classrooms (35 students each) |
|
| Reference | Location/Year | AI Method | Parameters Monitored | Sample size | Main results/Critical insights |
| [136] | North China (2018-2019) |
Hybrid model EMD (Empirical Mode Decomposition), LSTM, BO (Bayesian Optimization) | Indoor CO₂ concentration (time-series data) | Long-term dataset covering one full academic year |
|
| [140] | Hong Kong (2022) |
- YOLOv5 (computer vision, deep learning) - CFD simulation - Fuzzy logic control for dynamic HVAC adjustment |
Occupant number & spatial distribution - Thermal comfort index (PMV) - Air temperature & air velocity |
University classrooms |
|
| [139] | Seoul South Korea (2021) |
Integrated Neural Network (INN) | PMV, CO₂, PM₁₀ | 1 school |
|
| [134] | Central China (2022) |
RF (Random Forest)-TPE Tree-structured Parzen Estimator -LSTM Hybrid model | CO₂, PM, T, H, O2, Illumination, Indoor population |
One university classroom monitored for ~1.5 months |
|
| [141] | Montreal Canada (2020-21) |
Bayesian parameter estimation to infer ventilation rates, CO₂ emission, and noise levels | CO₂, Ventilation, Noise | 2 classrooms |
|
| Reference | Location/Year | AI Method | Parameters Monitored | Sample size | Main results/Critical insights |
| [143] | Pombal Portugal (2013) |
Multi-Layer Perceptron (MLP) neural network |
CO₂, T, H | 2 classrooms |
|
| [121] | Riga Latvia (2024) |
Machine Learning (ML) models: Prophet, Transformer, Kolmogorov–Arnold Networks (KAN), LSTM, GRU |
CO₂, T, H | 128 sensors |
|
| [144] | Florida USA (2021) |
Hybrid PCA (Principal Component Analysis)– LMBP (Levenberg Marquardt Back propagation model | PM₂.₅, PM₁₀, NO₂, O₃ | Multiple building types: classrooms, offices, laboratories; continuous monitoring at 10-min intervals over two-week periods |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
