Submitted:
07 October 2025
Posted:
08 October 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Vitamins
Vitamins D and E
Retinoic Acid
Carbohydrates
Simple Sugars
Fibre
Phytochemicals
Indoles
Antioxidants: Isoflavones and Polyphenols
Proteins and Nucleic Acids
Lipids
n-3 polyunsaturated Fatty Acids
Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Abdala-Valencia H, Berdnikovs S, Soveg FW, Cook-Mills JM. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol. 2014, 307, L482–L496. [Google Scholar] [CrossRef]
- Abril-Gil M, Massot-Cladera M, Pérez-Cano FJ, Castellote C, Franch A, Castell M. A diet enriched with cocoa prevents IgE synthesis in a rat allergy model. Pharmacol Res. 2012, 65, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Agace WW, Persson EK. How vitamin A metabolizing dendritic cells are generated in the gut mucosa. Trends Immunol. 2012, 33, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Akagbosu B, Tayyebi Z, Shibu G, Paucar Iza YA, Deep D, Parisotto YF, Fisher L, Pasolli HA, Thevin V, Elmentaite R, Knott M, Hemmers S, Jahn L, Friedrich C, Verter J, Wang ZM, van den Brink M, Gasteiger G, Grünewald TGP, Marie JC, Leslie C, Rudensky AY, Brown CC. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature. 2022, 610, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F, Sparwasser T, Bérard M, Cerf-Bensussan N, Eberl G. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity. 2019, 50, 1276–1288.e5. [Google Scholar] [CrossRef]
- Alexander M, Turnbaugh PJ. Deconstructing mechanisms of diet-microbiome-immune interactions. Immunity. 2020, 53, 264–276. [Google Scholar] [CrossRef]
- Anandan C, Nurmatov U, Sheikh A. Omega 3 and 6 oils for primary prevention of allergic disease: systematic review and meta-analysis. Allergy. 2009, 64, 840–848. [Google Scholar] [CrossRef]
- Angelina A, Martín-Cruz L, de la Rocha-Muñoz A, Lavín-Plaza B, Palomares O. C-Type lectin receptor mediated modulation of T2 immune responses to allergens. Curr Allergy Asthma Rep. 2023, 23, 141–151. [Google Scholar] [CrossRef]
- Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol. 2010, 11, 854–861. [Google Scholar] [CrossRef]
- Arifuzzaman M, Collins N, Guo CJ, Artis D. Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity. 2024, 57, 14–27. [Google Scholar] [CrossRef]
- Arifuzzaman M, Won TH, Li TT, Yano H, Digumarthi S, Heras AF, Zhang W, Parkhurst CN, Kashyap S, Jin WB, Putzel GG, Tsou AM, Chu C, Wei Q, Grier A; JRI IBD Live Cell Bank Consortium; Worgall S, Guo CJ, Schroeder FC, Artis D. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature. 2022, 611, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Armstrong HK, Bording-Jorgensen M, Santer DM, Zhang Z, Valcheva R, Rieger AM, Sung-Ho Kim J, Dijk SI, Mahmood R, Ogungbola O, Jovel J, Moreau F, Gorman H, Dickner R, Jerasi J, Mander IK, Lafleur D, Cheng C, Petrova A, Jeanson TL, Mason A, Sergi CM, Levine A, Chadee K, Armstrong D, Rauscher S, Bernstein CN, Carroll MW, Huynh HQ, Walter J, Madsen KL, Dieleman LA, Wine E. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology. 2023, 164, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, N. , Campbell C. , Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J. R., Pfeffer K., Coffer P. J., Rudensky A. Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013, 504, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Bakdash G, Vogelpoel LT, van Capel TM, Kapsenberg ML, de Jong EC. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol. 2015, 8, 265–278. [Google Scholar] [CrossRef]
- Bang YJ, Hu Z, Li Y, Gattu S, Ruhn KA, Raj P, Herz J, Hooper LV. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science. 2021, 373, eabf9232. [Google Scholar] [CrossRef]
- Bärebring L, Nwaru BI, Lamberg-Allardt C, Thorisdottir B, Ramel A, Söderlund F, Arnesen EK, Dierkes J, Åkesson A. Supplementation with long chain n-3 fatty acids during pregnancy, lactation, or infancy in relation to risk of asthma and atopic disease during childhood: a systematic review and meta-analysis of randomized controlled clinical trials. Food Nutr Res. [CrossRef]
- Benson, MJ. Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med. 2007, 204, 1765–1774. [Google Scholar] [CrossRef]
- Bermudez-Brito M, Sahasrabudhe NM, Rösch C, Schols HA, Faas MM, de Vos P. The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells. Mol Nutr Food Res. 2015, 59, 698–710. [Google Scholar] [CrossRef]
- Berni Canani R, Carucci L, Coppola S, D’Auria E, O’Mahony L, Roth-Walter F, Vassilopolou E, Agostoni C, Agache I, Akdis C, De Giovanni Di Santa Severina F, Faketea G, Greenhawt M, Hoffman K, Hufnagel K, Meyer R, Milani GP, Nowak-Wegrzyn A, Nwaru B, Padua I, Paparo L, Diego P, Reese I, Roduit C, Smith PK, Santos A, Untersmayr E, Vlieg-Boerstra B, Venter C. Ultra-processed foods, allergy outcomes and underlying mechanisms in children: An EAACI task force report. Pediatr Allergy Immunol. 2024, 35, e14231. [Google Scholar] [CrossRef]
- Best KP, Gold M, Kennedy D, Martin J, Makrides M. Omega-3 long-chain PUFA intake during pregnancy and allergic disease outcomes in the offspring: a systematic review and meta-analysis of observational studies and randomized controlled trials. Am J Clin Nutr. 2016, 103, 128–143. [Google Scholar] [CrossRef]
- Bilate AM, Bousbaine D, Mesin L, Agudelo M, Leube J, Kratzert A, Dougan SK, Victora GD, Ploegh HL. Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. Sci Immunol. 2016, 1, eaaf7471. [Google Scholar] [CrossRef]
- Bilate AM, London M, Castro TBR, Mesin L, Bortolatto J, Kongthong S, Harnagel A, Victora GD, Mucida D. T Cell receptor is required for differentiation, but not maintenance, of intestinal CD4+ intraepithelial lymphocytes. Immunity. 2020, 53, 1001–1014.e20. [Google Scholar] [CrossRef]
- Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A, Wells JM. Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef]
- Bode, L. Human milk oligosaccharides: next-generation functions and questions. Nestle Nutr Inst Workshop Ser. 2019, 90, 191–201. [Google Scholar] [CrossRef]
- Bousbaine D, Fisch LI, London M, Bhagchandani P, Rezende de Castro TB, Mimee M, Olesen S, Reis BS, VanInsberghe D, Bortolatto J, Poyet M, Cheloha RW, Sidney J, Ling J, Gupta A, Lu TK, Sette A, Alm EJ, Moon JJ, Victora GD, Mucida D, Ploegh HL, Bilate AM. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science. 2022, 377, 660–666. [Google Scholar] [CrossRef]
- Brabec T, Schwarzer M, Kováčová K, Dobešová M, Schierová D, Březina J, Pacáková I, Šrůtková D, Ben-Nun O, Goldfarb Y, Šplíchalová I, Kolář M, Abramson J, Filipp D, Dobeš J. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J Exp Med. 2024, 221, e20230194. [Google Scholar] [CrossRef] [PubMed]
- Brix S, Lund P, Kjaer TM, Straarup EM, Hellgren LI, Frøkiaer H. CD4+ T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids. Immunology. 2010, 129, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Cabieses B, Uphoff E, Pinart M, Antó JM, Wright J. A systematic review on the development of asthma and allergic diseases in relation to international immigration: the leading role of the environment confirmed. PLoS One 2014, 9, e105347. [Google Scholar] [CrossRef]
- Cabric V, Brown CC. Thetis cells: regulators of intestinal immune tolerance. Curr Opin Immunol. 2025, 95, 102570. [Google Scholar] [CrossRef]
- Cabric V, Franco Parisotto Y, Park T, Akagbosu B, Zhao Z, Lo Y, Shibu G, Fisher L, Paucar Iza YA, Leslie C, Brown CC. A wave of Thetis cells imparts tolerance to food antigens early in life. Science. 2025, 389, 268–274. [Google Scholar] [CrossRef]
- Cagnoni AJ, Massaro M, Cutine AM, Gimeno A, Pérez-Sáez JM, Manselle Cocco MN, Maller SM, Di Lella S, Jiménez-Barbero J, Ardá A, Rabinovich GA, Mariño KV. Exploring galectin interactions with human milk oligosaccharides and blood group antigens identifies BGA6 as a functional galectin-4 ligand. J Biol Chem. 2024, 300, 107573. [Google Scholar] [CrossRef]
- Cai Y, Folkerts J, Folkerts G, Maurer M, Braber S. Microbiota-dependent and -independent effects of dietary fibre on human health. Br J Pharmacol. 2020, 177, 1363–1381. [Google Scholar] [CrossRef]
- Cait A, Cardenas E, Dimitriu PA, Amenyogbe N, Dai D, Cait J, Sbihi H, Stiemsma L, Subbarao P, Mandhane PJ, Becker AB, Moraes TJ, Sears MR, Lefebvre DL, Azad MB, Kollmann T, Turvey SE, Mohn WW. Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. J Allergy Clin Immunol. 2019, 144, 1638–1647.e3. [Google Scholar] [CrossRef]
- Calder, PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Campos Canesso MC, de Castro TBR, Nakandakari-Higa S, Lockhart A, Luehr J, Bortolatto J, Parsa R, Esterházy D, Lyu M, Liu TT, Murphy KM, Sonnenberg GF, Reis BS, Victora GD, Mucida D. Identification of antigen-presenting cell-T cell interactions driving immune responses to food. Science. 2025, 387, eado5088. [Google Scholar] [CrossRef] [PubMed]
- Cao J, Wang Y, Hu S, Ding Y, Jia Q, Zhu J, An H. Kaempferol ameliorates secretagogue-induced pseudo-allergic reactions via inhibiting intracellular calcium fluctuation. J Pharm Pharmacol. 2020, 72, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Carmody RN, Gerber GK, Luevano JM Jr, Gatti DM, Somes L, Svenson KL, Turnbaugh PJ. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015, 17, 72–84. [Google Scholar] [CrossRef]
- Caruso R, Chen GY. High fat stems tumor immune surveillance. Cell Rep Med. 2021, 2, 100483. [Google Scholar] [CrossRef]
- Cassani B, Villablanca EJ, De Calisto J, Wang S, Mora JR. Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Aspects Med. 2012, 33, 63–76. [Google Scholar] [CrossRef]
- Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science. 2017, 357, 806–810. [CrossRef]
- Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011, 11, 29–36. [Google Scholar] [CrossRef]
- Chang LM, Song Y, Li XM, Sampson HA, Masilamani M. Dietary elimination of soybean components enhances allergic immune response to peanuts in BALB/c mice. Int Arch Allergy Immunol. 2015, 166, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Chen B, Chen H, Shu X, Yin Y, Li J, Qin J, Chen L, Peng K, Xu F, Gu W, Zhao H, Jiang L, Li L, Song J, Elitsur Y, Yu HD, Jiang M, Wang X, Xiang C. Presence of Segmented Filamentous Bacteria in human children and its potential role in the modulation of human gut immunity. Front Microbiol. 2018, 9, 1403. [Google Scholar] [CrossRef]
- Cheroutre H, Lambolez F. Doubting the TCR coreceptor function of CD8αα. Immunity. 2008, 28, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol. 2016, 137, 984–997. [Google Scholar] [CrossRef]
- Christ A, Günther P, Lauterbach MAR, Duewell P, Biswas D, Pelka K, Scholz CJ, Oosting M, Haendler K, Baßler K, Klee K, Schulte-Schrepping J, Ulas T, Moorlag SJCFM, Kumar V, Park MH, Joosten LAB, Groh LA, Riksen NP, Espevik T, Schlitzer A, Li Y, Fitzgerald ML, Netea MG, Schultze JL, Latz E. Western Diet Triggers NLRP3-dependent innate immune reprogramming. Cell. 2018, 172, 162–175. [Google Scholar] [CrossRef]
- Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M, Aagaard KM. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016, 8, 77. [Google Scholar] [CrossRef]
- Chun, E. , Lavoie S., Fonseca-Pereira D., Bae S., Michaud M., Hoveyda H. R., Fraser G. L., Comeau C. A. G., Glickman J. N., Fuller M. H., Layden B. T., Garrett W. S. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity. 2019, 51, 871–884.e6. [Google Scholar] [CrossRef]
- Collins N, Belkaid Y. Control of immunity via nutritional interventions. Immunity 2022, 55, 210–223. [Google Scholar] [CrossRef]
- Cook-Mills JM, Emmerson LN. Epithelial barrier regulation, antigen sampling and food allergy. J Allergy Clin Immunol. 2022, 150, 493–502. [Google Scholar] [CrossRef]
- Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007, 204, 1757–1764. [Google Scholar] [CrossRef]
- Corrêa RO, Castro PR, Fachi JL, Nirello VD, El-Sahhar S, Imada S, Pereira GV, Pral LP, Araújo NVP, Fernandes MF, Matheus VA, de Souza Felipe J, Dos Santos Pereira Gomes AB, de Oliveira S, de Rezende Rodovalho V, de Oliveira SRM, de Assis HC, Oliveira SC, Dos Santos Martins F, Martens E, Colonna M, Varga-Weisz P, Vinolo MAR. Inulin diet uncovers complex diet-microbiota-immune cell interactions remodeling the gut epithelium. Microbiome. 2023, 11, 90. [Google Scholar] [CrossRef]
- Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium; Doré J, Zucker JD, Clément K, Ehrlich SD. Dietary intervention impact on gut microbial gene richness. Nature. 2013, 500, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Crozier RWE, Yousef M, Coish JM, Fajardo VA, Tsiani E, MacNeil AJ. Carnosic acid inhibits secretion of allergic inflammatory mediators in IgE-activated mast cells via direct regulation of Syk activation. J Biol Chem. 2023, 299, 102867. [Google Scholar] [CrossRef]
- Cruz-Morales E, Hart AP, Fossett GM, Laufer TM. Helios+ and RORγt+ Treg populations are differentially regulated by MHCII, CD28, and ICOS to shape the intestinal Treg pool. Mucosal Immunol. 2023, 16, 264–274. [Google Scholar] [CrossRef]
- Daïen CI, Tan J, Audo R, Mielle J, Quek LE, Krycer JR, Angelatos A, Duraes M, Pinget G, Ni D, Robert R, Alam MJ, Amian MCB, Sierro F, Parmar A, Perkins G, Hoque S, Gosby AK, Simpson SJ, Ribeiro RV, Mackay CR, Macia L. Gut-derived acetate promotes B10 cells with antiinflammatory effects. JCI Insight. 2021, 6, e144156. [Google Scholar] [CrossRef]
- David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014, 505, 559–563. [Google Scholar] [CrossRef]
- De Juan A, Segura E. Modulation of immune responses by nutritional ligands of aryl hydrocarbon receptor. Front Immunol. 2021, 12, 645168. [Google Scholar] [CrossRef]
- de Kivit S, Kostadinova AI, Kerperien J, Ayechu Muruzabal V, Morgan ME, Knippels LMJ, Kraneveld AD, Garssen J, Willemsen LEM. Galectin-9 produced by intestinal epithelial cells enhances aldehyde dehydrogenase activity in dendritic cells in a PI3K- and p38-dependent manner. J Innate Immun. 2017, 9, 609–620. [Google Scholar] [CrossRef]
- de Kivit S, Saeland E, Kraneveld AD, van de Kant HJ, Schouten B, van Esch BC, Knol J, Sprikkelman AB, van der Aa LB, Knippels LM, Garssen J, van Kooyk Y, Willemsen LE. Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy. 2012, 67, 343–352. [Google Scholar] [CrossRef]
- de Matos OG, Amaral SS, Pereira da Silva PE, Perez DA, Alvarenga DM, Ferreira AV, Alvarez-Leite J, Menezes GB, Cara DC. Dietary supplementation with omega-3-PUFA-rich fish oil reduces signs of food allergy in ovalbumin-sensitized mice. Clin Dev Immunol. 2012, 2012, 236564. [Google Scholar] [CrossRef]
- Dębińska A, Sozańska B. Dietary polyphenols-natural bioactive compounds with potential for preventing and treating some allergic conditions. Nutrients. 2023, 15, 4823. [Google Scholar] [CrossRef]
- Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, Zhang Z, Bakal JA, Walter J. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020, 27, 389–404.e6. [Google Scholar] [CrossRef]
- Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, Geem D, Madan R, Karp CL, Pulendran B. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J Immunol. 2011, 187, 733–747. [Google Scholar] [CrossRef]
- Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol. 2007, 8, 1086–1094. [Google Scholar] [CrossRef]
- Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Núñez G, Martens EC. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef]
- Dobeš J, Brabec T. Dietary influence and immune balance: Regulating CD4+ IEL responses and MHCII in the gut. Mucosal Immunol. 2025, 18, 36–38. [Google Scholar] [CrossRef]
- Draper E, Reynolds CM, Canavan M, Mills KH, Loscher CE, Roche HM. Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ. J Nutr Biochem. 2011, 22, 784–790. [Google Scholar] [CrossRef]
- Duarte JH, Di Meglio P, Hirota K, Ahlfors H, Stockinger B. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. PLoS One. 2013, 8, e79819. [Google Scholar] [CrossRef]
- Eberl, G. RORγt, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol. 2017, 10, 27–34. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority. Scientific opinion on dietary reference values for carbohydrates and dietary fiber. EFSA panel on dietetic products, nutrition, and allergies. EFSA J. 2010, 8, 1462. [Google Scholar]
- Erkelens MN, Mebius RE. Retinoic acid and immune homeostasis: A balancing act. Trends Immunol. 2017, 38, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Feng T, Cong Y, Qin H, Benveniste EN, Elson CO. Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid. J Immunol. 2010, 185, 5915–5925. [Google Scholar] [CrossRef] [PubMed]
- Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, de Bruijn MJW, van IJcken WFJ, Junt T, Tam SY, Galli SJ, Hendriks RW, Stadhouders R, Maurer M. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy. 2020, 75, 1966–1978. [Google Scholar] [CrossRef]
- Frankhouser DE, Steck S, Sovic MG, Belury MA, Wang Q, Clinton SK, Bundschuh R, Yan PS, Yee LD. Dietary omega-3 fatty acid intake impacts peripheral blood DNA methylation -anti-inflammatory effects and individual variability in a pilot study. J Nutr Biochem. 2022, 99, 108839. [Google Scholar] [CrossRef]
- Fu L, Upadhyay R, Pokrovskii M, Chen FM, Romero-Meza G, Griesemer A, Littman DR. PRDM16-dependent antigen-presenting cells induce tolerance to gut antigens. Nature. 2025, 642, 756–765. [Google Scholar] [CrossRef]
- Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Goettel JA, Gandhi R, Kenison JE, Yeste A, Murugaiyan G, Sambanthamoorthy S, Griffith AE, Patel B, Shouval DS, Weiner HL, Snapper SB, Quintana FJ. AHR activation is protective against colitis driven by t cells in humanized mice. Cell Rep. 2016, 17, 1318–1329. [Google Scholar] [CrossRef]
- Golebski K, Layhadi JA, Sahiner U, Steveling-Klein EH, Lenormand MM, Li RCY, Bal SM, Heesters BA, Vilà-Nadal G, Hunewald O, Montamat G, HeFeng FQ, Ollert M, Fedina O, Lao-Araya M, Vijverberg SJH, Maitland-van der Zee AH, van Drunen CM, Fokkens WJ, Durham SR, Spits H, Shamji MH. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity. 2021, 54, 291–307.e7. [Google Scholar] [CrossRef]
- Goverse, G. , Molenaar R., Macia L., Tan J., Erkelens M. N., Konijn T., Knippenberg M., Cook E. C. L., Hanekamp D., Veldhoen M., Hartog A., Roeselers G., Mackay C. R., Mebius R. E. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017, 198, 2172–2181. [Google Scholar] [CrossRef]
- Gref A, Rautiainen S, Gruzieva O, Håkansson N, Kull I, Pershagen G, Wickman M, Wolk A, Melén E, Bergström A. Dietary total antioxidant capacity in early school age and subsequent allergic disease. Clin Exp Allergy. 2017, 47, 751–759. [Google Scholar] [CrossRef]
- Grimshaw KE, Maskell J, Oliver EM, Morris RC, Foote KD, Mills EN, Margetts BM, Roberts G. Diet and food allergy development during infancy: birth cohort study findings using prospective food diary data. J Allergy Clin Immunol. 2014, 133, 511–519. [Google Scholar] [CrossRef]
- Gunaratne AW, Makrides M, Collins CT. Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood. Cochrane Database Syst Rev. 2015, 2015, CD010085. [Google Scholar] [CrossRef]
- Hamilton MK, Boudry G, Lemay DG, Raybould HE. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015, 308, G840–G851. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Förster R, Pabst O. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med. 2008, 205, 2483–2490. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt-Kamper C, Biljes D, Merches K, Steiner I, Daldrup T, Bol-Schoenmakers M, Pieters RHH, Esser C. Indole-3-carbinol, a plant nutrient and AhR-Ligand precursor, supports oral tolerance against OVA and improves peanut allergy symptoms in mice. PLoS One. 2017, 12, e0180321. [Google Scholar] [CrossRef]
- Han K, Xie F, Animasahun O, Nenwani M, Kitamoto S, Kim Y, Phoo MT, Xu J, Wuchu F, Omoloja K, Achreja A, Choppara S, Li Z, Gong W, Cho YS, Dobson H, Ahn J, Zhou X, Huang X, An X, Kim A, Xu Y, Wu Q, Lee SH, O’Konek JJ, Xie Y, Lei YL, Kamada N, Nagrath D, Moon JJ. Inulin-gel-based oral immunotherapy remodels the small intestinal microbiome and suppresses food allergy. Nat Mater. 2024, 23, 1444–1455. [Google Scholar] [CrossRef]
- Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009, 137, e1–e2. [Google Scholar] [CrossRef]
- Hill JA, Hall JA, Sun CM, Cai Q, Ghyselinck N, Chambon P, Belkaid Y, Mathis D, Benoist C. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity. 2008, 29, 758–770. [Google Scholar] [CrossRef]
- Hino S, Takemura N, Sonoyama K, Morita A, Kawagishi H, Aoe S, Morita T. Small intestinal goblet cell proliferation induced by ingestion of soluble and insoluble dietary fiber is characterized by an increase in sialylated mucins in rats. J Nutr. 2012, 142, 1429–1436. [Google Scholar] [CrossRef]
- Holmberg SM, Feeney RH, Prasoodanan P K V, Puértolas-Balint F, Singh DK, Wongkuna S, Zandbergen L, Hauner H, Brandl B, Nieminen AI, Skurk T, Schroeder BO. The gut commensal Blautia maintains colonic mucus function under low-fiber consumption through secretion of short-chain fatty acids. Nat Commun. 2024, 15, 3502. [Google Scholar] [CrossRef]
- Hong SW, Krueger PD, Osum KC, Dileepan T, Herman A, Mueller DL, Jenkins MK. Immune tolerance of food is mediated by layers of CD4+ T cell dysfunction. Nature. 2022, 607, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Hoskinson C, Dai DLY, Del Bel KL, Becker AB, Moraes TJ, Mandhane PJ, Finlay BB, Simons E, Kozyrskyj AL, Azad MB, Subbarao P, Petersen C, Turvey SE. Delayed gut microbiota maturation in the first year of life is a hallmark of pediatric allergic disease. Nat Commun. 2023, 14, 4785. [Google Scholar] [CrossRef] [PubMed]
- Hoskinson C, Petersen C, Turvey SE. How the early life microbiome shapes immune programming in childhood asthma and allergies. Mucosal Immunol. 2025, 18, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hou TY, McMurray DN, Chapkin RS. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur J Pharmacol. 2016, 785, 2–9. [Google Scholar] [CrossRef]
- Huang H, Li M, Song S, Feng S, Feng X, Liu Y, Yang P, Zheng P. Galectin 9 rescues the inducibility of IL-10 expression in regulatory B cells of patients with food allergy. Sci Rep. 2025, 15, 196. [Google Scholar] [CrossRef]
- Hussain M, Bonilla-Rosso G, Kwong Chung CKC, Bäriswyl L, Rodriguez MP, Kim BS, Engel P, Noti M. High dietary fat intake induces a microbiota signature that promotes food allergy. J Allergy Clin Immunol. 2019, 144, 157–170.e8. [Google Scholar] [CrossRef]
- Huynh LBP, Nguyen NN, Fan HY, Huang SY, Huang CH, Chen YC. Maternal omega-3 supplementation during pregnancy, but not childhood supplementation, reduces the risk of food allergy diseases in offspring. J Allergy Clin Immunol Pract. 2023, 11, 2862–2871.e8. [Google Scholar] [CrossRef]
- Hwang D, Kang MJ, Kang CW, Kim GD. Kaempferol-3-O-β-rutinoside suppresses the inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells via the NF-κB and MAPK pathways. Int J Mol Med. 2019, 44, 2321–2328. [Google Scholar] [CrossRef]
- Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2009, 2, 340–350. [Google Scholar] [CrossRef]
- Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, Foschi D, Caprioli F, Viale G, Rescigno M. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009, 58, 1481–1489. [Google Scholar] [CrossRef]
- Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009, 139, 485–498. [Google Scholar] [CrossRef]
- Jaensson-Gyllenbäck E, Kotarsky K, Zapata F, Persson EK, Gundersen TE, Blomhoff R, Agace WW. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol. 2011, 4, 438–447. [Google Scholar] [CrossRef]
- Jin UH, Cheng Y, Park H, Davidson LA, Callaway ES, Chapkin RS, Jayaraman A, Asante A, Allred C, Weaver EA, Safe S. Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and Caco-2 human colon cancer cells. Sci Rep. 2017, 7, 10163. [Google Scholar] [CrossRef] [PubMed]
- Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN; Personalized Microbiome Class Students; Walter J, Menon R, Koecher K, Knights D. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019, 25, 789–802.e5. [Google Scholar] [CrossRef] [PubMed]
- Jonsson H, Hugerth LW, Sundh J, Lundin E, Andersson AF. Genome sequence of segmented filamentous bacteria present in the human intestine. Commun Biol. 2020, 3, 485. [Google Scholar] [CrossRef]
- Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY. Extrathymically generated regulatory T cells control mucosal Th2 inflammation. Nature. 2012, 482, 395–399. [Google Scholar] [CrossRef]
- Kang SW, Kim SH, Lee N, Lee WW, Hwang KA, Shin MS, Lee SH, Kim WU, Kang I. 1,25-Dihyroxyvitamin D3 promotes FOXP3 expression via binding to vitamin D response elements in its conserved noncoding sequence region. J Immunol. 2012, 188, 5276–5282. [Google Scholar] [CrossRef]
- Kanjan P, Sahasrabudhe NM, de Haan BJ, de Vos P. Immune effects of β-glucan are determined by combined effects on Dectin-1, TLR2, 4 and 5. J Funct Foods. 2017, 37, 433–440. [Google Scholar] [CrossRef]
- Kastl AJ Jr, Terry NA, Wu GD, Albenberg LG. The structure and function of the human small intestinal microbiota: Current understanding and future directions. Cell Mol Gastroenterol Hepatol. 2020, 9, 33–45. [Google Scholar] [CrossRef]
- Kedmi R, Najar TA, Mesa KR, Grayson A, Kroehling L, Hao Y, Hao S, Pokrovskii M, Xu M, Talbot J, Wang J, Germino J, Lareau CA, Satpathy AT, Anderson MS, Laufer TM, Aifantis I, Bartleson JM, Allen PM, Paidassi H, Gardner JM, Stoeckius M, Littman DR. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature. 2022, 610, 737–743. [Google Scholar] [CrossRef]
- Keir M, Yi T, Lu T, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med. 2020, 217, e20192195. [Google Scholar] [CrossRef] [PubMed]
- Kemter AM, Patry RT, Arnold J, Hesser LA, Campbell E, Ionescu E, Mimee M, Wang S, Nagler CR. Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food. Cell Rep. 2023, 42, 113153. [Google Scholar] [CrossRef] [PubMed]
- Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, Lee JY, Lee M, Surh CD. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science. 2016, 351, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Kim MJ, Je IG, Song J, Fei X, Lee S, Yang H, Kang W, Jang YH, Seo SY, Kim SH. SG-SP1 suppresses mast cell-mediated allergic inflammation via inhibition of FcεRI signaling. Front Immunol. 2020, 11, 50. [Google Scholar] [CrossRef]
- Kim Y, Lee S, Jin M, Choi YA, Choi JK, Kwon TK, Khang D, Kim SH. Aspalathin, a Primary Rooibos Flavonoid, Alleviates Mast Cell-Mediated Allergic Inflammation by the Inhibition of FcεRI signaling pathway. Inflammation. 2025, 48, 199–211. [Google Scholar] [CrossRef]
- Klemens CM, Berman DR, Mozurkewich EL. The effect of perinatal omega-3 fatty acid supplementation on inflammatory markers and allergic diseases: a systematic review. BJOG. 2011, 118, 916–925. [Google Scholar] [CrossRef]
- Kong W, Yen JH, Vassiliou E, Adhikary S, Toscano MG, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family. Lipids Health Dis. 2010, 9, 12. [Google Scholar] [CrossRef]
- Kopp, W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Kosins AE, Gao H, Blankenship RL, Emmerson LN, Ochoa JA, Cook-Mills JM. Maternal supplementation with α-tocopherol inhibits the development of offspring food allergy, H1R signaling and ultimately anaphylaxis early in life. J Immunol. 2025, 214, 199–210. [Google Scholar] [CrossRef]
- Kremmyda LS, Vlachava M, Noakes PS, Diaper ND, Miles EA, Calder PC. Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol. 2011, 41, 36–66. [Google Scholar] [CrossRef]
- Kumar R, Ferrie RP, Balmert LC, Kienzl M, Rifas-Shiman SL, Gold DR, Sordillo JE, Kleinman K, Camargo CA Jr, Litonjua AA, Oken E, Cook-Mills JM. Associations of α- and γ-tocopherol during early life with lung function in childhood. J Allergy Clin Immunol. 2020, 146, 1349–1357.e3. [Google Scholar] [CrossRef]
- Kunisawa J, Arita M, Hayasaka T, Harada T, Iwamoto R, Nagasawa R, Shikata S, Nagatake T, Suzuki H, Hashimoto E, Kurashima Y, Suzuki Y, Arai H, Setou M, Kiyono H. Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci Rep. 2015, 5, 9750. [Google Scholar] [CrossRef] [PubMed]
- Kuziel GA, Lozano GL, Simian C, Li L, Manion J, Stephen-Victor E, Chatila T, Dong M, Weng JK, Rakoff-Nahoum S. Functional diversification of dietary plant small molecules by the gut microbiome. Cell. 2025, 188, 1967–1983.e22. [Google Scholar] [CrossRef] [PubMed]
- Lawson LP, Parameswaran S, Panganiban RA, Constantine GM, Weirauch MT, Kottyan LC. Update on the genetics of allergic diseases. J Allergy Clin Immunol. 2025, 155, 1738–1752. [Google Scholar] [CrossRef] [PubMed]
- Lee M, Ko HJ, Hong SW, Park J, Ham S, Kim M, Kwon DI, Lee MS, Roh TY, Soon Kim K, Lee YJ. Dietary antigens suppress the proliferation of type 2 innate lymphoid cells by restraining homeostatic IL-25 production. Sci Rep. 2022, 12, 7443. [Google Scholar] [CrossRef]
- Lee S, Park K, Kim J, Min H, Seong RH. Foxp3 expression in induced regulatory T cells is stabilized by C/EBP in inflammatory environments. EMBO Rep. 2018, 19, e45995. [Google Scholar] [CrossRef]
- Leung AS, Xing Y, Fernández-Rivas M, Wong GW. The relationship between dietary patterns and the epidemiology of food allergy. Allergy. 2025, 80, 690–702. [Google Scholar] [CrossRef]
- Li L, Xu X, Wang X, Zhang S, Yao W, Liu J, Liu Z, Yang P. Galectin-9 in synergy with NF-κB inhibition restores immune regulatory capability in dendritic cells of subjects with food allergy. Clin Exp Immunol. 2023, 213, 155–163. [Google Scholar] [CrossRef]
- Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011, 147, 629–640. [Google Scholar] [CrossRef]
- Li Y, Prabhakaran P, Wang Y, Li D, Sun-Waterhouse D, Li F. Insights into food allergy mechanisms and the anti-allergic potential of natural polyphenols in regulating FcεRI-mediated mast cell degranulation. Food Chem. 2025, 490, 145099. [Google Scholar] [CrossRef]
- Liu EG, Zhang B, Martin V, Anthonypillai J, Kraft M, Grishin A, Grishina G, Catanzaro JR, Chinthrajah S, Sindher T, Manohar M, Quake AZ, Nadeau K, Burks AW, Kim EH, Kulis MD, Henning AK, Jones SM, Leung DYM, Sicherer SH, Wood RA, Yuan Q, Shreffler W, Sampson H, Shabanova V, Eisenbarth SC. Food-specific immunoglobulin A does not correlate with natural tolerance to peanut or egg allergens. Sci Transl Med. 2022, 14, eabq0599. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn SR, Britton GJ, Contijoch EJ, Vennaro OH, Mortha A, Colombel JF, Grinspan A, Clemente JC, Merad M, Faith JJ. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology. 2018, 154, 1037–1046.e2. [Google Scholar] [CrossRef] [PubMed]
- Lochner M, Wang A, Sparwasser T. The special relationship in the development and function of T helper 17 and regulatory T cells. In: Progress in Molecular Biology and Translational Science, 2015, Vol 136, pp 99-129. ISSN 1877-1173. Elsevier Inc.
- Lockhart A, Mucida D, Bilate AM. Intraepithelial lymphocytes of the intestine. Annu Rev Immunol. 2024, 42, 289–316. [Google Scholar] [CrossRef]
- Lockhart A, Reed A, Rezende de Castro T, Herman C, Campos Canesso MC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J Exp Med. 2023, 220, e20221816. [Google Scholar] [CrossRef]
- López-Fandiño R, Molina E, Lozano-Ojalvo D. Intestinal factors promoting the development of RORγt+ cells and oral tolerance. Front Immunol. 2023, 14, 1294292. [Google Scholar] [CrossRef]
- López-Fandiño, R. Role of dietary lipids in food allergy. Crit Rev Food Sci Nutr. 2020, 60, 1797–1814. [Google Scholar] [CrossRef]
- Lozano-Ojalvo D, Martínez-Blanco M, Pérez-Rodríguez L, Molina E, López-Fandiño R. Oral immunotherapy with egg peptides induces innate and adaptive tolerogenic responses. Mol Nutr Food Res. 1900. [CrossRef]
- Lozano-Ojalvo D, Mártinez-Blanco M, Pérez-Rodríguez L, Molina E, Peláez C, Requena T, López-Fandiño R. Egg white peptide-based immunotherapy enhances vitamin A metabolism and induces RORγt+ regulatory T cells. J Funct Foods. 2019, 52, 204–211. [Google Scholar] [CrossRef]
- Lyu M, Suzuki H, Kang L, Gaspal F, Zhou W, Goc J, Zhou L, Zhou J, Zhang W; JRI Live Cell Bank; Shen Z, Fox JG, Sockolow RE, Laufer TM, Fan Y, Eberl G, Withers DR, Sonnenberg GF. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature. 2022, 610, 744–751. [Google Scholar] [CrossRef]
- MacLean E, Madsen N, Vliagoftis H, Field C, Cameron L. n-3 Fatty acids inhibit transcription of human IL-13: implications for development of T helper type 2 immune responses. Br J Nutr. 2013, 109, 990–1000. [Google Scholar] [CrossRef]
- Mailhot G, White JH. Vitamin D and immunity in infants and children. Nutrients. 2020, 12, 1233. [Google Scholar] [CrossRef]
- Manicassamy S, Ravindran R, Deng J, Oluoch H, Denning TL, Kasturi SP, Rosenthal KM, Evavold BD, Pulendran B. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat Med. 2009, 15, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Marinelli L, Martin-Gallausiaux C, Bourhis JM, Béguet-Crespel F, Blottière HM, Lapaque N. Identification of the novel role of butyrate as AhR ligand in human intestinal epithelial cells. Sci Rep. 2019, 9, 643. [Google Scholar] [CrossRef] [PubMed]
- Martin JC, Bériou G, Heslan M, Chauvin C, Utriainen L, Aumeunier A, Scott CL, Mowat A, Cerovic V, Houston SA, Leboeuf M, Hubert FX, Hémont C, Merad M, Milling S, Josien R. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunol. 2014, 7, 101–113. [Google Scholar] [CrossRef]
- Martínez-Blanco M, Pérez-Rodríguez L, Lozano-Ojalvo D, Molina E, López-Fandiño R. Ovalbumin-derived peptides activate retinoic acid signalling pathways and induce regulatory responses through Toll-like receptor interactions. Nutrients. 2020, 12, 831. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C. , Béguet-Crespel F., Marinelli L. Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci Rep. 2018, 8, 9742. [Google Scholar] [CrossRef]
- Masilamani M, Wei J, Bhatt S, Paul M, Yakir S, Sampson HA. Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. J Allergy Clin Immunol. 2011, 128, 1242–1250.e1. [Google Scholar] [CrossRef]
- Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct action of non-digestible oligosaccharides against a leaky gut. Nutrients. 2022, 14, 4699. [Google Scholar] [CrossRef]
- Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010, 185, 3190–3198. [Google Scholar] [CrossRef]
- Mielke LA, Jones SA, Raverdeau M, Higgs R, Stefanska A, Groom JR, et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J Exp Med. 2013, 210, 1117–1124. [Google Scholar] [CrossRef]
- Miles EA, Calder PC. Can Early Omega-3 fatty acid exposure reduce risk of childhood allergic disease? Nutrients. 2017, 9, 784. [Google Scholar] [CrossRef]
- Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023, 23, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Mine Y, Majumder K, Jin Y, Zeng Y. Chinese sweet tea (Rubus suavissimus) polyphenols attenuate the allergic responses in a Balb/c mouse model of egg allergy. J Funct Foods. 2020, 67, 103827. [Google Scholar] [CrossRef]
- Mirzakhani H, Al-Garawi A, Weiss ST, Litonjua AA. Vitamin D and the development of allergic disease: how important is it? Clin Exp Allergy. 2015, 45, 114–125. [Google Scholar] [CrossRef]
- Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. 2018, 53, 465–474. [Google Scholar] [CrossRef]
- Moreira TG, Cox LM, Da Silva P, Mangani D, De Oliveira MG, Escobar G, Lanser TB, Murphy L, Lobo ELC, Milstein O, Gauthier CD, Clara Guimarāes A, Schwerdtfeger L, Ekwudo MN, Wasén C, Liu S, Menezes GB, Ferreira E, Gabriely G, Anderson AC, Faria AMC, Rezende RM, Weiner HL. Dietary protein modulates intestinal dendritic cells to establish mucosal homeostasis. Mucosal Immunol. 2024, 17, 911–922. [Google Scholar] [CrossRef]
- Morita H, Kubo T, Rückert B, Ravindran A, Soyka MB, Rinaldi AO, Sugita K, Wawrzyniak M, Wawrzyniak P, Motomura K, Tamari M, Orimo K, Okada N, Arae K, Saito K, Altunbulakli C, Castro-Giner F, Tan G, Neumann A, Sudo K, O’Mahony L, Honda K, Nakae S, Saito H, Mjösberg J, Nilsson G, Matsumoto K, Akdis M, Akdis CA. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol. 2019, 143, 2190–2201.e9. [Google Scholar] [CrossRef]
- Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014, 343, 1249288. [Google Scholar] [CrossRef]
- Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R, Naoe Y, Reis BS, Huang Y, Lambolez F, Docherty M, Attinger A, Shui JW, Kim G, Lena CJ, Sakaguchi S, Miyamoto C, Wang P, Atarashi K, Park Y, Nakayama T, Honda K, Ellmeier W, Kronenberg M, Taniuchi I, Cheroutre H. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol. 2013, 14, 281–289. [Google Scholar] [CrossRef]
- Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007, 317, 256–260. [Google Scholar] [CrossRef]
- Myles IA, Fontecilla NM, Janelsins BM, Vithayathil PJ, Segre JA, Datta SK. Parental dietary fat intake alters offspring microbiome and immunity. J Immunol. 2013, 191, 3200–3209. [Google Scholar] [CrossRef]
- Nagata K, Ando D, Ashikari T, Ito K, Miura R, Fujigaki I, Goto Y, Ando M, Ito N, Kawazoe H, Iizuka Y, Inoue M, Yashiro T, Hachisu M, Kasakura K, Nishiyama C. Butyrate, valerate, and niacin ameliorate anaphylaxis by suppressing IgE-dependent mast cell activation: Roles of GPR109A, PGE2, and epigenetic regulation. J Immunol. 2024, 212, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Nagata K, Araumi S, Ando D, Ito N, Ando M, Ikeda Y, Takahashi M, Noguchi S, Yasuda Y, Nakano N, Ando T, Hara M, Yashiro T, Hachisu M, Nishiyama C. Kaempferol suppresses the activation of mast cells by modulating the expression of FcεRI and SHIP1. Int J Mol Sci. 2023, 24, 5997. [Google Scholar] [CrossRef]
- Narasimhan H, Richter ML, Shakiba R, Papaioannou NE, Stehle C, Ravi Rengarajan K, Ulmert I, Kendirli A, de la Rosa C, Kuo PY, Altman A, Münch P, Mahboubi S, Küntzel V, Sayed A, Stange EL, Pes J, Ulezko Antonova A, Pereira CF, Klein L, Dudziak D, Colonna M, Torow N, Hornef MW, Clausen BE, Kerschensteiner M, Lahl K, Romagnani C, Colomé-Tatché M, Schraml BU. RORγt-expressing dendritic cells are functionally versatile and evolutionarily conserved antigen-presenting cells. Proc Natl Acad Sci U S A. 2025, 122, e2417308122. [Google Scholar] [CrossRef] [PubMed]
- Nolting J, Daniel C, Reuter S, Stuelten C, Li P, Sucov H, Kim BG, Letterio JJ, Kretschmer K, Kim HJ, von Boehmer H. Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. J Exp Med. 2009, 206, 2131–2139. [Google Scholar] [CrossRef]
- Nwaru BI, Takkinen HM, Kaila M, Erkkola M, Ahonen S, Pekkanen J, Simell O, Veijola R, Ilonen J, Hyöty H, Knip M, Virtanen SM. Food diversity in infancy and the risk of childhood asthma and allergies. J Allergy Clin Immunol. 2014, 133, 1084–1091. [Google Scholar] [CrossRef]
- Odaka Y, Nakano M, Tanaka T, Kaburagi T, Yoshino H, Sato-Mito N, Sato K. The influence of a high-fat dietary environment in the fetal period on postnatal metabolic and immune function. Obesity (Silver Spring). 2010, 18, 1688–1694. [Google Scholar] [CrossRef]
- Ohnmacht, C. Tolerance to the intestinal microbiota mediated by ROR(γt)+ cells. Trends Immunol. 2016, 37, 477–486. [Google Scholar] [CrossRef]
- Ohnmacht, C. , Park J. H., Cording S., Wing J. B., Atarashi K., Obata Y., Gaboriau-Routhiau V., Marques R., Dulauroy S., Fedoseeva M., Busslinger M., Cerf-Bensussan N., Boneca I. G., Voehringer D., Hase K., Honda K., Sakaguchi S., Eberl G. The microbiota regulates type 2 immunity through RORγt+ T cells. Science. 2015, 349, 989–993. [Google Scholar] [CrossRef]
- Onodera T, Jang MH, Guo Z, Yamasaki M, Hirata T, Bai Z, Tsuji NM, Nagakubo D, Yoshie O, Sakaguchi S, Takikawa O, Miyasaka M. Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J Immunol. 2009, 183, 5608–5614. [Google Scholar] [CrossRef]
- Pacheco SE, Guidos-Fogelbach G, Annesi-Maesano I, Pawankar R, D’ Amato G, Latour-Staffeld P, Urrutia-Pereira M, Kesic MJ, Hernandez ML; American Academy of Allergy, Asthma; Immunology Environmental Exposures and Respiratory Health Committee. Climate change and global issues in allergy and immunology. J Allergy Clin Immunol. 2021, 148, 1366–1377. [Google Scholar] [CrossRef]
- Pan T, Wu Y, He S, Wu Z, Jin R. Food allergenic protein conjugation with plant polyphenols for allergenicity reduction. Curr Opin Food Sci. 2022, 43, 36–42. [Google Scholar] [CrossRef]
- Paparo L, Coppola S, Nocerino R, Pisapia L, Picariello G, Cortese M, Voto L, Maglio M, Miele E, Carucci L, Oglio F, Trinchese G, Mollica MP, Bruno C, De Vita S, Tarallo A, Damiano C, Cerulo M, Esposito C, Fogliano V, Parenti G, Troncone R, Berni Canani R. How dietary advanced glycation end products could facilitate the occurrence of food allergy. J Allergy Clin Immunol. 2024, 153, 742–758. [Google Scholar] [CrossRef] [PubMed]
- Paparo L, Nocerino R, Ciaglia E, Di Scala C, De Caro C, Russo R, Trinchese G, Aitoro R, Amoroso A, Bruno C, Di Costanzo M, Passariello A, Messina F, Agangi A, Napolitano M, Voto L, Gatta GD, Pisapia L, Montella F, Mollica MP, Calignano A, Puca A, Berni Canani R. Butyrate as a bioactive human milk protective component against food allergy. Allergy. 2021, 76, 1398–1415. [Google Scholar] [CrossRef] [PubMed]
- Park BK, Park S, Park JB, Park MC, Min TS, Jin M. Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J Nutr Biochem. 2013, 24, 868–876. [Google Scholar] [CrossRef]
- Parrish A, Boudaud M, Grant ET, Willieme S, Neumann M, Wolter M, Craig SZ, De Sciscio A, Cosma A, Hunewald O, Ollert M, Desai MS. Akkermansia muciniphila exacerbates food allergy in fibre-deprived mice. Nat Microbiol. 2023, 8, 1863–1879. [CrossRef]
- Patterson E, O’ Doherty RM, Murphy EF, Wall R, O’ Sullivan O, Nilaweera K, Fitzgerald GF, Cotter PD, Ross RP, Stanton C. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr. 2014, 111, 1905–1917. [Google Scholar] [CrossRef]
- Pei T, Li W, Zhou Z, Zhang Q, Yu G, Yin S, Chen H, Tang J. The relationship between tryptophan metabolism and gut microbiota: Interaction mechanism and potential effects in infection treatment. Microbiol Res. 2025, 298, 128211. [Google Scholar] [CrossRef]
- Poole A, Song Y, Brown H, Hart PH, Zhang GB. Cellular and molecular mechanisms of vitamin D in food allergy. J Cell Mol Med. 2018, 22, 3270–3277. [Google Scholar] [CrossRef]
- Psaroulaki E, Katsaras GN, Samartzi P, Chatziravdeli V, Psaroulaki D, Oikonomou E, Tsitsani P. Association of food allergy in children with vitamin D insufficiency: a systematic review and meta-analysis. Eur J Pediatr. 2023, 182, 1533–1554. [Google Scholar] [CrossRef]
- Quintana FJ, Murugaiyan G, Farez MF, Mitsdoerffer M, Tukpah AM, Burns EJ, Weiner HL. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2010, 107, 20768–20773. [Google Scholar] [CrossRef]
- Rabinovich GA, Toscano MA. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol. 2009, 9, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Racine A, Carbonnel F, Chan SS, Hart AR, Bueno-de-Mesquita HB, Oldenburg B, van Schaik FD, Tjønneland A, Olsen A, Dahm CC, Key T, Luben R, Khaw KT, Riboli E, Grip O, Lindgren S, Hallmans G, Karling P, Clavel-Chapelon F, Bergman MM, Boeing H, Kaaks R, Katzke VA, Palli D, Masala G, Jantchou P, Boutron-Ruault MC. Dietary patterns and risk of inflammatory bowel disease in Europe: Results from the EPIC study. Inflamm Bowel Dis. 2016, 22, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Rainer H, Goretzki A, Lin YJ, Schiller HR, Krause M, Döring S, Strecker D, Junker AC, Wolfheimer S, Toda M, Scheurer S, Schülke S. Characterization of the immune-modulating properties of different β-glucans on myeloid dendritic cells. Int J Mol Sci. 2024, 25, 9914. [Google Scholar] [CrossRef]
- Rankin LC, Kaiser KA, de Los Santos-Alexis K, Park H, Uhlemann AC, Gray DHD, Arpaia N. Dietary tryptophan deficiency promotes gut RORγt+ Treg cells at the expense of Gata3+ Treg cells and alters commensal microbiota metabolism. Cell Rep. 2023, 42, 112135. [Google Scholar] [CrossRef]
- Reis BS, Hoytema van Konijnenburg DP, Grivennikov SI, Mucida D. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity. 2014, 41, 244–256. [Google Scholar] [CrossRef]
- Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat Immunol. 2013, 14, 271–280. [Google Scholar] [CrossRef]
- Richard C, Lewis ED, Goruk S, Field CJ. A dietary supply of docosahexaenoic acid early in life is essential for immune development and the establishment of oral tolerance in female rat offspring. J Nutr. 2016, 146, 2398–2406. [Google Scholar] [CrossRef]
- Rivera CA, Randrian V, Richer W, Gerber-Ferder Y, Delgado MG, Chikina AS, Frede A, Sorini C, Maurin M, Kammoun-Chaari H, Parigi SM, Goudot C, Cabeza-Cabrerizo M, Baulande S, Lameiras S, Guermonprez P, Reis e Sousa C, Lecuit M, Moreau HD, Helft J, Vignjevic DM, Villablanca EJ, Lennon-Duménil AM. Epithelial colonization by gut dendritic cells promotes their functional diversification. Immunity 2022, 55, 129–144. [Google Scholar] [CrossRef]
- Rodrigues PF, Wu S, Trsan T, Panda SK, Fachi JL, Liu Y, Du S, de Oliveira S, Antonova AU, Khantakova D, Sudan R, Desai P, Diamond MS, Gilfillan S, Anderson SK, Cella M, Colonna M. Rorγt-positive dendritic cells are required for the induction of peripheral regulatory T cells in response to oral antigens. Cell. 2025, 188, 2720–2737.e22. [Google Scholar] [CrossRef]
- Rodriguez-Marino N, Royer CJ, Rivera-Rodriguez DE, Seto E, Gracien I, Jones RM, Scharer CD, Gracz AD, Cervantes-Barragan L. Dietary fiber promotes antigen presentation on intestinal epithelial cells and development of small intestinal CD4+CD8αα+ intraepithelial T cells. Mucosal Immunol. 2024, 17, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Roduit C, Frei R, Depner M, Schaub B, Loss G, Genuneit J, Pfefferle P, Hyvärinen A, Karvonen AM, Riedler J, Dalphin JC, Pekkanen J, von Mutius E, Braun-Fahrländer C, Lauener R; PASTURE study group. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol. 2014, 133, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, Schiavi E, Barcik W, Rodriguez-Perez N, Wawrzyniak M, Chassard C, Lacroix C, Schmausser-Hechfellner E, Depner M, von Mutius E, Braun-Fahrländer C, Karvonen AM, Kirjavainen PV, Pekkanen J, Dalphin JC, Riedler J, Akdis C, Lauener R, O’Mahony L; PASTURE/EFRAIM study group. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019, 74, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Royer CJ, Rodriguez-Marino N, Yaceczko MD, Rivera-Rodriguez DE, Ziegler TR, Cervantes-Barragan L. Low dietary fiber intake impairs small intestinal Th17 and intraepithelial T cell development over generations. Cell Rep. 2023, 42, 113140. [Google Scholar] [CrossRef]
- Rudnitsky A, Oh H, Margolin M, Dassa B, Shteinberg I, Stoler-Barak L, Shulman Z, Kedmi R. A coordinated cellular network regulates tolerance to food. Nature. 2025, 644, 231–240. [Google Scholar] [CrossRef]
- Russo, GL. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- Sahasrabudhe NM, Beukema M, Tian L, Troost B, Scholte J, Bruininx E, Bruggeman G, van den Berg M, Scheurink A, Schols HA, Faas MM, de Vos P. Dietary fiber pectin directly blocks Toll-like receptor 2-1 and prevents doxorubicin-induced ileitis. Front Immunol. 2018, 9, 383. [Google Scholar] [CrossRef]
- Samuchiwal SK, Boyce JA. Role of lipid mediators and control of lymphocyte responses in type 2 immunopathology. J Allergy Clin Immunol. 2018, 141, 1182–1190. [Google Scholar] [CrossRef]
- Schanz O, Chijiiwa R, Cengiz SC, Majlesain Y, Weighardt H, Takeyama H, Förster I. Dietary AhR ligands regulate AhRR expression in intestinal immune cells and intestinal microbiota composition. Int J Mol Sci. 2020, 21, 3189. [Google Scholar] [CrossRef]
- Schilderink R, Verseijden C, Seppen J, Muncan V, van den Brink GR, Lambers TT, van Tol EA, de Jonge WJ. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am J Physiol Gastrointest Liver Physiol. 2016, 310, G1138–G1146. [Google Scholar] [CrossRef]
- Schindler T, Sinn JK, Osborn DA. Polyunsaturated fatty acid supplementation in infancy for the prevention of allergy. Cochrane Database Syst Rev. 2016, 10, CD010112. [Google Scholar] [CrossRef]
- Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol. 2013, 25, 342–351. [Google Scholar] [CrossRef]
- Schnupf P, Gaboriau-Routhiau V, Sansonetti PJ, Cerf-Bensussan N. Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world. Curr Opin Microbiol. 2017, 35, 100–109. [Google Scholar] [CrossRef]
- Schouten B, van Esch BC, Hofman GA, de Kivit S, Boon L, Knippels LM, Garssen J, Willemsen LE. A potential role for CD25+ regulatory T-cells in the protection against casein allergy by dietary non-digestible carbohydrates. Br J Nutr. 2012, 107, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Schroeder BO, Birchenough GMH, Ståhlman M, Arike L, Johansson MEV, Hansson GC, Bäckhed F. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe. 2018, 23, 27–40.e7. [Google Scholar] [CrossRef] [PubMed]
- Schulz VJ, Smit JJ, Willemsen KJ, Fiechter D, Hassing I, Bleumink R, Boon L, van den Berg M, van Duursen MB, Pieters RH. Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model. Toxicol Sci. 2011, 123, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Shamji MH, Valenta R, Jardetzky T, Verhasselt V, Durham SR, Würtzen PA, van Neerven RJJ. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy. 2021, 76, 3627–3641. [Google Scholar] [CrossRef]
- Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L, Huang B, Blander JM, Xiong H, Mayer L, Berin C, Augenlicht LH, Velcich A, Cerutti A. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. 2013, 342, 447–453. [Google Scholar] [CrossRef]
- Simopoulos, AP. An Increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016, 8, 128. [Google Scholar] [CrossRef]
- Singh A, Demont A, Actis-Goretta L, Holvoet S, Lévêques A, Lepage M, Nutten S, Mercenier A. Identification of epicatechin as one of the key bioactive constituents of polyphenol-enriched extracts that demonstrate an anti-allergic effect in a murine model of food allergy. Br J Nutr. [CrossRef]
- Singh, N. , Gurav A., Sivaprakasam S., Brady E., Padia R., Shi H., Thangaraju M., Prasad P. D., Manicassamy S., Munn D. H., Lee J. R., Offermanns S., Ganapathy V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014, 40, 128–139. [Google Scholar] [CrossRef]
- Skypala I, Vlieg-Boerstra B. Food intolerance and allergy: increased incidence or contemporary inadequate diets? Curr Opin Clin Nutr Metab Care. 2014, 17, 442–447. [Google Scholar] [CrossRef]
- Smith PK, Masilamani M, Li XM, Sampson HA. The false alarm hypothesis: Food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol. 2017, 139, 429–437. [Google Scholar] [CrossRef]
- Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013, 341, 569–573. [Google Scholar] [CrossRef]
- Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Sonner JK, Keil M, Falk-Paulsen M, Mishra N, Rehman A, Kramer M, Deumelandt K, Röwe J, Sanghvi K, Wolf L, von Landenberg A, Wolff H, Bharti R, Oezen I, Lanz TV, Wanke F, Tang Y, Brandao I, Mohapatra SR, Epping L, Grill A, Röth R, Niesler B, Meuth SG, Opitz CA, Okun JG, Reinhardt C, Kurschus FC, Wick W, Bode HB, Rosenstiel P, Platten M. Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology. Nat Commun. 2019, 10, 4877. [Google Scholar] [CrossRef] [PubMed]
- Sozener ZC, Ozturk BO, Cerci P, Turk M, Akin BG, Akdis M, Altiner S, Ozbey U, Ogulur I, Mitamura Y, Yilmaz I, Nadeau K, Ozdemir C, Mungan D, Akdis CA. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022, 77, 1418–1449. [Google Scholar] [CrossRef]
- Spolidoro GCI, Amera YT, Ali MM, Nyassi S, Lisik D, Ioannidou A, Rovner G, Khaleva E, Venter C, van Ree R, Worm M, Vlieg-Boerstra B, Sheikh A, Muraro A, Roberts G, Nwaru BI. Frequency of food allergy in Europe: An updated systematic review and meta-analysis. Allergy 2023, 78, 351–368. [Google Scholar] [CrossRef]
- Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014, 111, 13145–13150. [Google Scholar] [CrossRef]
- Stephen-Victor E, Crestani E, Chatila TA. Dietary and microbial determinants in food allergy. Immunity. 2020, 53, 277–289. [Google Scholar] [CrossRef]
- Stephen-Victor E, Kuziel GA, Martinez-Blanco M, Jugder BE, Benamar M, Wang Z, Chen Q, Lozano GL, Abdel-Gadir A, Cui Y, Fong J, Saint-Denis E, Chang I, Nadeau KC, Phipatanakul W, Zhang A, Farraj FA, Holder-Niles F, Zeve D, Breault DT, Schmitz-Abe K, Rachid R, Crestani E, Rakoff-Nahoum S, Chatila TA. RELMβ sets the threshold for microbiome-dependent oral tolerance. Nature. 2025, 638, 760–768. [Google Scholar] [CrossRef]
- Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat Rev Gastroenterol Hepatol. 2021, 18, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Strachan, DP. Hay fever, hygiene, and household size. BMJ. 1989, 299, 1259–1260. [Google Scholar] [CrossRef] [PubMed]
- Stromsnes K, Lagzdina R, Olaso-Gonzalez G, Gimeno-Mallench L, Gambini J. Pharmacological properties of polyphenols: Bioavailability, mechanisms of action, and biological effects in in vitro studies, animal models, and humans. Biomedicines. 2021, 9, 1074. [Google Scholar] [CrossRef]
- Suaini NH, Zhang Y, Vuillermin PJ, Allen KJ, Harrison LC. Immune modulation by vitamin D and its relevance to food allergy. Nutrients. 2015, 7, 6088–6108. [Google Scholar] [CrossRef]
- Sujino T, London M, Hoytema van Konijnenburg DP, Rendon T, Buch T, Silva HM, Lafaille JJ, Reis BS, Mucida D. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science. 2016, 352, 1581–1586. [Google Scholar] [CrossRef]
- Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007, 204, 1775–1785. [Google Scholar] [CrossRef]
- Sun IH, Qualls AE, Yin HS, Wang J, Arvedson MP, Germino J, Horner NK, Zhong S, Du J, Valdearcos M, Ntranos V, Locksley RM, Ricardo-Gonzalez RR, Gardner JM. RORγt eTACs mediate oral tolerance and Treg induction. J Exp Med. 2025, 222, e20250573. [Google Scholar] [CrossRef]
- Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016, 15, 2809–2824. [Google Scholar] [CrossRef]
- Tan JK, Macia L, Mackay CR. Dietary fiber and SCFAs in the regulation of mucosal immunity. J Allergy Clin Immunol. 2023, 151, 361–370. [Google Scholar] [CrossRef]
- Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D, Teng F, Pasman L, Ortiz-Lopez A, Jupp R, Wu HJ, Kasper DL, Benoist C, Mathis D. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A. 2016, 113, E8141–E8150. [Google Scholar] [CrossRef]
- Tedeschi SK, Bathon JM, Giles JT, Lin TC, Yoshida K, Solomon DH. Relationship between fish consumption and disease activity in rheumatoid arthritis. Arthritis Care Res 2018, 70, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Thang CL, Boye JI, Shi HN, Zhao X. Effects of supplementing different ratios of omega-3 and omega-6 fatty acids in western-style diets on cow’s milk protein allergy in a mouse model. Mol Nutr Food Res. 2013, 57, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009, 1, 6ra14. [Google Scholar] [CrossRef]
- Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, Sato S, Tsujimura T, Yamamoto M, Yokota Y, Kiyono H, Miyasaka M, Ishii KJ, Akira S. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol. 2008, 9, 769–776. [Google Scholar] [CrossRef]
- Urashima T, Sato S, Nio-Kobayashi, J, Hirabayashi J. Why does breast milk contain a large amount of “galectin stripper”, milk oligosaccharides? What is their mysterious function? Glycoforum. 2021, 24, A13.
- Utsch L, Folisi C, Akkerdaas JH, Logiantara A, van de Pol MA, van der Zee JS, Krop EJ, Lutter R, van Ree R, van Rijt LS. Allergic sensitization is associated with inadequate antioxidant responses in mice and men. Allergy. 2015, 70, 1246–1258. [Google Scholar] [CrossRef]
- Vahdaninia M, Mackenzie H, Dean T, Helps S. ω-3 LCPUFA supplementation during pregnancy and risk of allergic outcomes or sensitization in offspring: A systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2019, 122, 302–313.e2. [CrossRef]
- van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, Almeida FF, Ibiza S, Barbosa I, Goverse G, Labão-Almeida C, Godinho-Silva C, Konijn T, Schooneman D, O’Toole T, Mizee MR, Habani Y, Haak E, Santori FR, Littman DR, Schulte-Merker S, Dzierzak E, Simas JP, Mebius RE, Veiga-Fernandes H. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature. 2014, 508, 123–127. [Google Scholar] [CrossRef]
- van den Elsen L, van Esch B, Hofman G, van de Heijning B, Garssen J, Willemsen L. Dietary long chain n-3 polyunsaturated fatty acid induced regulatory T-cells contribute to the prevention of oral sensitization to cow’s milk protein in mice. Clin Transl Allergy. [CrossRef]
- van den Elsen LW, Bol-Schoenmakers M, van Esch BC, Hofman GA, van de Heijning BJ, Pieters RH, Smit JJ, Garssen J, Willemsen LE. DHA-rich tuna oil effectively suppresses allergic symptoms in mice allergic to whey or peanut. J Nutr. 2014, 144, 1970–1976. [Google Scholar] [CrossRef]
- van den Elsen LW, Meulenbroek LA, van Esch BC, Hofman GA, Boon L, Garssen J, Willemsen LE. CD25+ regulatory T cells transfer n-3 long chain polyunsaturated fatty acids-induced tolerance in mice allergic to cow’s milk protein. Allergy. 2013, 68, 1562–1570. [Google Scholar] [CrossRef]
- van den Elsen LW, Nusse Y, Balvers M, Redegeld FA, Knol EF, Garssen J, Willemsen LE. n-3 Long-chain PUFA reduce allergy-related mediator release by human mast cells in vitro via inhibition of reactive oxygen species. Br J Nutr. 2013, 109, 1821–1831. [Google Scholar] [CrossRef] [PubMed]
- Venter C, Meyer RW, Greenhawt M, Pali-Schöll I, Nwaru B, Roduit C, Untersmayr E, Adel-Patient K, Agache I, Agostoni C, Akdis CA, Feeney M, Hoffmann-Sommergruber K, Lunjani N, Grimshaw K, Reese I, Smith PK, Sokolowska M, Vassilopoulou E, Vlieg-Boerstra B, Amara S, Walter J, O’Mahony L. Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy. 2022, 77, 3185–3198. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Suarez I, Larange A, Reardon C, Matho M, Feau S, Chodaczek G, Park Y, Obata Y, Gold R, Wang-Zhu Y, Lena C, Zajonc DM, Schoenberger SP, Kronenberg M, Cheroutre H. Unique lamina propria stromal cells imprint the functional phenotype of mucosal dendritic cells. Mucosal Immunol. 2015, 8, 141–451. [Google Scholar] [CrossRef] [PubMed]
- Villablanca EJ, Wang S, de Calisto J, Gomes DC, Kane MA, Napoli JL, et al. MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells. Gastroenterology 2011, 141, 176–185. [Google Scholar] [CrossRef]
- Vogt LM, Sahasrabudhe NM, Ramasamy U, Meyer D, Pullens G, Faas MM, Venema K, Schols HA, de Vos P. The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. J Func Foods. 2026, 22, 398–407. [Google Scholar] [CrossRef]
- Wagenaar L, Bol-Schoenmakers M, Giustarini G, Vonk MM, van Esch BCAM, Knippels LMJ, Garssen J, Smit JJ, Pieters RHH. Dietary supplementation with nondigestible oligosaccharides reduces allergic symptoms and supports low dose oral immunotherapy in a peanut allergy mouse model. Mol Nutr Food Res. 2018, 62, e1800369. [Google Scholar] [CrossRef]
- Wang Q, Mackay CR. High metabolite concentrations in portal venous blood as a possible mechanism for microbiota effects on the immune system and Western diseases. J Allergy Clin Immunol. 2024, 153, 980–982. [Google Scholar] [CrossRef]
- Wang S, Villablanca EJ, De Calisto J, Gomes DC, Nguyen DD, Mizoguchi E, Kagan JC, Reinecker HC, Hacohen N, Nagler C, Xavier RJ, Rossi-Bergmann B, Chen YB, Blomhoff R, Snapper SB, Mora JR. MyD88-dependent TLR1/2 signals educate dendritic cells with gut-specific imprinting properties. J Immunol. 2011, 187, 141–150. [Google Scholar] [CrossRef]
- Wang X, Ma DW, Kang JX, Kulka M. n-3 Polyunsaturated fatty acids inhibit Fc ε receptor I-mediated mast cell activation. J Nutr Biochem. 2015, 26, 1580–1588. [Google Scholar] [CrossRef]
- Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, Robinson JL, Elias JE, Sonnenburg ED, Gardner CD, Sonnenburg JL. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef]
- Weise C, Hilt K, Milovanovic M, Ernst D, Rühl R, Worm M. Inhibition of IgE production by docosahexaenoic acid is mediated by direct interference with STAT6 and NFκB pathway in human B cells. J Nutr Biochem. 2011, 22, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Weldon SM, Mullen AC, Loscher CE, Hurley LA, Roche HM. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J Nutr Biochem. 2007, 18, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci. 2023, 10, 1204025. [Google Scholar] [CrossRef]
- Wiciński M, Sawicka E, Gębalski J, Kubiak K, Malinowski B. Human milk oligosaccharides: health benefits, potential applications in infant formulas, and pharmacology. Nutrients. 2020, 12, 266. [Google Scholar] [CrossRef]
- Wongkrasant P, Pongkorpsakol P, Ariyadamrongkwan J, Meesomboon R, Satitsri S, Pichyangkura R, Barrett KE, Muanprasat C. A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway. Biomed Pharmacother. 2020, 129, 110415. [Google Scholar] [CrossRef]
- Wu RY, Abdullah M, Määttänen P, Pilar AV, Scruten E, Johnson-Henry KC, Napper S, O’Brien C, Jones NL, Sherman PM. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function. Sci Rep. 2017, 7, 40820. [Google Scholar] [CrossRef]
- Wu W, Lin L, Shi B, Jing J, Cai L. The effects of early life polyunsaturated fatty acids and ruminant trans fatty acids on allergic diseases: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2019, 59, 1802–1815. [Google Scholar] [CrossRef]
- Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, Kuchroo VK. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 2008, 181, 2277–2284. [Google Scholar] [CrossRef]
- Yang T, Li T, Xing Y, Cao M, Zhang M, Leng Q, Qiu J, Song X, Chen J, Hu G, Qian Y. Dietary nucleic acids promote oral tolerance through innate sensing pathways in mice. Nat Commun. 2024, 15, 9461. [Google Scholar] [CrossRef]
- Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, Alonzo F, Ng C, Chen A, Lin X, Sczesnak A, Liao JJ, Torres VJ, Jenkins MK, Lafaille JJ, Littman DR. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature. 2014, 510, 152–156. [Google Scholar] [CrossRef]
- Ye J, Qiu J, Bostick JW, Ueda A, Schjerven H, Li S, Jobin C, Chen ZE, Zhou L. The aryl hydrocarbon receptor preferentially marks and promotes gut regulatory T cells. Cell Rep. 2017, 21, 2277–2290. [Google Scholar] [CrossRef]
- Yin Z, Liu X, Guo L, Ren M, Kang W, Ma C, Waterhouse GIN, Sun-Waterhouse D. The potential of dietary fiber in building immunity against gastrointestinal and respiratory disorders. Crit Rev Food Sci Nutr. 2024, 64, 13318–13336. [Google Scholar] [CrossRef] [PubMed]
- Yip KH, Kolesnikoff N, Yu C, Hauschild N, Taing H, Biggs L, Goltzman D, Gregory PA, Anderson PH, Samuel MS, Galli SJ, Lopez AF, Grimbaldeston MA. Mechanisms of vitamin D3 metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol. 2014, 133, e1–e14. [Google Scholar] [CrossRef]
- Yokota A, Takeuchi H, Maeda N, Ohoka Y, Kato C, Song SY, et al. GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int Immunol. 2009, 21, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu Y, Sujino T, Miyamoto K, Harada Y, Tanemoto S, Ono K, Umeda S, Yoshida K, Teratani T, Suzuki T, Mikami Y, Nakamoto N, Sasaki N, Takabayashi K, Hosoe N, Ogata H, Sawada K, Imamura T, Yoshimura A, Kanai T. Aryl hydrocarbon receptor signals in epithelial cells govern the recruitment and location of Helios+ Tregs in the gut. Cell Rep. 2022, 39, 110773. [Google Scholar] [CrossRef]
- Zeng R, Bscheider M, Lahl K, Lee M, Butcher E. C. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunol. 2016, 9, 183–193. [Google Scholar] [CrossRef]
- Zeng R, Oderup C, Yuan R, Lee M, Habtezion A, Hadeiba H, Butcher EC. Retinoic acid regulates the development of a gut-homing precursor for intestinal dendritic cells. Mucosal Immunol. 2013, 6, 847–856. [Google Scholar] [CrossRef]
- Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010, 4, 232–241. [Google Scholar] [CrossRef]
- Zhang GQ, Liu B, Li J, Luo CQ, Zhang Q, Chen JL, Sinha A, Li ZY. Fish intake during pregnancy or infancy and allergic outcomes in children: A systematic review and meta-analysis. Pediatr Allergy Immunol. 2017, 28, 152–161. [Google Scholar] [CrossRef]
- Zhang Q, Yu G, Jiang Y, Shi H, Yang X, Gao Z, Wang Q, Sun J, Wang C, Li Q, Li H, Fu L. Dietary advanced glycation end-products promote food allergy by disrupting intestinal barrier and enhancing Th2 immunity. Nat Commun. 2025, 16, 4960. [Google Scholar] [CrossRef]
- Zhang Q, Yu X, Tian L, Li L. Therapeutic effects of epigallocatechin and epigallocatechin gallate on the allergic reaction of αs1-casein sensitized mice. Food Sci. Hum. Wellness. 2023, 12, 882–888. [Google Scholar] [CrossRef]
- Zhang YF, Liu QM, Gao YY, Liu B, Liu H, Cao MJ, Yang XW, Liu GM. Attenuation of allergic responses following treatment with resveratrol in anaphylactic models and IgE-mediated mast cells. Food Funct. 2019, 10, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Zhang YF, Liu QM, Liu B, Shu ZD, Han J, Liu H, Cao MJ, Yang XW, Gu W, Liu GM. Dihydromyricetin inhibited ovalbumin-induced mice allergic responses by suppressing the activation of mast cells. Food Funct. 2019, 10, 7131–7141. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L. AHR Function in lymphocytes: Emerging concepts. Trends Immunol. 2016, 37, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Zhou L, Chu C, Teng F, Bessman NJ, Goc J, Santosa EK, Putzel GG, Kabata H, Kelsen JR, Baldassano RN, Shah MA, Sockolow RE, Vivier E, Eberl G, Smith KA, Sonnenberg GF. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019, 568, 405–409. [Google Scholar] [CrossRef]
- Zhu B, Buttrick T, Bassil R, Zhu C, Olah M, Wu C, Xiao S, Orent W, Elyaman W, Khoury SJ. IL-4 and retinoic acid synergistically induce regulatory dendritic cells expressing Aldh1a2. J Immunol. 2013, 191, 3139–3151. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).