Submitted:
24 November 2025
Posted:
28 November 2025
You are already at the latest version
Abstract
Self-adhesive dual-cure resin cements (DCRC) simplified clinical application to a single-step procedure. Studies reported inferior mechanical properties compared to conventional resin cements. This study evaluated and compared the compressive strength (CS) and flexural strength (FS) of commercial DCRC against its modification using 10 vol% nanozirconia and 10 vol% nanodiamond. Three groups were prepared: Group 1 (commercial resin cement), Group 2 (nanozirconia-modified), and Group 3 (nanodiamond-modified), with 10 samples per group. 3-(Trimethoxysilyl) propyl methacrylate was used as coupling agent. Specimens were prepared according to manufacturer instructions and tested for CS and FS using a Universal Instron testing machine. Data was analysed using one-way ANOVA and Tukey’s post hoc test. Compressive strength values were Group 2 = 132.18 ± 27.93 MPa, Group 3 = 126.21 ± 12.54 MPa, Group 1 = 121.12 ± 19.35 MPa. Flexural strength values were Group 2 = 72.5 ± 10.4 MPa, Group 3 = 71.06 ± 6.3 MPa, Group 1 = 66.92 ± 5.27 MPa. Both nanozirconia and nanodiamond incorporation showed improvements in CS and FS compared to the control group. Within the limitations of this study, nanozirconia modified dual cure resin cement showed higher values compared to nanodiamond modified dual cure resin. These results support further research to optimize nanofiller-reinforced luting cements.
Keywords:
1. Introduction
2. Materials and Methods
| Material | Brand name | Serial number |
| RelyX U200 A2 Shade | 3M ESPE | 30064000 (HSC Code) |
| Nanozirconia | Vedayukt India Pvt Ltd | 1314-23-4 (CAS) |
| Nanodiamond | Vedayukt India Pvt Ltd | 7782-40-3 (CAS) |
| 3-(Trimethoxysilyl) propyl Methacrylate | Tokyo Chemical Industry (India)Pvt Ltd | 2530-85-0 (CAS) |
| Nanoparticles |
Group 1 (control) |
Group 2 | Group 3 |
| Nanozirconia (vol%) | - | 10 % | - |
| Nanodiamond (vol%) | - | - | 10% |
3. Results

| Variable | Group1 (Mean±SD) | Group2 (Mean±SD) | Group3 (Mean±SD) | F (df₁, df₂) | p-value |
| Compressive strength | 121.12±19.35 | 132.18±27.93 | 126.21±12.54 | F(2,27)=0.701 |
0.505 |
| Dependent Variable | Comparison Groups | Mean Difference (I–J) | Standard Error | p-value | 95% CI Lower | 95% CI Upper |
| Compressive Strength | Group 1 vs. Group 2 |
-11.060 |
9.353 |
0.473 | -34.229 |
12.109 |
| Group 1 vs. Group 3 |
-5.973 | 9.353 |
0.850 |
-29.143 |
17.196 | |
| Group 2 vs. Group 3 | 5.087 | 9.353 | 0.910 | -18.083 |
28.257 |

| Variable | Group1 (Mean± SD) | Group2 (Mean± SD) | Group3 (Mean± SD) | F (df₁, df₂) | p-value |
| Flexural strength | 66.92 ± 5.27 | 72.50 ± 10.40 | 71.06 ± 6.30 | F(2, 27) = 1.435 | 0.256 |
| Dependent Variable | Comparison Groups | Mean Difference (I–J) | Standard Error | p-value | 95% CI Lower | 95% CI Upper |
| Flexural Strength | Group 1 vs. Group 2 |
-5.580 | 3.420 |
0.250 |
-14.061 |
2.901 |
| Group 1 vs. Group 3 |
-4.144 | 3.420 | 0.457 | -12.625 | 4.337 | |
| Group 2 vs. Group 3 |
1.436 | 3.420 | 0.909 | -7.045 | 9.917 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BisGMA | bisphenol-A-ethoxy dimethacrylate |
| BisEMA | bisphenol-A-ethoxy dimethacrylate |
| UDMA | urethane dimethacrylate |
| CS | Compressive strength |
| FS | Flexural Strength |
| DCRC | Dual cure resin cement |
References
- Fehrenbach, J.; Münchow, E.A.; Isolan, C.P.; Brondani, L.P.; Bergoli, C.D. Structural Reliability and Bonding Performance of Resin Luting Agents to Dentin and Enamel. International Journal of Adhesion and Adhesives 2021, 107, 102863. [Google Scholar] [CrossRef]
- Borges, M.H.R.; Dias, C.G.T.; Alencar, C.D.M.; Silva, C.M.; Esteves, R.A. Evaluation of Physical-Mechanical Properties of Self-Adhesive versus Conventional Resin Cements. Braz. J. Oral Sci. 2020, 19, e208204. [Google Scholar] [CrossRef]
- Miotti, L.; Follak, A.; Montagner, A.; Pozzobon, R.; Da Silveira, B.; Susin, A. Is Conventional Resin Cement Adhesive Performance to Dentin Better Than Self-Adhesive? A Systematic Review and Meta-Analysis of Laboratory Studies. Operative Dentistry 2020, 45, 484–495. [Google Scholar] [CrossRef]
- Peumans, M.; Van Meerbeek, B.; Lambrechts, P.; Vanherle, G. Porcelain Veneers: A Review of the Literature. Journal of Dentistry 2000, 28, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Heboyan, A.; Vardanyan, A.; Karobari, M.I.; Marya, A.; Avagyan, T.; Tebyaniyan, H.; Mustafa, M.; Rokaya, D.; Avetisyan, A. Dental Luting Cements: An Updated Comprehensive Review. Molecules 2023, 28, 1619. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.E. Dental Cements for Definitive Luting: A Review and Practical Clinical Considerations. Dental Clinics of North America 2007, 51, 643–658. [Google Scholar] [CrossRef]
- Leung, G.K.-H.; Wong, A.W.-Y.; Chu, C.-H.; Yu, O.Y. Update on Dental Luting Materials. Dentistry Journal 2022, 10, 208. [Google Scholar] [CrossRef]
- Hill, E.; Lott, J. A Clinically Focused Discussion of Luting Materials. Australian Dental Journal 2011, 56, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin Composite—State of the Art. Dental Materials 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Peutzfeldt, A. Resin Composites in Dentistry: The Monomer Systems. European J Oral Sciences 1997, 105, 97–116. [Google Scholar] [CrossRef]
- Mikhail, S.S.; Schricker, S.R.; Azer, S.S.; Brantley, W.A.; Johnston, W.M. Optical Characteristics of Contemporary Dental Composite Resin Materials. Journal of Dentistry 2013, 41, 771–778. [Google Scholar] [CrossRef]
- Sheoran, L.; Sehrawat, M.; Fatima, D.; Nandal, N.; Budhiraja, D. A Literature Review on Selection of Dental Cement in Dentistry. IJOHD 2021, 7, 94–96. [Google Scholar] [CrossRef]
- Materials for Adhesion and Luting- Craig’s restorative dental materials- 14th Edition, 2019, 273-294. [CrossRef]
- Hofmann, N.; Papsthart, G.; Hugo, B.; Klaiber, B. Comparison of Photo-Activation versus Chemical or Dual-Curing of Resin-Based Luting Cements Regarding Flexural Strength, Modulus and Surface Hardness. J Oral Rehabil 2001, 28, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Schricker, S.R. Composite Resin Polymerization and Relevant Parameters. In Orthodontic Applications of Biomaterials; Elsevier, 2017; pp. 153–170 ISBN 978-0-08-100383-1.
- Rosenstiel, S.F.; Land, M.F.; Crispin, B.J. Dental Luting Agents: A Review of the Current Literature. The Journal of Prosthetic Dentistry 1998, 80, 280–301. [Google Scholar] [CrossRef] [PubMed]
- Milleding, P. Microleakage of Indirect Composite Inlays: An in Vitro Comparison with the Direct Technique. Acta Odontologica Scandinavica 1992, 50, 295–301. [Google Scholar] [CrossRef]
- Gargari, M.; Gloria, F.; Napoli, E.; Pujia, A.M. Zirconia: Cementation of Prosthetic Restorations. Literature Review. Oral Implantol (Rome) 2010, 3, 25–29. [Google Scholar]
- Liang, T.; Hu, X.; Zhu, L.; Pan, X.; Zhou, Y.; Liu, J. Comparative in Vitro Study of Cementing Techniques for Implant-Supported Restorations. The Journal of Prosthetic Dentistry 2016, 116, 59–66. [Google Scholar] [CrossRef]
- Alshabib, A.; AlDosary, K.; Algamaiah, H. A Comprehensive Review of Resin Luting Agents: Bonding Mechanisms and Polymerisation Reactions. The Saudi Dental Journal 2024, 36, 234–239. [Google Scholar] [CrossRef]
- Cramer, N.B.; Couch, C.L.; Schreck, K.M.; Carioscia, J.A.; Boulden, J.E.; Stansbury, J.W.; Bowman, C.N. Investigation of Thiol-Ene and Thiol-Ene–Methacrylate Based Resins as Dental Restorative Materials. Dental Materials 2010, 26, 21–28. [Google Scholar] [CrossRef]
- Maletin, A.; Knežević, M.J.; Koprivica, D.Đ.; Veljović, T.; Puškar, T.; Milekić, B.; Ristić, I. Dental Resin-Based Luting Materials—Review. Polymers 2023, 15, 4156. [Google Scholar] [CrossRef]
- Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent Advances and Developments in Composite Dental Restorative Materials. J Dent Res 2011, 90, 402–416. [Google Scholar] [CrossRef]
- Oh, S.; Shin, S.-M.; Kim, H.-J.; Paek, J.; Kim, S.-J.; Yoon, T.H.; Kim, S.-Y. Influence of Glass-Based Dental Ceramic Type and Thickness with Identical Shade on the Light Transmittance and the Degree of Conversion of Resin Cement. Int J Oral Sci 2018, 10, 5. [Google Scholar] [CrossRef]
- Chen, M.-H. Update on Dental Nanocomposites. J Dent Res 2010, 89, 549–560. [Google Scholar] [CrossRef]
- Yadav, R.; Lee, H.; Lee, J.-H.; Singh, R.K.; Lee, H.-H. A Comprehensive Review: Physical, Mechanical, and Tribological Characterization of Dental Resin Composite Materials. Tribology International 2023, 179, 108102. [Google Scholar] [CrossRef]
- Lung, C.Y.K.; Sarfraz, Z.; Habib, A.; Khan, A.S.; Matinlinna, J.P. Effect of Silanization of Hydroxyapatite Fillers on Physical and Mechanical Properties of a Bis-GMA Based Resin Composite. Journal of the Mechanical Behavior of Biomedical Materials 2016, 54, 283–294. [Google Scholar] [CrossRef]
- Won, S.; Ko, K.-H.; Park, C.-J.; Cho, L.-R.; Huh, Y.-H. Effect of Barium Silicate Filler Content on Mechanical Properties of Resin Nanoceramics for Additive Manufacturing. J Adv Prosthodont 2022, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.M.; Sayed, O.; Lung, C.Y.K.; Rajasekar, V.; Yiu, C.K.Y. Applications of Bioactive Strontium Compounds in Dentistry. JFB 2024, 15, 216. [Google Scholar] [CrossRef] [PubMed]
- Bapat, R.A.; Yang, H.J.; Chaubal, T.V.; Dharmadhikari, S.; Abdulla, A.M.; Arora, S.; Rawal, S.; Kesharwani, P. Review on Synthesis, Properties and Multifarious Therapeutic Applications of Nanostructured Zirconia in Dentistry. RSC Adv. 2022, 12, 12773–12793. [Google Scholar] [CrossRef]
- Batul, R.; Makandar, S.D.; Nawi, M.A.B.A.; Basheer, S.N.; Albar, N.H.; Assiry, A.A.; Luke, A.M.; Karobari, M.I. Comparative Evaluation of Microhardness, Water Sorption and Solubility of Biodentin and Nano-Zirconia-Modified Biodentin and FTIR Analysis. Applied Sciences 2023, 13, 1758. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a Ceramic Biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Subhani, T.; Latif, M.; Ahmad, I.; Rakha, S.A.; Ali, N.; Khurram, A.A. Mechanical Performance of Epoxy Matrix Hybrid Nanocomposites Containing Carbon Nanotubes and Nanodiamonds. Materials & Design 2015, 87, 436–444. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lim, D.-P.; Lim, D.-S. Tribological Behavior of PTFE Nanocomposite Films Reinforced with Carbon Nanoparticles. Composites Part B: Engineering 2007, 38, 810–816. [Google Scholar] [CrossRef]
- Neitzel, I.; Mochalin, V.; Bares, J.A.; Carpick, R.W.; Erdemir, A.; Gogotsi, Y. Tribological Properties of Nanodiamond-Epoxy Composites. Tribol Lett 2012, 47, 195–202. [Google Scholar] [CrossRef]
- Bogatyrenko, S.; Kryshtal, A. Thermal Expansion Coefficients of Ag, Cu and Diamond Nanoparticles: In Situ TEM Diffraction and EELS Measurements. Materials Characterization 2021, 178, 111296. [Google Scholar] [CrossRef]
- Khan, M.; Tiehu, L.; Zhao, T.K.; Khurram, A.A.; Khan, I.; Ullah, A.; Hayat, A.; Lone, A.L.; Ali, F.; Iqbal, S. Comparative Study of the Ball Milling and Acid Treatment of Functionalized Nanodiamond Composites. International Journal of Refractory Metals and Hard Materials 2018, 73, 46–52. [Google Scholar] [CrossRef]
- Khan, M.; Khurram, A.A.; Tiehu, L.; Zhao, T.K.; Xiong, C.; Ali, Z.; Ali, N.; Ullah, A. Reinforcement Effect of Acid Modified Nanodiamond in Epoxy Matrix for Enhanced Mechanical and Electromagnetic Properties. Diamond and Related Materials 2017, 78, 58–66. [Google Scholar] [CrossRef]
- Vereshchagin, A.L.; Sakovich, G.V. Structure of Detonation Nanodiamonds. Mendeleev Communications 2001, 11, 39–40. [Google Scholar] [CrossRef]
- Blank, V.; Popov, M.; Pivovarov, G.; Lvova, N.; Terentev, S. Mechanical Properties of Different Types of Diamond. Diamond and Related Materials 1999, 8, 1531–1535. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Ma, M.; Ma, H.; Hu, W.; Zhang, X.; Zhuge, Z.; Zhang, S.; Luo, K.; Gao, Y.; et al. Ultrastrong Conductive in Situ Composite Composed of Nanodiamond Incoherently Embedded in Disordered Multilayer Graphene. Nat. Mater. 2023, 22, 42–49. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, S.; Duan, S.; Song, J.; Li, X.; Yang, B.; Chen, X.; Wang, C.; Yi, W.; Wang, Z.; et al. Enhanced Strength of Nano-Polycrystalline Diamond by Introducing Boron Carbide Interlayers at the Grain Boundaries. Nanoscale Adv. 2020, 2, 691–698. [Google Scholar] [CrossRef]
- Klein, C.A.; Cardinale, G.F. Young’s Modulus and Poisson’s Ratio of CVD Diamond. Diamond and Related Materials 1993, 2, 918–923. [Google Scholar] [CrossRef]
- Kenneth, J. Kenneth J. Anusavice, Chiayi Shen, H. Ralph Rawls-Phillips' Science of Dental Materials (11th Edition). ISBN: 9781455748136.
- Ferrari, M.; Carvalho, C.A.; Goracci, C.; Antoniolli, F.; Mazzoni, A.; Mazzotti, G.; Cadenaro, M.; Breschi, L. Influence of Luting Material Filler Content on Post Cementation. J Dent Res 2009, 88, 951–956. [Google Scholar] [CrossRef]
- Peutzfeldt, A. Dual-Cure Resin Ceme: In Vitro Wear and Effect of Quantity of Remaining Double Bonds, Filler Volume, and Light Curing. Acta Odontologica Scandinavica 1995, 53, 29–34. [Google Scholar] [CrossRef]
- Furtos, G.; Baldea, B.; Silaghi-Dumitrescu, L.; Moldovan, M.; Prejmerean, C.; Nica, L. Influence of Inorganic Filler Content on the Radiopacity of Dental Resin Cements. Dent. Mater. J. 2012, 31, 266–272. [Google Scholar] [CrossRef]
- Wang, R.; Habib, E.; Zhu, X.X. Application of Close-Packed Structures in Dental Resin Composites. Dental Materials 2017, 33, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Habib, E.; Zhu, X.X. Evaluation of the Filler Packing Structures in Dental Resin Composites: From Theory to Practice. Dental Materials 2018, 34, 1014–1023. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Kitagawa, T.; Aida, M.; Nishiyama, N. Experimental and Computational Approach for Evaluating the Mechanical Characteristics of Dental Composite Resins with Various Filler Sizes. Acta Biomaterialia 2006, 2, 633–639. [Google Scholar] [CrossRef]
- Masouras, K.; Silikas, N.; Watts, D.C. Correlation of Filler Content and Elastic Properties of Resin-Composites. Dental Materials 2008, 24, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Fukushima, T.; Horibe, T.; Watanabe, T. [Effect of filler system on the mechanical properties of light-cured composite resins. II. Mechanical properties of visible light-cured composite resins with binary filler system]. Shika Zairyo Kikai 1989, 8, 180–184. [Google Scholar] [PubMed]
- Lim, B.-S.; Ferracane, J.L.; Condon, J.R.; Adey, J.D. Effect of Filler Fraction and Filler Surface Treatment on Wear of Microfilled Composites. Dental Materials 2002, 18, 1–11. [Google Scholar] [CrossRef]
- Lang, B.R.; Jaarda, M.; Wang, R. -F. Filler Particle Size and Composite Resin Classification Systems. J of Oral Rehabilitation 1992, 19, 569–584. [Google Scholar] [CrossRef]
- Nunes, T.G.; Pereira, S.G.; Kalachandra, S. Effect of Treated Filler Loading on the Photopolymerization Inhibition and Shrinkage of a Dimethacrylate Matrix. J Mater Sci: Mater Med 2008, 19, 1881–1889. [Google Scholar] [CrossRef]
- Gonçalves, F.; Kawano, Y.; Braga, R.R. Contraction Stress Related to Composite Inorganic Content. Dental Materials 2010, 26, 704–709. [Google Scholar] [CrossRef]
- Sümer, E.; Değer, Y. Contemporary Permanent Luting Agents Used in Dentistry: A Literature Review. Int Dent Res 2011, 1, 26. [Google Scholar] [CrossRef]
- Lundgren, D.; Laurell, L. Occlusal Force Pattern during Chewing and Biting in Dentitions Restored with Fixed Bridges of Cross-arch Extension: II. Unilateral Posterior Two-unit Cantilevers. J of Oral Rehabilitation 1986, 13, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In Vitro Aging of Dental Composites in Water? Effect of Degree of Conversion, Filler Volume, and Filler/Matrix Coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Spanoudakis, J.; Young, R.J. Crack Propagation in a Glass Particle-Filled Epoxy Resin: Part 1 Effect of Particle Volume Fraction and Size. J Mater Sci 1984, 19, 473–486. [Google Scholar] [CrossRef]
- D’Alpino, P.H.P.; Silva, M.S.; Vismara, M.V.G.; Di Hipólito, V.; Miranda González, A.H.; De Oliveira Graeff, C.F. The Effect of Polymerization Mode on Monomer Conversion, Free Radical Entrapment, and Interaction with Hydroxyapatite of Commercial Self-Adhesive Cements. Journal of the Mechanical Behavior of Biomedical Materials 2015, 46, 83–92. [Google Scholar] [CrossRef]
- Zhou, H.; Li, C.; Zhang, Y.; Tu, W.; Li, Q.; Peng, Y.; Zhang, Z.; Zheng, Z. Nano- SiO2 / PVC Composite Material: A Review on Modification, Preparation, Properties, and Applications. J of Applied Polymer Sci 2025, 142, e57605. [Google Scholar] [CrossRef]
- Mitra, S.B.; Wu, D.; Holmes, B.N. An Application of Nanotechnology in Advanced Dental Materials. The Journal of the American Dental Association 2003, 134, 1382–1390. [Google Scholar] [CrossRef]
- Ahuja, D.; Akhila, M.R.; Singh, A.K.; Batra, P. Impact of Nanoparticles on Dental Composites: A Systematic Review and Meta-Analysis. J Int Oral Health 2024, 16, 439–448. [Google Scholar] [CrossRef]
- Harsch, M.; Karger-Kocsis, J.; Holst, M. Influence of Fillers and Additives on the Cure Kinetics of an Epoxy/Anhydride Resin. European Polymer Journal 2007, 43, 1168–1178. [Google Scholar] [CrossRef]
- Velo, M.M.A.C.; Nascimento, T.R.L.; Scotti, C.K.; Bombonatti, J.F.S.; Furuse, A.Y.; Silva, V.D.; Simões, T.A.; Medeiros, E.S.; Blaker, J.J.; Silikas, N.; et al. Improved Mechanical Performance of Self-Adhesive Resin Cement Filled with Hybrid Nanofibers-Embedded with Niobium Pentoxide. Dental Materials 2019, 35, e272–e285. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, A.; Ziolkowski, P.; García Galán, S. Real-Time Prediction of Early Concrete Compressive Strength Using AI and Hydration Monitoring. Sci Rep 2025, 15, 15463. [Google Scholar] [CrossRef]
- Ostrowski, D.; Bryson, K. The Physical Properties of Meteorites. Planetary and Space Science 2019, 165, 148–178. [Google Scholar] [CrossRef]
- Levartovsky, S.; Kuyinu, E.; Georgescu, M.; Goldstein, G.R. A Comparison of the Diametral Tensile Strength, the Flexural Strength, and the Compressive Strength of Two New Core Materials to a Silver Alloy-Reinforced Glass-Inomer Material. The Journal of Prosthetic Dentistry 1994, 72, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.C.; Kaneko, L.M.; Donovan, T.E.; White, S.N. Diametral and Compressive Strength of Dental Core Materials. The Journal of Prosthetic Dentistry 1999, 82, 272–276. [Google Scholar] [CrossRef]
- Saygili, G.; Mahmali, S.M. Comparative Study of the Physical Properties of Core Materials. Int J Periodontics Restorative Dent 2002, 22, 355–363. [Google Scholar] [PubMed]
- El-Kemary, B.M.; El-Borady, O.M.; Abdel Gaber, S.A.; Beltagy, T.M. Role of nano-zirconia in the Mechanical Properties Improvement of Resin Cement Used for Tooth Fragment Reattachment. Polymer Composites 2021, 42, 3307–3319. [Google Scholar] [CrossRef]
- Chung, S.M.; Yap, A.U.J.; Chandra, S.P.; Lim, C.T. Flexural Strength of Dental Composite Restoratives: Comparison of Biaxial and Three-point Bending Test. J Biomed Mater Res 2004, 71B, 278–283. [Google Scholar] [CrossRef]
- Sabane, A.V.; Patil, R.V.; Sardar, S.S.; Jadhav, R.D.; Patil, A.A.; Sardar, C.S. In Vitro Comparative Evaluation of Bond Strength of CAD/CAM Monolithic Zirconia Copings Influenced by Luting Agents and Finish Line Design. The Journal of Contemporary Dental Practice 2022, 23, 343–350. [Google Scholar] [CrossRef]
- Beketova, A.; Tzanakakis, E.-G.C.; Vouvoudi, E.; Anastasiadis, K.; Rigos, A.E.; Pandoleon, P.; Bikiaris, D.; Tzoutzas, I.G.; Kontonasaki, E. Zirconia Nanoparticles as Reinforcing Agents for Contemporary Dental Luting Cements: Physicochemical Properties and Shear Bond Strength to Monolithic Zirconia. IJMS 2023, 24, 2067. [Google Scholar] [CrossRef]
- Kundie, F.; Azhari, C.H. Effects of Filler Size on the Mechanical Properties of Polymer-Filled Dental Composites: A Review of Recent Developments. JPS 2018, 29, 141–165. [Google Scholar] [CrossRef]
- Akiba, S.; Takamizawa, T.; Tsujimoto, A.; Moritake, N.; Ishii, R.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Influence of Different Curing Modes on Flexural Properties, Fracture Toughness, and Wear Behavior of Dual-Cure Provisional Resin-Based Composites. Dent. Mater. J. 2019, 38, 728–737. [Google Scholar] [CrossRef]
- Johnson, G.H.; Lepe, X.; Zhang, H.; Wataha, J.C. Retention of Metal-Ceramic Crowns With Contemporary Dental Cements. The Journal of the American Dental Association 2009, 140, 1125–1136. [Google Scholar] [CrossRef]
- Raja Awang, R.A.; Islam, M.S.; Jamayet, N.; Ismail, N.H. Flexural Strength and Viscosity of Dental Luting Composite Reinforced with Zirconia and Alumina. Bangladesh J Med Sci 2024, 23, 1048–1053. [Google Scholar] [CrossRef]
- Hiremath, G.; Horati, P.; Naik, B. Evaluation and Comparison of Flexural Strength of Cention N with Resin-Modified Glass-Ionomer Cement and Composite - An in Vitro Study. J Conserv Dent 2022, 25, 288–291. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Sidhu, S.K.; Czarnecka, B. Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review. Materials 2020, 13, 2510. [Google Scholar] [CrossRef]
- Geramipanah, F. Comparison of Flexural Strength of Resin Cements After Storing in Different Media and Bleaching Agents. European Journal of Prosthodontics and Restorative Dentistry 2015, 56. [Google Scholar] [CrossRef]
- Kaptan, A.; Oznurhan, F.; Candan, M. In Vitro Comparison of Surface Roughness, Flexural, and Microtensile Strength of Various Glass-Ionomer-Based Materials and a New Alkasite Restorative Material. Polymers 2023, 15, 650. [Google Scholar] [CrossRef]
- Panchanadikar, N.T.; Kunte, S.S.; Khare, M.D. Comparison of Bond Strength, Flexural Strength, and Hardness of Conventional Composites and Self-Adhesive Composites: An in Vitro Study. IJPCDR 2016, 3, 251–257. [Google Scholar] [CrossRef]
- Gad, M.; Rahoma, A.; Al-Thobity, A.M.; ArRejaie, A. Influence of Incorporation of ZrO2 Nanoparticles on the Repair Strength of Polymethyl Methacrylate Denture Bases. IJN 2016, Volume 11, 5633–5643. [Google Scholar] [CrossRef] [PubMed]
- Ayad, N.M.; Badawi, M.F.; Fatah, A.A. EFFECT OF REINFORCEMENT OF HIGH-IMPACT ACRYLIC RESIN WITH ZIRCONIA ON SOME PHYSICAL AND MECHANICAL PROPERTIES. Archives of Oral Research 2008, 4. [Google Scholar] [CrossRef]
- Abushowmi, T.H.; AlZaher, Z.A.; Almaskin, D.F.; Qaw, M.S.; Abualsaud, R.; Akhtar, S.; Al-Thobity, A.M.; Al-Harbi, F.A.; Gad, M.M.; Baba, N.Z. Comparative Effect of Glass Fiber and Nano-Filler Addition on Denture Repair Strength. Journal of Prosthodontics 2020, 29, 261–268. [Google Scholar] [CrossRef]
- Fouda, S.M.; Gad, M.M.; Ellakany, P.; A. Al Ghamdi, M.; Khan, S.Q.; Akhtar, S.; Ali, M.S.; Al-Harbi, F.A. Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin. International Journal of Biomaterials 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Al-Harbi, F.A.; Abdel-Halim, M.S.; Gad, M.M.; Fouda, S.M.; Baba, N.Z.; AlRumaih, H.S.; Akhtar, S. Effect of Nanodiamond Addition on Flexural Strength, Impact Strength, and Surface Roughness of PMMA Denture Base. Journal of Prosthodontics 2019, 28. [Google Scholar] [CrossRef] [PubMed]


| Mechanical qualities | Value |
| Density | 6.05g/cm2 |
| Hard strength | 1200HV |
| Flexural strength | 900-1200MPa |
| Compressive strength | 2000MPa |
| Resistance to fracture | 7-10MPam1/2 |
| Elastic modulus | 210GPa |
| Thermal expansion co-efficient | 11*10-61/K |
| Mechanical qualities | Value | References |
| Density | 3.515 g cm–3 | [39] |
| Hard strength | 56 GPA-257 GPA 10 on Mohs scale |
[35,40] |
| Compressive strength | ~54 GPa | [41] |
| Fracture toughness | (≈8–18 MPa·m^0.5) | [42] |
| Young’s modulus | 1050 GPa | [43] |
| Thermal expansion co-efficient | ≈1.1 × 10−5 K−1 | [36] |
| Material | Volume% | Weight mg | Weight% |
| RelyX U200 | 90% | 978 | 88.90% |
| Nano zirconia | 10% | 122 | 11.10% |
| Material | Volume% | Weight mg | Weight% |
| RelyX U200 | 90% | 1067mg | 97% |
| Nano diamond | 10% | 33mg | 3% |
| Properties | Findings of Current Study | Advantages / Positive Outcomes | Disadvantages / Negative Outcomes | Risks / Limitations | Comparison with Previous Studies |
|
Compressive Strength (CS) |
Group 1 (Control): 121.12 ± 19.35 MPa Group 2 (10% Nano-ZrO₂): 132.18 ± 27.93 MPa Group 3 (10% Nano-Diamond): 126.21 ± 12.54 MPa p = 0.505 (NS) |
•Slight increase in CS in both modified groups compared to control. •Supports possibility of reinforcement. |
•No statistically significant difference between groups (p > 0.05). •Limited mechanical benefit. |
•High NP (10 vol%) may cause particle agglomeration, affecting homogeneity and polymerization. •Possible interference with base-catalyst ratio altering curing kinetics. |
•Contradicts prior study [56], which found significant improvement in CS with higher NZ addition. •Novelty: First study testing nanodiamond in resin luting cement hence no prior reference available for direct comparison. |
|
Flexural Strength (FS) |
Group 1: 66.92 ± 5.27 MPa Group 2: 72.50 ± 10.40 MPa Group 3: 71.06 ± 6.30 MPa p = 0.256 (NS) |
•Minor increase in FS in both modified groups, showing potential for reinforcement. •Confirms filler addition does not adversely affect cement integrity. |
•Statistically insignificant improvement (p > 0.05). •High filler content may increase stiffness without significant strength gain. |
•Agglomeration at 10 vol% may reduce efficiency of stress transfer. •Higher rigidity is unsuitable for luting cements as it requires some elasticity. |
•Contradicts studies [69,70,71] reporting significant enhancement in FS with ZrO₂ NPs. •Consistent with PMMA studies [72,73], where low ND concentration improved FS more effectively than higher concentrations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
