Submitted:
02 October 2025
Posted:
03 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Pain Signaling
1.1.1. Pain Signalling Under Physiologically Conditions
1.1.2. Pain Signalling Under Pathological Conditions
1.1.3. Calcium-Driven Hyperexcitability and Breakdown of Inhibitory Control in Central Sensitization
1.1.4. Maladaptive Remodeling of Descending Monoaminergic Pathways in the Transition from Acute to Chronic Pain
1.2. Gabapentinoids
1.3. Duloxetine
2. Gabapentenoids and Duloxetine in the Clinical Practise
2.1. Gabapentinoids and Duloxetine as Single Agents in Pathological Pain from Different Origin
2.1.1. Randomized Trials
Pregabalin
Gabapentin
Mirogabalin
Duloxetine
2.1.2. Meta-Analysis Including Gabapentinoids and Duloxetine as Single Agents
Diabetic Peripheral Neuralgia
Fibromyalgia
Postherpetic Neuralgia
2.1.3. Indications and Dosage
2.1.4. Adverse Events
2.2. Gabapentinoids and Duloxetine Combination Therapies
2.2.1. Randomized Trials
Diabetic Peripheral Neuralgia
Fibromyalgia
Postherpetic Neuralgia
Chemotherapy-Induced Peripheral Neuropathy
3. Conclusions
References
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, MI.; Benoliel, R.; et al. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain. 2019, 160, 19–27. [Google Scholar] [CrossRef]
- Marcianò, G.; Vocca, C.; Evangelista, M.; Palleria, C.; Muraca, L.; Galati, C.; et al. The Pharmacological Treatment of Chronic Pain: From Guidelines to Daily Clinical Practice. Pharmaceutics. 2023, 15, 1165. [Google Scholar] [CrossRef]
- Cohen, SP.; Vase, L.; Hooten, WM. Chronic pain: an update on burden, best practices, and new advances. Lancet Lond Engl. 2021, 397, 2082–97. [Google Scholar] [CrossRef]
- Fitzcharles, M.-A.; Cohen, SP.; Clauw, DJ.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet Lond Engl. 2021, 397, 2098–110. [Google Scholar] [CrossRef]
- Kosek, E. The concept of nociplastic pain-where to from here? Pain. 2024, 165, S50–7. [Google Scholar] [CrossRef]
- Rosner, J.; de Andrade, DC.; Davis, KD.; Gustin, SM.; Kramer, JLK.; Seal, RP.; et al. Central neuropathic pain. Nat Rev Dis Primer 2023, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Schrepf, A.; Williams, DA.; Gallop, R.; Naliboff, BD.; Basu, N.; Kaplan, C.; et al. Sensory sensitivity and symptom severity represent unique dimensions of chronic pain: a MAPP Research Network study. Pain. 2018, 159, 2002–11. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, E.; Kaplan, CM.; Kheirabadi, D.; Schrepf, A.; Tracey, I.; Clauw, DJ.; et al. The number of central nervous system-driven symptoms predicts subsequent chronic primary pain: evidence from UK Biobank. Br J Anaesth. 2025, 134, 772–82. [Google Scholar] [CrossRef]
- Fiúza-Fernandes, J.; Pereira-Mendes, J.; Esteves, M.; Radua, J.; Picó-Pérez, M.; Leite-Almeida, H. Common neural correlates of chronic pain - A systematic review and meta-analysis of resting-state fMRI studies. Prog Neuropsychopharmacol Biol Psychiatry. 2025, 138, 111326. [Google Scholar] [CrossRef] [PubMed]
- Basbaum, AI.; Bautista, DM.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell. 2009, 139, 267–84. [Google Scholar] [CrossRef]
- Apkarian, AV.; Bushnell, MC.; Treede, R.; Zubieta, J. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005, 9, 463–463. [Google Scholar] [CrossRef]
- De Ridder, D.; Adhia, D.; Vanneste, S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev. 2021, 130, 125–46. [Google Scholar] [CrossRef]
- Kong, J.; Loggia, ML.; Zyloney, C.; Tu, P.; LaViolette, P.; Gollub, RL. Exploring the brain in pain: activations, deactivations and their relation. Pain. 2010, 148, 257–67. [Google Scholar] [CrossRef]
- Huang, J.; Gadotti, VM.; Chen, L.; Souza, IA.; Huang, S.; Wang, D.; et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci. 2019, 22, 1659–68. [Google Scholar] [CrossRef]
- Allen, HN.; Bobnar, HJ.; Kolber, BJ. Left and right hemispheric lateralization of the amygdala in pain. Prog Neurobiol. 2021, 196, 101891. [Google Scholar] [CrossRef] [PubMed]
- Llorca-Torralba, M.; Borges, G.; Neto, F.; Mico, JA.; Berrocoso, E. Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience. 2016, 338, 93–113. [Google Scholar] [CrossRef]
- Kwon, M.; Altin, M.; Duenas, H.; Alev, L. The role of descending inhibitory pathways on chronic pain modulation and clinical implications. Pain Pract Off J World Inst Pain. 2014, 14, 656–67. [Google Scholar] [CrossRef]
- Gold, MS.; Gebhart, GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010, 16, 1248–57. [Google Scholar] [CrossRef]
- Luo, C.; Kuner, T.; Kuner, R. Synaptic plasticity in pathological pain. Trends Neurosci. 2014, 37, 343–55. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.-R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology. 2018, 129, 343–66. [Google Scholar] [CrossRef] [PubMed]
- Loggia, ML. “Neuroinflammation”: does it have a role in chronic pain? Evidence from human imaging. Pain. 2024, 165, S58–67. [Google Scholar] [CrossRef]
- Di Cesare Mannelli, L.; Marcoli, M.; Micheli, L.; Zanardelli, M.; Maura, G.; Ghelardini, C.; et al. Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: A pain mechanism mediated by Pannexin 1. Neuropharmacology. 2015, 97, 133–41. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009, 10, 895–926. [Google Scholar] [CrossRef] [PubMed]
- Kerr, BJ.; Bradbury, EJ.; Bennett, DL.; Trivedi, PM.; Dassan, P.; French, J.; et al. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci Off J Soc Neurosci. 1999, 19, 5138–48. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Parisio, C.; Lucarini, E.; Vona, A.; Toti, A.; Pacini, A.; et al. VEGF-A/VEGFR-1 signalling and chemotherapy-induced neuropathic pain: therapeutic potential of a novel anti-VEGFR-1 monoclonal antibody. J Exp Clin Cancer Res CR. 2021, 40, 320. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare Mannelli, L.; Pacini, A.; Micheli, L.; Tani, A.; Zanardelli, M.; Ghelardini, C. Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol. 2014, 261, 22–33. [Google Scholar] [CrossRef]
- Woolf, CJ.; Salter, MW. Neuronal plasticity: increasing the gain in pain. Science. 2000, 288, 1765–9. [Google Scholar] [CrossRef]
- Rojewska, E.; Wawrzczak-Bargiela, A.; Szucs, E.; Benyhe, S.; Starnowska, J.; Mika, J.; et al. Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model. Neuroscience. 2018, 390, 293–302. [Google Scholar] [CrossRef]
- Baron, R. Mechanisms of disease: neuropathic pain--a clinical perspective. Nat Clin Pract Neurol. 2006, 2, 95–106. [Google Scholar] [CrossRef]
- Coull, JAM.; Beggs, S.; Boudreau, D.; Boivin, D.; Tsuda, M.; Inoue, K.; et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438, 1017–21. [Google Scholar] [CrossRef]
- Caraci, F.; Merlo, S.; Drago, F.; Caruso, G.; Parenti, C.; Sortino, MA. Rescue of Noradrenergic System as a Novel Pharmacological Strategy in the Treatment of Chronic Pain: Focus on Microglia Activation. Front Pharmacol. 2019, 10, 1024. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, L.; Mons, MR.; Joosten, EA. A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation. Mol Pain. 2021, 17, 17448069211043965. [Google Scholar] [CrossRef]
- Wei, F.; Dubner, R.; Zou, S.; Ren, K.; Bai, G.; Wei, D.; et al. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci Off J Soc Neurosci. 2010, 30, 8624–36. [Google Scholar] [CrossRef]
- Aby, F.; Lorenzo, L.-E.; Grivet, Z.; Bouali-Benazzouz, R.; Martin, H.; Valerio, S.; et al. Switch of serotonergic descending inhibition into facilitation by a spinal chloride imbalance in neuropathic pain. Sci Adv. 2022, 8, eabo0689. [Google Scholar] [CrossRef]
- Benarroch, EE. Descending monoaminergic pain modulation: bidirectional control and clinical relevance. Neurology. 2008, 71, 217–21. [Google Scholar] [CrossRef]
- Pertovaara, A. The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol. 2013, 716, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.-I.; Obata, H. Strategies to Treat Chronic Pain and Strengthen Impaired Descending Noradrenergic Inhibitory System. Int J Mol Sci. 2019, 20, 822. [Google Scholar] [CrossRef] [PubMed]
- Tavares, I.; Costa-Pereira, JT.; Martins, I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? Front Pain Res Lausanne Switz. 2021, 2, 696515. [Google Scholar] [CrossRef]
- Taylor, BK.; Westlund, KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res. 2017, 95, 1336–46. [Google Scholar] [CrossRef]
- Arora, V.; Morado-Urbina, CE.; Aschenbrenner, CA.; Hayashida, K.; Wang, F.; Martin, TJ.; et al. Disruption of Spinal Noradrenergic Activation Delays Recovery of Acute Incision-Induced Hypersensitivity and Increases Spinal Glial Activation in the Rat. J Pain. 2016, 17, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Pertovaara, A. Noradrenergic pain modulation. Prog Neurobiol. 2006, 80, 53–83. [Google Scholar] [CrossRef]
- Marks, DM.; Shah, MJ.; Patkar, AA.; Masand, PS.; Park, G.-Y.; Pae, C-U. Serotonin-norepinephrine reuptake inhibitors for pain control: premise and promise. Curr Neuropharmacol. 2009, 7, 331–6. [Google Scholar] [CrossRef]
- Chen, S.-R.; Chen, H.; Yuan, W.-X.; Pan, H-L. Increased presynaptic and postsynaptic α2-adrenoceptor activity in the spinal dorsal horn in painful diabetic neuropathy. J Pharmacol Exp Ther. 2011, 337, 285–92. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Suto, T.; Morado-Urbina, CE.; Peters, CM.; Eisenach, JC.; Hayashida, K-I. Impaired Pain-evoked Analgesia after Nerve Injury in Rats Reflects Altered Glutamate Regulation in the Locus Coeruleus. Anesthesiology 2015, 123, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Rojo, ML.; Rodríguez-Gaztelumendi, A.; Pazos, Á.; Díaz, Á. Differential adaptive changes on serotonin and noradrenaline transporters in a rat model of peripheral neuropathic pain. Neurosci Lett. 2012, 515, 181–6. [Google Scholar] [CrossRef]
- Bantel, C.; Eisenach, JC.; Duflo, F.; Tobin, JR.; Childers, SR. Spinal nerve ligation increases α2-adrenergic receptor G-protein coupling in the spinal cord. Brain Res. 2005, 1038, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.; Llorca-Torralba, M.; Berrocoso, E.; Micó, JA. Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain. Front Neurosci. 2019, 13, 1268. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Chiechio, S.; Sun, Y.-G.; Zhang, K.-H.; Zhao, C.-S.; Scott, M.; et al. Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci Off J Soc Neurosci. 2007, 27, 6045–53. [Google Scholar] [CrossRef]
- Kremer, M.; Yalcin, I.; Goumon, Y.; Wurtz, X.; Nexon, L.; Daniel, D.; et al. A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J Neurosci Off J Soc Neurosci. 2018, 38, 9934–54. [Google Scholar] [CrossRef]
- Kregel, J.; Meeus, M.; Malfliet, A.; Dolphens, M.; Danneels, L.; Nijs, J.; et al. Structural and functional brain abnormalities in chronic low back pain: A systematic review. Semin Arthritis Rheum. 2015, 45, 229–37. [Google Scholar] [CrossRef]
- Matsuo, Y.; Kurata, J.; Sekiguchi, M.; Yoshida, K.; Nikaido, T.; Konno, S-I. Attenuation of cortical activity triggering descending pain inhibition in chronic low back pain patients: a functional magnetic resonance imaging study. J Anesth. 2017, 31, 523–30. [Google Scholar] [CrossRef]
- Mercer Lindsay, N.; Chen, C.; Gilam, G.; Mackey, S.; Scherrer, G. Brain circuits for pain and its treatment. Sci Transl Med. 2021, 13, eabj7360. [Google Scholar] [CrossRef] [PubMed]
- Medrano-Escalada, Y.; Plaza-Manzano, G.; Fernández-de-Las-Peñas, C.; Valera-Calero, JA. Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain. Tomogr Ann Arbor Mich. 2022, 8, 2153–63. [Google Scholar] [CrossRef]
- Seminowicz, DA.; Wideman, TH.; Naso, L.; Hatami-Khoroushahi, Z.; Fallatah, S.; Ware, MA.; et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci Off J Soc Neurosci. 2011, 31, 7540–50. [Google Scholar] [CrossRef]
- Chincholkar, M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth. 2018, 120, 1315–34. [Google Scholar] [CrossRef]
- Koga, K.; Kobayashi, K.; Tsuda, M.; Kubota, K.; Kitano, Y.; Furue, H. Voltage-gated calcium channel subunit α2δ-1 in spinal dorsal horn neurons contributes to aberrant excitatory synaptic transmission and mechanical hypersensitivity after peripheral nerve injury. Front Mol Neurosci. 2023, 16, 1099925. [Google Scholar] [CrossRef]
- Dooley, DJ.; Taylor, CP.; Donevan, S.; Feltner, D. Ca2+ channel alpha2delta ligands: novel modulators of neurotransmission. Trends Pharmacol Sci. 2007, 28, 75–82. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.-R.; Pan, H-L. α2δ-1-Linked NMDA and AMPA Receptors in Neuropathic Pain and Gabapentinoid Action. J Neurochem. 2025, 169, e70064. [Google Scholar] [CrossRef]
- Chincholkar, M. Gabapentinoids: pharmacokinetics, pharmacodynamics and considerations for clinical practice. Br J Pain. 2020, 14, 104–14. [Google Scholar] [CrossRef] [PubMed]
- Evoy, KE.; Peckham, AM.; Covvey, JR.; Tidgewell, KJ. Gabapentinoid Pharmacology in the Context of Emerging Misuse Liability. J Clin Pharmacol. 2021, 61 (Suppl 2), S89–99. [Google Scholar] [CrossRef] [PubMed]
- Calandre, EP.; Rico-Villademoros, F.; Slim, M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: a review of their clinical pharmacology and therapeutic use. Expert Rev Neurother. 2016, 16, 1263–77. [Google Scholar] [CrossRef] [PubMed]
- Raouf, M.; Atkinson, TJ.; Crumb, MW.; Fudin, J. Rational dosing of gabapentin and pregabalin in chronic kidney disease. J Pain Res. 2017, 10, 275–8. [Google Scholar] [CrossRef]
- Mayoral, V.; Galvez, R.; Ferrándiz, M.; Miguéns Vázquez, X.; Cordero-García, C.; Alcántara Montero, A.; et al. Pregabalin vs. gabapentin in the treatment of neuropathic pain: a comprehensive systematic review and meta-analysis of effectiveness and safety. Front Pain Res Lausanne Switz. 2024, 5, 1513597. [Google Scholar] [CrossRef]
- Randinitis, EJ.; Posvar, EL.; Alvey, CW.; Sedman, AJ.; Cook, JA.; Bockbrader, HN. Pharmacokinetics of pregabalin in subjects with various degrees of renal function. J Clin Pharmacol. 2003, 43, 277–83. [Google Scholar] [CrossRef]
- Baldwin, DS.; Ajel, K.; Masdrakis, VG.; Nowak, M.; Rafiq, R. Pregabalin for the treatment of generalized anxiety disorder: an update. Neuropsychiatr Dis Treat. 2013, 9, 883–92. [Google Scholar] [CrossRef]
- Holsboer-Trachsler, E.; Prieto, R. Effects of pregabalin on sleep in generalized anxiety disorder. Int J Neuropsychopharmacol. 2013, 16, 925–36. [Google Scholar] [CrossRef]
- Meaadi, J.; Obara, I.; Eldabe, S.; Nazar, H. The safety and efficacy of gabapentinoids in the management of neuropathic pain: a systematic review with meta-analysis of randomised controlled trials. Int J Clin Pharm. 2023, 45, 556–65. [Google Scholar] [CrossRef] [PubMed]
- Desforges, AD.; Hebert, CM.; Spence, AL.; Reid, B.; Dhaibar, HA.; Cruz-Topete, D.; et al. Treatment and diagnosis of chemotherapy-induced peripheral neuropathy: An update. Biomed Pharmacother. 2022, 147, 112671. [Google Scholar] [CrossRef]
- Colvin, LA. Chemotherapy-induced peripheral neuropathy: where are we now? Pain. 2019, 160 (Suppl 1), S1–10. [Google Scholar] [CrossRef]
- Onghena, P.; Van Houdenhove, B. Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies. Pain. 1992, 49, 205–19. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, NB.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, RH.; et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–73. [Google Scholar] [CrossRef] [PubMed]
- Obata, H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int J Mol Sci. 2017, 18, 2483. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Suto, T.; Xin, H.; Honda, Y.; Hiroki, T.; Obata, H.; et al. Duloxetine deteriorates prefrontal noradrenergic pain facilitation, but reduces locus coeruleus activity to restore endogenous analgesia in chronic neuropathic pain state. Sci Rep. 2025, 15, 19924. [Google Scholar] [CrossRef]
- Lunn, MP.; Hughes, RA.; Wiffen, PJ. Duloxetine for treating painful neuropathy or chronic pain. Cochrane Database Syst Rev. 2009, CD007115. [Google Scholar] [CrossRef]
- Knadler, MP.; Lobo, E.; Chappell, J.; Bergstrom, R. Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet. 2011, 50, 281–94. [Google Scholar] [CrossRef]
- Santarsieri, D.; Schwartz, TL. Antidepressant efficacy and side-effect burden: a quick guide for clinicians. Drugs Context. 2015, 4, 212290. [Google Scholar] [CrossRef]
- Sloan, G.; Alam, U.; Selvarajah, D.; Tesfaye, S. The Treatment of Painful Diabetic Neuropathy. Curr Diabetes Rev. 2022, 18, e070721194556. [Google Scholar] [CrossRef]
- Alberti, FF.; Becker, MW.; Blatt, CR.; Ziegelmann, PK.; Da Silva Dal Pizzol, T.; Pilger, D. Comparative efficacy of amitriptyline, duloxetine and pregabalin for treating fibromyalgia in adults: an overview with network meta-analysis. Clin Rheumatol. 2022, 41, 1965–78. [Google Scholar] [CrossRef]
- Clarke, H.; Peer, M.; Miles, S.; Fitzcharles, M-A. Managing Pain in Fibromyalgia: Current and Future Options. Drugs 2025, 85, 1081–92. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Tuchman, M.; LaMoreaux, L.; Sharma, U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain. 2004, 110, 628–38. [Google Scholar] [CrossRef]
- Arnold, LM.; Russell, IJ.; Diri, EW.; Duan, WR.; Young, JP.; Sharma, U.; et al. A 14-week, randomized, double-blinded, placebo-controlled monotherapy trial of pregabalin in patients with fibromyalgia. J Pain. 2008, 9, 792–805. [Google Scholar] [CrossRef]
- Crofford, LJ.; Mease, PJ.; Simpson, SL.; Young, JP.; Martin, SA.; Haig, GM.; et al. Fibromyalgia relapse evaluation and efficacy for durability of meaningful relief (FREEDOM): a 6-month, double-blind, placebo-controlled trial with pregabalin. Pain. 2008, 136, 419–31. [Google Scholar] [CrossRef]
- Dworkin, RH.; Corbin, AE.; Young, JP.; Sharma, U.; LaMoreaux, L.; Bockbrader, H.; et al. Pregabalin for the treatment of postherpetic neuralgia: a randomized, placebo-controlled trial. Neurology. 2003, 60, 1274–83. [Google Scholar] [CrossRef] [PubMed]
- van Seventer, R.; Feister, HA.; Young, JP.; Stoker, M.; Versavel, M.; Rigaudy, L. Efficacy and tolerability of twice-daily pregabalin for treating pain and related sleep interference in postherpetic neuralgia: a 13-week, randomized trial. Curr Med Res Opin. 2006, 22, 375–84. [Google Scholar] [CrossRef] [PubMed]
- Rowbotham, M.; Harden, N.; Stacey, B.; Bernstein, P.; Magnus-Miller, L. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA. 1998, 280, 1837–42. [Google Scholar] [CrossRef]
- Rice, ASC.; Maton, S.; Postherpetic Neuralgia Study Group. Gabapentin in postherpetic neuralgia: a randomised, double blind, placebo controlled study. Pain 2001, 94, 215–24. [Google Scholar] [CrossRef]
- Baba, M.; Matsui, N.; Kuroha, M.; Wasaki, Y.; Ohwada, S. Mirogabalin for the treatment of diabetic peripheral neuropathic pain: A randomized, double-blind, placebo-controlled phase III study in Asian patients. J Diabetes Investig. 2019, 10, 1299–306. [Google Scholar] [CrossRef]
- Vinik, A.; Rosenstock, J.; Sharma, U.; Feins, K.; Hsu, C.; Merante, D.; et al. Efficacy and safety of mirogabalin (DS-5565) for the treatment of diabetic peripheral neuropathic pain: a randomized, double-blind, placebo- and active comparator-controlled, adaptive proof-of-concept phase 2 study. Diabetes Care. 2014, 37, 3253–61. [Google Scholar] [CrossRef]
- Kato, J.; Matsui, N.; Kakehi, Y.; Murayama, E.; Ohwada, S.; Sugihara, M. Mirogabalin for the management of postherpetic neuralgia: a randomized, double-blind, placebo-controlled phase 3 study in Asian patients. Pain. 2019, 160, 1175–85. [Google Scholar] [CrossRef]
- Arnold, LM.; Whitaker, S.; Hsu, C.; Jacobs, D.; Merante, D. Efficacy and safety of mirogabalin for the treatment of fibromyalgia: results from three 13-week randomized, double-blind, placebo- and active-controlled, parallel-group studies and a 52-week open-label extension study. Curr Med Res Opin. 2019, 35, 1825–35. [Google Scholar] [CrossRef] [PubMed]
- Raskin, J.; Pritchett, YL.; Wang, F.; D’Souza, DN.; Waninger, AL.; Iyengar, S.; et al. A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain. Pain Med Malden Mass. 2005, 6, 346–56. [Google Scholar] [CrossRef]
- Goldstein, DJ.; Lu, Y.; Detke, MJ.; Lee, TC.; Iyengar, S. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 2005, 116, 109–18. [Google Scholar] [CrossRef]
- Arnold, LM.; Rosen, A.; Pritchett, YL.; D’Souza, DN.; Goldstein, DJ.; Iyengar, S.; et al. A randomized, double-blind, placebo-controlled trial of duloxetine in the treatment of women with fibromyalgia with or without major depressive disorder. Pain. 2005, 119, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Russell, JI.; Mease, PJ.; Smith, TR.; Kajdasz, DK.; Wohlreich, MM.; Detke, MJ.; et al. Efficacy and safety of duloxetine for treatment of fibromyalgia in patients with or without major depressive disorder: Results from a 6-month, randomized, double-blind, placebo-controlled, fixed-dose trial. Pain. 2008, 136, 432–44. [Google Scholar] [CrossRef]
- Jingxuan, L.; Litian, M.; Jianfang, F. Different Drugs for the Treatment of Painful Diabetic Peripheral Neuropathy: A Meta-Analysis. Front Neurol. 2021, 12, 682244. [Google Scholar] [CrossRef]
- Shah, KB.; Rana, DA.; Mehta, YD.; Malhotra, SD. Comparative efficacy and safety of gabapentin, pregabalin, oxcarbazepine, and duloxetine in diabetic peripheral neuropathy: A network meta-analysis. Perspect Clin Res. 2024, 15, 202–8. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.; Marshall, D.; Gabriel, ZL.; Mitchell, SA.; Gylee, E.; Dakin, HA. A systematic review and mixed treatment comparison of the efficacy of pharmacological treatments for fibromyalgia. Semin Arthritis Rheum. 2011, 41, 335–345. [Google Scholar] [CrossRef]
- Moore, A.; Bidonde, J.; Fisher, E.; Häuser, W.; Bell, RF.; Perrot, S.; et al. Effectiveness of pharmacological therapies for fibromyalgia syndrome in adults: an overview of Cochrane Reviews. Rheumatol Oxf Engl. 2025, 64, 2385–94. [Google Scholar] [CrossRef] [PubMed]
- Salah, S.; Thomas, L.; Ram, S.; Clark, GT.; Enciso, R. Systematic Review and Meta-analysis of the Efficacy of Oral Medications Compared with Placebo Treatment in the Management of Postherpetic Neuralgia. J Oral Facial Pain Headache. 2016, 30, 255–66. [Google Scholar] [CrossRef]
- Tanenberg, RJ.; Irving, GA.; Risser, RC.; Ahl, J.; Robinson, MJ.; Skljarevski, V.; et al. Duloxetine, pregabalin, and duloxetine plus gabapentin for diabetic peripheral neuropathic pain management in patients with inadequate pain response to gabapentin: an open-label, randomized, noninferiority comparison. Mayo Clin Proc. 2011, 86, 615–26. [Google Scholar] [CrossRef]
- Tesfaye, S.; Wilhelm, S.; Lledo, A.; Schacht, A.; Tölle, T.; Bouhassira, D.; et al. Duloxetine and pregabalin: high-dose monotherapy or their combination? The “COMBO-DN study”--a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain 2013, 154, 2616–25. [Google Scholar] [CrossRef] [PubMed]
- Bouhassira, D.; Wilhelm, S.; Schacht, A.; Perrot, S.; Kosek, E.; Cruccu, G.; et al. Neuropathic pain phenotyping as a predictor of treatment response in painful diabetic neuropathy: data from the randomized, double-blind, COMBO-DN study. Pain. 2014, 155, 2171–9. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Sloan, G.; Petrie, J.; White, D.; Bradburn, M.; Julious, S.; et al. Comparison of amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline, and duloxetine supplemented with pregabalin for the treatment of diabetic peripheral neuropathic pain (OPTION-DM): a multicentre, double-blind, randomised crossover trial. Lancet Lond Engl. 2022, 400, 680–90. [Google Scholar] [CrossRef]
- Saxena, AK.; Thanikkal, N.; Chilkoti, GT.; Gondode, PG.; Sharma, T.; Banerjee, BD. PPARγ and AKt gene modulation following pregabalin and duloxetine combination for painful diabetic polyneuropathy. Pain Manag. 2024, 14, 273–81. [Google Scholar] [CrossRef]
- Gilron, I.; Chaparro, LE.; Tu, D.; Holden, RR.; Milev, R.; Towheed, T.; et al. Combination of pregabalin with duloxetine for fibromyalgia: a randomized controlled trial. Pain. 2016, 157, 1532–40. [Google Scholar] [CrossRef]
- Salaffi, F.; Farah, S.; Sarzi-Puttini, P.; Di Carlo, M. Palmitoylethanolamide and acetyl-L-carnitine act synergistically with duloxetine and pregabalin in fibromyalgia: results of a randomised controlled study. Clin Exp Rheumatol. 2023, 41, 1323–31. [Google Scholar] [CrossRef]
- Nobili, S.; Micheli, L.; Lucarini, E.; Toti, A.; Ghelardini, C.; Di Cesare Mannelli, L. Ultramicronized N-palmitoylethanolamine associated with analgesics: Effects against persistent pain. Pharmacol Ther. 2024, 258, 108649. [Google Scholar] [CrossRef]
- Chiechio, S.; Copani, A.; Gereau, RW.; Nicoletti, F. Acetyl-L-carnitine in neuropathic pain: experimental data. CNS Drugs 2007, 21 Suppl 1, 31–38; discussion 45–46. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Liu, Y.; Lou, Y.; Chen, C.; Chen, Q.; et al. Comparison of Duloxetine Supplemented With Pregabalin and Amitriptyline Supplemented With Pregabalin for the Treatment of Postherpetic Neuralgia: A Double-Blind, Randomized Crossover Trial. CNS Neurosci Ther. 2025, 31, e70460. [Google Scholar] [CrossRef]
- Takenaka, M.; Iida, H.; Matsumoto, S.; Yamaguchi, S.; Yoshimura, N.; Miyamoto, M. Successful treatment by adding duloxetine to pregabalin for peripheral neuropathy induced by paclitaxel. Am J Hosp Palliat Care. 2013, 30, 734–6. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Takekuma, Y.; Oshino, T.; Sugawara, M. Combination of Mirogabalin and Duloxetine Attenuates Peripheral Neuropathy by Eribulin: A Novel Case Report. Case Rep Oncol. 2022, 15, 606–10. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
