Submitted:
29 September 2025
Posted:
30 September 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results and Discussion
2.1. HPLC-MS Anthocyanins Characterization
2.2. Anthocyanins Copigmentation
2.1.1. Copigmentation with Phenolic Copigments and Polyaspartic Acid
2.1.2. Double Copigmentation
2.2. Thermogravimetric Analysis
2.3. FTIR Analysis
2.4. Copigmented Anthocyanin Stability at pH 7.4
2.5. In Vitro Oxidative Stress Assessment by TBARS Method
3. Materials and Methods
3.1. Materials
3.2. Extraction and Purification of Anthocyanins from Purple Corn Cob and Camu-Camu Peel
3.3. HPLC-MS Characterization
3.4. Anthocyanin Copigmentation
3.5. Thermogravimetric Analysis (TG) and Its Derivative (DTG)
3.6. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
3.7. Copigmented Anthocyanin Stability at pH 7.4
3.8. In Vitro Oxidative Stress Assessment by TBARS Method
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PCA | Purple corn cob anthocyanin |
| CCA | Camu-camu peel anthocyanin |
| C | Cinnamic acid |
| F | Ferulic acid |
| R | Resveratrol |
| P | Polyaspartic acid |
| TBARS | Thiobarbituric acid reactive species |
References
- Sara Evans-Lacko, Elisa Aguzzoli, Sanna Read, Adelina Comas-Herrera, N.F. World Alzheimer Report 2024: Global Changes in Attitudes to Dementia; 2024;
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Persson, T.; Popescu, B.O.; Cedazo-Minguez, A. Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail? Oxid. Med. Cell. Longev. 2014, 2014. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Identification and Antioxidant Activity of Anthocyanins Extracted from the Seed and Cob of Purple Corn (Zea Mays L.). Innov. Food Sci. Emerg. Technol. 2010, 11, 169–176. [Google Scholar] [CrossRef]
- Langley, P.C.; Pergolizzi, J. V.; Taylor, R.; Ridgway, C. Antioxidant and Associated Capacities of Camu Camu (Myrciaria Dubia): A Systematic Review. J. Altern. Complement. Med. 2015, 21, 8–14. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef]
- Tan, C.; Selig, M.J.; Abbaspourrad, A. Anthocyanin Stabilization by Chitosan-Chondroitin Sulfate Polyelectrolyte Complexation Integrating Catechin Co-Pigmentation. Carbohydr. Polym. 2018, 181, 124–131. [Google Scholar] [CrossRef]
- Terefe, N.S.; Netzel, G.A.; Netzel, M.E. Copigmentation with Sinapic Acid Improves the Stability of Anthocyanins in High-Pressure-Processed Strawberry Purees. J. Chem. 2019, 2019. [Google Scholar] [CrossRef]
- He, Y.; Wen, L.; Yu, H.; Zheng, F.; Wang, Z.; Xu, X.; Zhang, H.; Cao, Y.; Wang, B.; Chu, B.; et al. Effects of High Hydrostatic Pressure-Assisted Organic Acids on the Copigmentation of Vitis Amurensis Rupr Anthocyanins. Food Chem. 2018, 268, 15–26. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Sun, B.; Yang, Y.; Wang, S.; Feng, Z.; Li, J. The Structure of Anthocyanins and the Copigmentation by Common Micromolecular Copigments: A Review. Food Res. Int. 2024, 176. [Google Scholar] [CrossRef]
- Constantinescu, T.; Mihis, A.G. Resveratrol as a Privileged Molecule with Antioxidant Activity. Food Chem. Adv. 2023, 3, 100539. [Google Scholar] [CrossRef]
- Chávez, B.Y.; Paz, J.L.; Gonzalez-Paz, L.A.; Alvarado, Y.J.; Contreras, J.S.; Loroño-González, M.A. Theoretical Study of Cyanidin-Resveratrol Copigmentation by the Functional Density Theory. Molecules 2024, 29. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Alonso-Alonso, O.; Gallo-Montesdeoca, A.; Díaz-Romero, C.; Darias-Martín, J. Influence of Copigmentation and Phenolic Composition on Wine Color. J. Food Sci. Technol. 2016, 53, 2540–2547. [Google Scholar] [CrossRef]
- Gençdağ, E.; Özdemir, E.E.; Demirci, K.; Görgüç, A.; Yılmaz, F.M. Copigmentation and Stabilization of Anthocyanins Using Organic Molecules and Encapsulation Techniques. Curr. Plant Biol. 2022, 29. [Google Scholar] [CrossRef]
- Sharma, S.; Dua, A.; Malik, A. Polyaspartic Acid Based Superabsorbent Polymers. Eur. Polym. J. 2014, 59, 363–376. [Google Scholar] [CrossRef]
- Tudorachi, N.; Chiriac, A.P. TGA/FTIR/MS Study on Thermal Decomposition of Poly(Succinimide) and Sodium Poly(Aspartate). Polym. Test. 2011, 30, 397–407. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Optimization of Microwave-Assisted Extraction of Anthocyanins from Purple Corn (Zea Mays L.) Cob and Identification with HPLC-MS. Innov. Food Sci. Emerg. Technol. 2010, 11, 470–476. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.; He, Z.; Zhai, W.; Gong, H.; Yang, Z. Effect of Ferulic Acid on the Formation of Pyranoanthocyanins from Purple Corn (Zea Mays L.) Cob in a Model System and Their Effects on Color. Int. J. Food Prop. 2016, 19, 847–858. [Google Scholar] [CrossRef]
- Paulsmeyer, M.N.; Vermillion, K.E.; Juvik, J.A. Assessing the Diversity of Anthocyanin Composition in Various Tissues of Purple Corn (Zea Mays L.). Phytochemistry 2022, 201, 113263. [Google Scholar] [CrossRef]
- Berrueta, L.A.; Gallo, B.; Vicente, F. Mass Spectrometry Fragmentation Pattern of Coloured Flavanol-Anthocyanin and Anthocyanin-Flavanol Derivatives in Aged Red Wines of Rioja. 2006. [CrossRef]
- Taylor, V.F.; March, R.E.; Longerich, H.P.; Stadey, C.J. A Mass Spectrometric Study of Glucose, Sucrose, and Fructose Using an Inductively Coupled Plasma and Electrospray Ionization. 2005, 243, 71–84. [CrossRef]
- Zanatta, C.F.; Cuevas, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of Anthocyanins from Camu-Camu (Myrciaria Dubia) by HPLC-PDA, HPLC-MS, and NMR. J. Agric. Food Chem. 2005, 53, 9531–9535. [Google Scholar] [CrossRef]
- Fracassetti, D.; Costa, C.; Moulay, L.; Tomás-Barberán, F.A. Ellagic Acid Derivatives, Ellagitannins, Proanthocyanidins and Other Phenolics, Vitamin C and Antioxidant Capacity of Two Powder Products from Camu-Camu Fruit (Myrciaria Dubia). Food Chem. 2013, 139, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Conceição, N.; Albuquerque, B.R.; Pereira, C.; Corr, C.G.; Lopes, C.B.; Calhelha, R.C.; Jos, M.; Barros, L.; Ferreira, I.C.F.R. By-Products of Camu-Camu [Myrciaria Dubia (Kunth) McVaugh ] as Promising Sources of Bioactive High Added-Value Food Ingredients : Functionalization of Yogurts. Molecules 2020, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Na, K. Chondroitin Sulfate Based Nanocomplex for Enhancing the Stability and Activity of Anthocyanin. Carbohydr. Polym. 2012, 90, 507–515. [Google Scholar] [CrossRef]
- Bingöl, A.; Türkyılmaz, M.; Özkan, M. Increase in Thermal Stability of Strawberry Anthocyanins with Amino Acid Copigmentation. Food Chem. 2022, 384. [Google Scholar] [CrossRef]
- Yaranga Chavez, B. Estudio DFT-TD-SCF, Docking y Dinámica Molecular Del Proceso de Copigmentación de Antocianinas, Ácidos Orgánicos y El Resveratrol. El Uso Del Poliaspartato Como Agente Encapsulante, Universidad Nacional Mayor de San Marcos, 2024.
- Nave, F.; Brás, N.F.; Cruz, L.; Teixeira, N.; Mateus, N.; Ramos, M.J.; Di Meo, F.; Trouillas, P.; Dangles, O.; De Freitas, V. Influence of a Flavan-3-Ol Substituent on the Affinity of Anthocyanins (Pigments) toward Vinylcatechin Dimers and Proanthocyanidins (Copigments). J. Phys. Chem. B 2012, 116, 14089–14099. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Da Silva, P.; Lima, J.C.; Freitas, A.A.; Shimizu, K.; Maçanita, A.L.; Quina, F.H. Charge-Transfer Complexation as a General Phenomenon in the Copigmentation of Anthocyanins. J. Phys. Chem. A 2005, 109, 7329–7338. [Google Scholar] [CrossRef]
- Zhao, L.; Pan, F.; Mehmood, A.; Zhang, H.; Ur Rehman, A.; Li, J.; Hao, S.; Wang, C. Improved Color Stability of Anthocyanins in the Presence of Ascorbic Acid with the Combination of Rosmarinic Acid and Xanthan Gum. Food Chem. 2021, 351. [Google Scholar] [CrossRef]
- Fernandes, A.; Brás, N.F.; Oliveira, J.; Mateus, N.; De Freitas, V. Impact of a Pectic Polysaccharide on Oenin Copigmentation Mechanism. Food Chem. 2016, 209, 17–26. [Google Scholar] [CrossRef]
- Liudvinaviciute, D.; Rutkaite, R.; Bendoraitiene, J.; Klimaviciute, R.; Dagys, L. Formation and Characteristics of Alginate and Anthocyanin Complexes. Int. J. Biol. Macromol. 2020, 164, 726–734. [Google Scholar] [CrossRef]
- Cai, X.; Du, X.; Cui, D.; Wang, X.; Yang, Z.; Zhu, G. Improvement of Stability of Blueberry Anthocyanins by Carboxymethyl Starch/Xanthan Gum Combinations Microencapsulation. Food Hydrocoll. 2019, 91, 238–245. [Google Scholar] [CrossRef]
- Dong, J.; Li, S.; Zhang, J.; Liu, A.; Ren, J. Thermal Degradation of Cyanidin-3-O-Glucoside: Mechanism and Toxicity of Products. Food Chem. 2022, 370, 131018. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Xie, P.; Zhang, L.; Li, Y.; Zhou, J. Copigmentation Effects of Phenolics on Color Enhancement and Stability of Blackberry Wine Residue Anthocyanins: Chromaticity, Kinetics and Structural Simulation. Food Chem. 2019, 275, 299–308. [Google Scholar] [CrossRef]
- Bhushan, B.; Bibwe, B.; Pal, A.; Mahawar, M.K.; Dagla, M.C.; KR, Y.; Jat, B.S.; Kumar, P.; Aggarwal, S.K.; Singh, A.; et al. FTIR Spectra, Antioxidant Capacity and Degradation Kinetics of Maize Anthocyanin Extract under Variable Process Conditions: Anthocyanin Degradation under Storage. Appl. Food Res. 2023, 3, 100282. [Google Scholar] [CrossRef]
- Kim, H.J.; Bin, Y.T.; Karthick, S.N.; Hemalatha, K. V.; Raj, C.J.; Venkatesan, S.; Park, S.; Vijayakumar, G. Natural Dye Extracted from Rhododendron Species Flowers as a Photosensitizer in Dye Sensitized Solar Cell. Int. J. Electrochem. Sci. 2013, 8, 6734–6743. [Google Scholar] [CrossRef]
- Zegarra-Urquia, C.L.; Santiago, J.; Bumgardner, J.D.; Vega-Baudrit, J.; Hernández-Escobar, C.A.; Zaragoza-Contreras, E.A. Synthesis of Nanoparticles of the Chitosan-Poly((α,β)-DL-Aspartic Acid) Polyelectrolite Complex as Hydrophilic Drug Carrier. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 497–506. [Google Scholar] [CrossRef]
- Güder, A.; Korkmaz, H.; Gökce, H.; Alpaslan, Y.B.; Alpaslan, G. Isolation, Characterization, Spectroscopic Properties and Quantum Chemical Computations of an Important Phytoalexin Resveratrol as Antioxidant Component from Vitis Labrusca L. and Their Chemical Compositions. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 133, 378–395. [Google Scholar] [CrossRef] [PubMed]
- Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S.E. Stability and Biotransformation of Various Dietary Anthocyanins in Vitro. Eur. J. Nutr. 2006, 45, 7–18. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, J.M.; García-Carmona, F. Aggregation State and PKa Values of (E)-Resveratrol as Determined by Fluorescence Spectroscopy and UV-Visible Absorption. J. Agric. Food Chem. 2008, 56, 7600–7605. [Google Scholar] [CrossRef]
- Cahyana, Y.; Gordon, M.H. Interaction of Anthocyanins with Human Serum Albumin: Influence of PH and Chemical Structure on Binding. Food Chem. 2013, 141, 2278–2285. [Google Scholar] [CrossRef]
- Menegas, S.; Ferreira, C.L.; Cararo, J.H.; Gava, F.F.; Dal-Pont, G.C.; Gomes, M.L.; Agostini, J.F.; Schuck, P.F.; Scaini, G.; Andersen, M.L.; et al. Resveratrol Protects the Brain against Oxidative Damage in a Dopaminergic Animal Model of Mania. Metab. Brain Dis. 2019, 34, 941–950. [Google Scholar] [CrossRef]
- Bayram, I.; Decker, E.A. Underlying Mechanisms of Synergistic Antioxidant Interactions during Lipid Oxidation. Trends Food Sci. Technol. 2023, 133, 219–230. [Google Scholar] [CrossRef]
- Rajashekar, C.B. Dual Role of Plant Phenolic Compounds as Antioxidants and Prooxidants. Am. J. Plant Sci. 2023, 14, 15–28. [Google Scholar] [CrossRef]
- Jing, P.; Giusti, M.M. Effects of Extraction Conditions on Improving the Yield and Quality of an Anthocyanin-Rich Purple Corn (Zea Mays L.) Color Extract. J. Food Sci. 2007, 72, 363–368. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, A.D.; Reig, M.; Mayor, L.; Ortiz-Climent, M.; Garcia-Castello, E.M. Characterization of Ionic Exchange and Macroporous Resins for Their Application on the Separation and Recovery of Chlorogenic Acid from the Wastewater of Artichoke Blanching. Sustain. 2021, 13. [Google Scholar] [CrossRef]
- Kanha, N.; Surawang, S.; Pitchakarn, P.; Regenstein, J.M.; Laokuldilok, T. Copigmentation of Cyanidin 3-O-Glucoside with Phenolics: Thermodynamic Data and Thermal Stability. Food Biosci. 2019, 30, 100419. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal Lipid Peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Kalinowska, M.; Świsłocka, R.; Lewandowski, W. The Spectroscopic (FT-IR, FT-Raman and 1H, 13C NMR) and Theoretical Studies of Cinnamic Acid and Alkali Metal Cinnamates. J. Mol. Struct. 2007, 834–836, 572–580. [Google Scholar] [CrossRef]
- Hanai, K.; Kuwae, A.; Takai, T.; Senda, H.; Kunimoto, K.K. Comparative Vibrational and NMR Study of Cis-Cinnamic Acid Polymorphs and Trans-Cinnamic Acid. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2001, 57, 513–519. [Google Scholar] [CrossRef]
- Sebastian, S.; Sundaraganesan, N.; Manoharan, S. Molecular Structure, Spectroscopic Studies and First-Order Molecular Hyperpolarizabilities of Ferulic Acid by Density Functional Study. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2009, 74, 312–323. [Google Scholar] [CrossRef]







| Anthocyanin | Retention time (min) | Molecular ion [M]+ (m/z) |
MS ions (m/z) |
| Cyanidin-3-malonylglucoside | 3.53 | 535 | 177, 287 |
| Peonidin-3-glucoside | 3.57 | 463 | 112, 286, 301, 383 |
| Cyanidin-3-glucoside | 3.64 | 449 | 167, 244, 287 |
| Catechin-(4,8)-pelargonidin-3,5-diglucoside | 3.67 | 883 | 271, 313, 407, 559, 721 |
| Pelargonidin-3-glucoside | 4.16 | 433 | 68, 130, 235, 271, 307 |
| Catechin-(4,8)-peonidin-3,5-diglucoside | 4.47 | 913 | 301, 343, 437, 589, 751 |
| Cyanidin-3-malonylglucosyl-5-glucoside | 4.52 | 697 | 177, 287, 449, 535 |
| Pelargonidin-3-malonylglucoside | 15.34 | 519 | 187, 271, 433, 475 |
| Peonidin-3-malonylglucoside | 15.76 | 549 | 185, 286, 301, 505 |
| Pelargonidin-3-dimalonylglucoside | 16.62 | 605 | 137, 177, 271, 425 |
| Peonidin-3-dimalonylglucoside | 16.81 | 635 | 137, 177, 301, 436 |
| Petunidin sophoroside | 17.57 | 641 | 145, 302, 317, 479 |
| Anthocyanin | Retention time (min) | Molecular ion [M]+ (m/z) |
MS ions (m/z) |
| Cyanidin-3-glucoside | 3.50 | 449 | 68, 153, 229, 287, 375 |
| Delphinidin-3-glucoside | 16.82 | 465 | 85, 153, 267, 303 |
| PCA systems | %A | %λ | CCA systems | %A | %λ |
| PCA_P8 | 7.67 ± 0.26 d | 0.16 ± 0.05 d | CCA_P16 | 25.09 ± 4.37 a | 0.19 ± 0.00 a |
| PCA_C80 | 18.37 ± 1.79 c | 0.45 ± 0.06 bc | CCA_C80 | 9.73 ± 0.98 bcd | 0.32 ± 0.05 a |
| PCA_CP | 49.24 ± 1.49 a | 0.38 ± 0.05 c | CCA_CP | 7.38 ± 0.51 cd | -1.08 ± 0.15 c |
| PCA_F80 | 20.62 ± 0.10 c | 0.51 ± 0.00 abc | CCA_F80 | 15.70 ± 3.05 b | 0.29 ± 0.00 a |
| PCA_FP | 51.63 ± 0.64 a | 0.60 ± 0.00 a | CCA_FP | 5.43 ± 0.61 d | -0.45 ± 0.06 b |
| PCA_R60 | 31.38 ± 2.66 b | 0.57 ± 0.06 ab | CCA_R80 | 15.25 ± 3.00 b | 0.32 ± 0.05 a |
| PCA_RP | 29.54 ± 1.03 b | 0.57 ± 0.10 ab | CCA_RP | 12.25 ± 0.57 bc | -0.51 ± 0.22 b |
| PCA systems | Remaining anthocyanins (%) | CCA systems | Remaining anthocyanins (%) |
| PCA | 24.26 ± 1.08 e | CCA | 45.61 ± 1.56 b |
| PCA_P8 | 30.17 ± 0.57 d | CCA_P16 | 51.55 ± 2.63 a |
| PCA_C80 | 38.82 ± 0.88 bc | CCA_C80 | 54.72 ± 1.08 a |
| PCA_CP | 46.02 ± 0.68 a | CCA_CP | 55.61 ± 1.49 a |
| PCA_F80 | 40.86 ± 1.39 b | CCA_F80 | 56.57 ± 2.78 a |
| PCA_FP | 48.31 ± 1.28 a | CCA_FP | 56.10 ± 2.19 a |
| PCA_R60 | 38.85 ± 1.49 bc | CCA_R80 | 53.92 ± 1.36 a |
| PCA_RP | 37.16 ± 1.31 c | CCA_RP | 55.84 ± 1.02 a |
| Sample | TBARS (nmol/g) | Sample | TBARS (nmol/g) |
| Control | 106.50 ± 7.70 bc | Control | 106.50 ± 7.70 b |
| SI | 172.64 ± 14.16 a | SI | 172.64 ± 14.16 a |
| PCA systems | CCA systems | ||
| P | 76.12 ± 6.13 d | P | 54.27 ± 11.45 de |
| C | 83.77 ± 9.84 cd | C | 98.85 ± 3.94 b |
| F | 88.51 ± 2.91 cd | F | 77.94 ± 7.76 bcd |
| R | 51.14 ± 6.82 ef | R | 44.80 ± 5.14 e |
| PCA | 120.56 ± 7.55 b | CCA | 99.50 ± 13.12 b |
| PCA_P8 | 100.90 ± 5.44 bc | CCA _P16 | 97.68 ± 14.14 b |
| PCA_C80 | 90.25 ± 7.28 cd | CCA _C80 | 77.80 ± 7.31 bcd |
| PCA_CP | 105.48 ± 5.91 bc | CCA _CP | 67.82 ± 11.24 cde |
| PCA_F80 | 115.46 ± 8.73 b | CCA _F80 | 60.61 ± 10.45 cde |
| PCA_FP | 105.41 ± 9.25 bc | CCA _FP | 86.47 ± 8.01 bc |
| PCA_R60 | 48.00 ± 3.72 f | CCA _R80 | 44.43 ± 3.03 e |
| PCA_RP | 73.28 ± 6.78 de | CCA _RP | 40.36 ± 1.46 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
