Submitted:
25 September 2025
Posted:
25 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Axons and Synapses
3. Astrocytes and Other Glial Cells
4. From Mechanisms to Diseases and Therapies
5. Conclusions
Authorships
Funding
Conflicts of Interest
Abbreviations
References
- Leterrier C. The axonal initial segment: an updated viewpoint. J. Neurosci. 2018; 38: 2135-2145. [CrossRef]
- Rich S.K., Terman J.R. Axon formation, extension, and navigation: only neuroscience phenomenon. Curr. Opin. Neurobiol. 2018; 53: 174-182. [CrossRef]
- Wojnacki J., Galli T. Membrane duing development. Dev. Neurobiol, 2016; 76: 1185-11200. [CrossRef]
- Batool S., Raza H., Zaidi J., Riaz S., Hasan S., et al. Synapse formation from cellular and molecular mechanisms in neurodevelopmental and neurodegenerative disorders. J. Neurophysiol. 2019; 121: 1381-1397. [CrossRef]
- Scheiffele P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 2003; 26: 485-508. [CrossRef]
- Meldolesi J. Post-synapses in the brain: role of dendrites and spine structures. Biomedicine 2022; 10: 1859. [CrossRef]
- Lopez-Hernandez T., Takenaka K.I., Mori Y., Kongpracha P., Sagamori S., et al. Clathrin-independent endocytic retrieval of synaptic vesicle protein mediated by the clathrin adaptor AP-2 at mammalian central synapses. Elife 2022; 11: e71198. [CrossRef]
- Saheki Y., De Camilli P. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect. Biol. 2012; 4: a005645. [CrossRef]
- Peres G., Navarrete M., Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci, 2009; 32: 421-431. [CrossRef]
- Allen N.J., Barres B.A. Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 2005; 15: 542-548. [CrossRef]
- Eroglu C., Barres B.A. Regulation of synaptic connectivity by glia. Nature 2010; 468: 223-231. [CrossRef]
- Chung W.S., Baldwin K.T., Allen N.J. Astrocyte regulation of synapse formation, maturation, and elimination. Cold Spring Harb. Perspect. Bol. 2024; 16: a041352. [CrossRef]
- Pereira-Iglesias M., Maldonado-Teixido J., Melero H., Piriz J., Galea E., et al. Microglia as hunters or gatherers of brain synapses. Nat. Neurosci. 2025; 28: 15-23. [CrossRef]
- Mason A.J., Deppmann C., Winkler B. Emerging roles of neuronal extracellular vesicles at the synapse. Neuroscientist 2024; 30: 199-213. [CrossRef]
- Liu Y., Shual K., Sun Y., Zhu L., Wu X.M. Advances in the study of axon-associated vesicles. Front. Mol. Neurosci. 2022; 15: 1045778. [CrossRef]
- Chen S., Bao Q., Xu W., Zhai X. Extracellular particles: emerging insights into central nervous system diseases. J. Nanobiotechnology 2025; 23: 263. [CrossRef]
- Steele-Nicholson L.J., Andrews M.R. Axon-targeting motifs: mechanisms and applications of enhancing axonal localization of transmembrane proteins. Cells 2022; 11: 937. [CrossRef]
- Liu M., Teng T. Exosomes: new target for understanding axon guidance in the developing central nervous system. Front. Cell Dev. Biol. 2025; 12: 1510862. [CrossRef]
- Filannino F.M., Panaro M.A., Benameur T., Pizzolorusso I., Porro C. Extracellular vesicles in the central nervous system: a novel mechanism of neuronal cell communication. Int. J. Mol. Sci. 2024; 25: 1629. [CrossRef]
- Chen J., Tian C., Xiong X., Yang Y., Zhang J. Extracellular vesicles: new horizons in neurodegeneration. EBioMedicine 2025; 113: 105605. [CrossRef]
- Cole A.A., Reese T.S. Transsynaptic assemblies link domains of presynaptic and postsynaptic intracellular structures across the synaptic cleft. J. Neurosci. 2023; 43: 5883-5892. [CrossRef]
- Tao-Cheng J.H., Moreira S.L., Winters C.A., Reese T.S., Dosemeci A. Modifications of the synaptic cleft under excitatory conditions. Front. Synaptic Neurosci. 2023; 15: 1239098. [CrossRef]
- Muttathukunnel P., Frei P., Perry S., Dickman D., Muller M. Rapid homeostasis modulation of trans-synaptic nanocolumn rings. Proc. Natl. Acad. Sci. USA 2022; 119: e211904119. [CrossRef]
- Godavarthi S.K., Hiramoto M., Ignatyev Y., Levin J.B., Li H.Q., et al. Postsynaptic receptors regulate presynaptic transmitter stability through transsynaptic bridges. Proc. Natl. Acad. Sci. USA 2024; 121: e2318041121. [CrossRef]
- Ringsevjen H., Egbenya D.L., Bieler M., Davanger S., Hussein S. Activity-regulated cytoskeletal–associated protein (Arc) in presynaptic terminals and extracellular vesicles in hippocampal synapses. Front. Mol. Neurosci. 2023; 16: 1225533. [CrossRef]
- Tyagi M., Chadha R., de Hoog E., Sullivan K.R., Walker A.C., et al. Arc mediates intercellular tau transmission via extracellular vesicles. bioRxiv 2024; 22: 2024. [CrossRef]
- Walker C.D., Risher W.C., Risher M.L. Regulation of synaptic development by astrocyte signaling factors and their emerging roles in substance of abuse. Cells 2021; 9: 28. [CrossRef]
- Yamagata K. Astrocyte-induced synapse formation and ischemic stroke. J. Neurosci. Res. 2021; 99: 140-1431. [CrossRef]
- Faust T.E., LeeY.H., O’Connor C.D., Boyle M.A., Gunner G., et al. Microglia-associate crosstalk regulates synapse remodeling via Wnt signaling. Cell 2025; 188: 5212-5230. [CrossRef]
- Schafer D.P., Stevens B., Bennett M.L., Bennett F.C. Role of microglia in central nervous system development and plasticity. Cold Spring Harb. Perspect. Biol. 2024; 30: a041810. [CrossRef]
- Duran Laforet V., Schafer D.P. Microglia: activity-dependent regulators of neural circuits. Ann.N.Y. Acad. Sci. 2024; 1533: 38-50. [CrossRef]
- Zipp F., Bittner S., Schaefer D.P. Cytokines as emerging regulators of central nervous system synapses. Immunity 2023; 56: 914-925. [CrossRef]
- Blanchette C.R., Scalera L., Harris K.P., Zhao Z., Dresselhaus E.C., et al. Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. J. Cell Biol. 2022; 221: e202112094. [CrossRef]
- Dresselhaus E.C., Harris K.P., Blancette C.R., Koles K., Del Signore S.J., et al. ECRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles. [CrossRef]
- Solana-Balaguer J., Campoy-Campos G., Matin-Flores N., Perez-Sisques L., Sitja-Roqueta L., et al. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signaling and preserve neuronal complexity. J. Extracell. Vesicles 2023; 12: e12355. [CrossRef]
- Park S., Noblett N., Pitts L., Colavita A., Wehman A.M., et al. Dopey-dependent regulation of extracellular vesicles maintains neuron morphology. Curr. Biol. 2024; 34: 4920-4933.e11. [CrossRef]
- Ikezu T., Yang Y., Verderio C., Kramer-Albers E.M. Extracellular vesicle-mediated neuron-glia communications in the central nervous system. J. Neurosci. 2024; 44: e1170242024. [CrossRef]
- Lorenzo J., Rico-Gallego J.A., Binczak S., Jacquir S. Spiking neuron-astrocyte networks for image recognition. Neural Comput.2025; 37: 635-665. [CrossRef]
- Xia X., Wang Y., Quin Y., Zhao S., Zheng J.C. Exosome: a novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res. Rev. 2022; 74: 101558. [CrossRef]
- Nieves Torres D., Lee S.H. Inter-neuronal signaling mediated by small extracellular vesicles: wireless communication? Front. Mol. Neurosci. 2023; 16: 1187300. [CrossRef]
- Krishnan S., Klingauf J. The readily retrievable pool of synaptic vesicles. Biol. Chem. 2023, 404: 385-397. [CrossRef]
- Meldolesi J. Specific extracellular vesicles generated and operating at synapses, contribute to neuronal effects and signaling. Int. J. Mol. Sci. 2024, 25: 5103. [CrossRef]
- McCaig C.D. Synaptic physiology depends on electrical forces on liquid-liquid phase separation. Rev. Physiol. Biochem. Pharmacol. 2025; 187: 339-359. [CrossRef]
- Guzikowski N.J., Kavalali E.T. Functional specificity of liquid-liqid phase separatin at the synapse. Nat. Commun. 2024; 15: 10103. [CrossRef]
- Choi J., Rafiq N.M., Park D. Liquid-liquid phase separation in pre-synaptic nerve terminals. Trends Biochem. Sci. 2024; 49: 888-9009: 888-900. [CrossRef]
- Chanaday N.L., Cousin M.A., Milosevic I., Watanabe S., Morgan J.R. The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. J. Neurosci. 2019; 39: 8209-8216. [CrossRef]
- Andres-Alonso M., Kreutz M.R., Karpova A. Autophagy and the endolysosomal system in presynaptic function. Cell Mol. Life Sci. 2021; 78: 2621-2639. [CrossRef]
- Brenna S., Krisp C., Altmeppen H.C., Magnus T., Puig B. Brain-derived extracellular vesicles in health and diseases: a methodological perspective. Int. J. Mol. Sci. 2021; 33: 1365. [CrossRef]
- Xu X., Iqbal Z., Xu L., When C., Duan L., et al. Brain-derived extracellular vesicles: potential diagnostic biomarkers for central nervous system diseases. Psychiatry Clin. Neurosci. 2024; 78: 83-96. [CrossRef]
- Chang C., Weiping L., Jibing C. Exosomal miRNA therapy for central nervous system injury diseases. Cell Mol. Neurobiol. 2024; 45: 3. [CrossRef]
- Zanirati G., Dos Santos P.G., Alcara A.M., Bruzzo F., Machado Ghilardi I., et al. Extracellular vesicles: the new generation of biomarkers and treatment for central nervous system diseases. Int. J. Mol. Sci. 2024; 25:7371. [CrossRef]
- Dzyubenko E., Hermann D.M. Neuroglia and extracellular matrix molecules. Handb. Clin. Neurol. 2025; 209: 197-211. [CrossRef]
- Shen H., Chen J., Liu M., Zhao M., Hu D., et al. Research progress of extracellular vesicles derived from mesenchymal stem cells in the treatment of neurodegenerative diseases. Front. Immunol. 2025; 16: 1496304. [CrossRef]
- Guo M., Hao Y., Feng Y., Li M., Mao Y., et al. Microglial exosomes in neurodegenerative disease. Front. Mol. Neurosci. 2021; 14: 630808. [CrossRef]
- Patel M.R., Weaver A.M. Astrocyte-derive small extracellular vesicles promote synapse formation via tubulin-2-mediated TGF-β signaling. Cell Rep. 2021; 34: 108829. [CrossRef]
- Allen N.J., Bennett M.L., Foo L.C., Wang G.X., Chakraborty C., et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1, AMPA receptor. Nature 2012; 486:410-4014. [CrossRef]
- Kamimura K., Maeda N. Glypian and heparin sulfate in synaptic development, neural plasticity, and neurological disorders. Front Neural Circuits 2021; 15: 59556. [CrossRef]
- Irala D., Wang S., Skers K., Nagendren L., Ulloa-Severino F.P., et al. Astrocyte-secreted neurocam controls inhibitory synapse formation and function. Neuron 2024; 112: 1657-1675. [CrossRef]
- Bosworth A., Contreras M., Sancho L., Salas H., Paumler A., et al. Astrocyte glypcan 5 regulates synapse maturation and stabilization. Cell Rep. 2025; 4: 115374. [CrossRef]
- Chung W.S., Baldwin K.T., Allen N.J. Astrocyte regulation of synapse formation, maturation, and elimination. Cold Spring Harb. Perspect. Biol. 2024; 16: a41352. [CrossRef]
- Kopalli S.R., Behi T., Kyada A., Rekha M.M., Kundias M., et al. Synaptic plasticity and neuroprotection: the molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569: 161-183. [CrossRef]
- Zeng J, Zhang R., Hu H., Zhang C., Lu L. Integrative single cell RNA sequencing and mandelian randomization analysis reveal the potential role of synaptic vesicle cycling-related genes in Alzheimer’s disease. J. Prev. Alzheimer’s Dis. 2025; 12: 100097. [CrossRef]
- McGeachan R.I., Meftan S., Taylor L.W., Caterson J.H., Negro D., et al. Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures. Nat. Commun. 2025; 16: 3753. [CrossRef]
- Rhoden F., Ferreira P.C.L., Bellaver B., Ferrari-Souza J.P., Aguzzoli C.S., et al. Glial reactivity correlates with synaptic dysfunction across aging and Alzheimer’s disease. Nat. Comm. 2025; 16: 5653. [CrossRef]
- Pokrzyk J. Kulczynska-Przybik A., Guzik-Makaruk E. Clinical presence of amyloid-β implication in the detection and treatment of Alzheimer's disease. Int. J. Mol. Sci. 2025; 26: 1935. [CrossRef]
- Paul J.K., Malik A., Azmal M., Gulzar T., Muhammad Talal R., et al. Advancing Alzheimer's therapy: computational strategies and treatment innovations. IBRO Neurosci. Rep. 2025; 18: 270-282. [CrossRef]
- Szczupak D., LjungQvist Brinson L., Kolarcik C.L. Brain connectivity, neural networks, and resilience in aging and neurodegeneration. Am. J. Pathol. 2025; 23: S0002--9440 (25)00027-6. [CrossRef]
- Vahab S.A., KV V., Kumar V.S. Exosome-based drug delivery system for enhanced neurological therapeutics. Drug Deliv. Transl. Res. 2025; 15: 1121-1138. [CrossRef]
- Wang L., Zhang X., Yang Z., Wang B., Gong H., et al. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl. Neurodegener. 2024; 13: 60. [CrossRef]
- Malaguarnera M., Cabrera-Pastor A. Emerging role of extracellular vesicles as biomarkers in neurodegenerative diseases and their clinical and therapeutic potential in central nervous system pathologies. Int. J. Mol. Sci. 2024; 25: 10068. [CrossRef]
- Zhu Y., Wang F., Xia Y., Wang L., Lin H., et al. Research progress on astrocyte- derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev. Neurosci. 2024, 35: 855-875. [CrossRef]
- Vinaiphat A., Sze S.K., Clinical Implications of extracellular vesicles in neurodegenerative diseases. Expert Rev. Mol. Diagn. 2019; 19: 813-824. [CrossRef]
- Sharma S., Kaur I., Dubey N., Goswami N., Tanwar S.S. Berberine can be a potential therapeutic agent in treatment of Huntington’s disease: a proposed mechanistic insight. Mol. Neurobiol. 2025; May 16. [CrossRef]
- Burg T., Van Den Bosch L. Glycerophospholipids in ALS: insights into diseases mechanisms and clinical implication. Mol. Neurodegener. 2025; 20: 85. [CrossRef]
- De Angelis F., Nistri R., Wright S. Measuring disease progression in multiple sclerosis clinical drug trails and impact on future patient care. CNS Drugs 2025; 39: 55-80. [CrossRef]

| Section 1. Introduction | In 2005, the role of astrocytes was two fold: accumulation of astrocytes in the post-synaptic site of tripartite synapses [9]; signaling between glia and neurons: focus on a synaptic process with their plasticity [10]. In 2010 the role of astrocytes is powerful on synaptic formation: function, plasticity and elimination [11]. Recent evidence has confirmed the astrocyte effects including astrocyte secretion [12]. |
| Section 3. Astrocytes and other Glial Cells | The important role of astrocytes revealed in these studies has included protection and restoration of synapses, induced by vesicle release and/or by astrocytes protein secretion [27,28]. |
| Section 4. From Mechanisms to Diseases and Therapies | Most of the synaptic changes dependent from astrocytes [49,50,51,52,53] induce effects analogous to those already reported in the previous Sections. Interesting here are the astrocyte-secreted protein effects including maturation, stabilization, plasticity, disorders, elimination [52,53]. The effects induced by distinct secreted forms of glypicans appear in various areas of the brain [49]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
