Submitted:
24 September 2025
Posted:
25 September 2025
You are already at the latest version
Abstract
Keywords:
MSC: 35A01; 35A02; 35A21; 25A20
1. Introduction
2. Governing Equations and Flow decomposition
2.1. Navier-Stokes Equation and Continuity Equation
2.2. Flow Decomposition
3. Preliminaries
3.1. Basic Properties of Time-Averaged Flow
3.2. Time-Averaged Flow Equations for Plane Poiseuille Flow
3.3. Functional Spaces and Key Functionals
4. Main Results and Proofs
4.1. Main Theorem
4.2. Proof Process
4.3. Judging from the BKM Criterion for Solution Breakdown
5. Discussions
5.1. Laminar Nature and Physical Significance of the Dynamic Decomposition
5.2. Laminar Constraint Conditions for Key Parameters
5.3. Limitations and Prospects
5.4. Velocity Discontinuity rather than Velocity Infinity to Leads to Solution Breakdown
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Code Availability
References
- Beale, J.T. , Kato, T., Majda, A. 1984. Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 94(1), 61-66. [CrossRef]
- Constantin, P. , Foias, C. 1988. Navier-Stokes Equations, University of Chicago Press, Chigaco.
- Dou, H.-S. 2021. Singularity of Navier-Stokes equations leading to turbulence, Adv. Appl. Math. Mech., 13(3), 527–553. [CrossRef]
- Dou, H.-S. 2022. Origin of Turbulence-Energy Gradient Theory, Springer, Singapore.
- Dou, H.-S. 2025a. Singular solution of the Navier-Stokes equation for plane Poiseuille flow, Physics of Fluids, 37, 084131. [CrossRef]
- Dou, H.-S. 2025b. Disproving the Existence of Global Smooth Solutions to the Navier-Stokes Equation, Doi: 10.20944/preprints 202509.1747.v1. https://www.preprints.org/manuscript/202509.1747/v1.
- Fefferman, C. L. 2006. Existence and smoothness of the Navier-Stokes equation. In: The Millennium Prize Problems, Carlson, J., Jaffe, A., Wiles, A., Editors, American Mathematical Society, pp. 57-67.
- Foias, C. , Manley, O., Rosa, R., Temam, R. 2004. Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, UK.
- Kozono, H. , Taniuchi, Y. 2000. Bilinear estimates in BMO and the Navier-Stokes equations. Mathematische Zeitschrift, 235(1), 173-194. [CrossRef]
- Leray, J. 1934. Sur le mouvement d’un liquide visquex emplissent l’espace, Acta Math. J., 63, 193-248. [CrossRef]
- Lugt, H. J. 1983. Vortex Flow in Nature and Technology, Wiley, Inc., New York.
- Niu, L. , Dou, H.-S., Zhou, C., Xu, W. 2024. Turbulence generation in the transitional wake flow behind a sphere, Physics of Fluids, 36, 034127. [CrossRef]
- Niu, L. , Dou, H.-S., Zhou, C., Xu, W. 2025. Solitary wave structure of transitional flow in the wake of a sphere, Physics of Fluids, 37, 014111. [CrossRef]
- Taylor, M. E. 2023. Partial Differential Equations III: Nonlinear Equations, Springer, Cham.
- Zhao, J. 2017. BKM’s criterion for the 3D nematic liquid crystal flows via two velocity components and molecular orientations, Mathematical Methods in the Applied Sciences, 40(4), 871-882.
- Zhou, C. , Dou, H.-S., Niu, L., Xu, W. 2025a. Inverse energy cascade in turbulent Taylor–Couette flows, Phys. Fluids, 37, 014110. [CrossRef]
- Zhou, C. , Dou, H.-S., Niu, L., Xu, W. 2025b. Effect of gap width on turbulent transition in Taylor-Couette flow, Journal of Hydrodynamics, 37, 294-301. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
