Submitted:
22 September 2025
Posted:
23 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Asthma: Definition and Classification
3. Asthma and Infections
3.1. Viral Infections
3.2. Bacterial Infections
3.2.1. Pathogenic Bacteria
3.2.2. Atypical Bacteria
3.2.3. Airway Microbiota
4. Asthma and Immunodeficiencies
4.1. Innate Immunity and Asthma
4.1.1. Mucociliary Clearance
4.1.2. Defensins
4.1.3. Interferons
4.1.4. Cells
4.2. Adaptive Immunity and Asthma
4.2.1. Inborn Errors of IMMUNITY (IEIS)
4.2.2. Immunoglobulins
4.2.3. Immunoglobulin Deficiencies and Asthma
5. Asthma, Infections, Immunity and Therapies
6. Discusion
7. Conclusions
References
- Hartert, T.; Kvysgaard, JN.; Thaver, L.; Suara-Istanbouli, A.; Allinson, JP.; Zar, HJ. Understanding the childhood origins of asthma and chronic obstructive pulmonary disease: Insights from birth cohorts and studies across the lifespan. J Allergy Clin Immunol. 2025, 155, 1703–1719. [Google Scholar] [CrossRef]
- Zar, HJ.; Cacho, F.; Kootbodien, T.; Mejias, A.; Ortiz, JR.; Stein, RT.; et al. Early-life respiratory syncytial virus disease and long-term respiratory health. Lancet Respir Med. 2024, 12, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Melén, E.; Zar, HJ.; Siroux, V.; Shaw, D.; Saglani, S.; Koppelman, GH.; et al. Asthma Inception: epidemiologic risk factors and natural history across the life course. Am J Respir Crit Care Med. 2024, 210, 737–754. [Google Scholar] [CrossRef]
- Christou, EAA. ; Giardino, G.; Stefanaki, E.; Ladomenou, F. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol. 2019, 38, 70–78. [Google Scholar] [CrossRef]
- Porsbjerg, C.; Melén, E.; Lehtimäki, L.; Shaw, D. Asthma. Lancet 2023, 401, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Fuhlbrigge, AL.; Sharma, S. Unraveling the heterogeneity of asthma: Decoding subtypes of asthma. J Allergy Clin Immunol. 2025, 156, 41–50. [Google Scholar] [CrossRef] [PubMed]
- GINA guidelines. Available online: www.ginasthma.org.
- Grunwell, JR.; Fitzpatrick, AM. Asthma phenotypes and biomarkers. Respir Care. 2025, 70, 649–674. [Google Scholar] [CrossRef]
- Makrinioti, H.; Hasegawa, K.; Lakoumentas, J.; Xepapadaki, P.; Tsolia, M.; Castro-Rodriguez, JA.; et al. The role of respiratory syncytial virus- and rhinovirus-induced bronchiolitis in recurrent wheeze and asthma: a systematic review and meta-analysis. Pediatr Allergy Immunol 2022, 33, 13741. [Google Scholar] [CrossRef]
- Rosas-Salazar, C.; Hartert, TV. Infant respiratory syncytial virus infection and childhood asthma: A shift in the paradigm? Clin Transl Med. 2023, 13, 1414. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Salazar, C.; Chirkova, T.; Gebretsadik, T.; Chappell, JD.; Peebles RS Jr, Dupont, WD. ; et al. Respiratory syncytial virus infection during infancy and asthma during childhood in the USA (INSPIRE): a population-based, prospective birth cohort study. Lancet. 2023, 401, 1669–1680. [Google Scholar] [CrossRef]
- Blanken, MO.; Rovers, MM.; Molenaar, JM.; Winkler-Seinstra, PL.; Meijer, A.; Kimpen, J.; et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013, 368, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Larkin, EK.; Hartert, TV. Genes associated with RSV lower respiratory tract infection and asthma: the application of genetic epidemiological methods to understand causality. Future Virol 2015, 10, 883–897. [Google Scholar] [CrossRef]
- Scheltema, NM.; Nibbelke, EE.; Pouw, J.; Blanken, MO.; Rovers, MM.; Naaktgeboren, CA.; et al. Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomized controlled trial. Lancet Respir Med. 2018, 6, 257–264. [Google Scholar] [CrossRef]
- Bonnelykke, K.; Coleman, AT.; Evans, MD.; Thorsen, J.; Waage, J.; Vissing, NH.; et al. Cadherin-related family member 3 genetics and rhinovirus C respiratory illnesses. Am J Respir Crit Care Med. 2018, 197, 589–594. [Google Scholar] [CrossRef]
- Basnet, S.; Bochkov, Y.; Brockman-Schneider, R.; Kuipers, I.; Aesif, SW.; Jackson, DJ.; et al. CDHR3 asthma-risk genotype affects susceptibility of airway epithelium to rhinovirus C infections. Am J Resp Cell Mol Biol. 2019, 61, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Bonnelykke, K.; Sleiman, P.; Nielsen, K.; Kreiner-Moller, E.; Mercader, JM.; Belgrave, D.; et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014, 46, 51–55. [Google Scholar] [CrossRef]
- Johnston, SL.; Pattemore, PK.; Sanderson, G.; Smith, S. , Campbell, MJ.; Josephs, LK.; et al. The relationship between upper respiratory infections and hospital admissions for asthma: A time-trend analysis. Am. J. Respir. Crit. Care Med. 1996, 154, 654–660. [Google Scholar] [CrossRef]
- Papadopoulos, NG.; Christodoulou, I.; Rohde, G.; Agache, I.; Almqvist, C.; Bruno, A.; et al. Viruses and bacteria in acute asthma exacerbations–a GA2 Len-dare systematic review. Allergy. 2011, 66, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Jartti, T.; Bønnelykke, K.; Elenius, V.; Feleszko, W. Role of viruses in asthma. Semin. Immunopathol. 2020, 42, 61–74. [Google Scholar] [CrossRef]
- Duong, KE.; Henry, SS.; Cabana, MD.; Duong, TQ. Longer-Term Effects of SARS-CoV-2 Infection on Asthma Exacerbation. J Allergy Clin Immunol Pract. 2025; Ahead of print. [Google Scholar]
- Guilbert, TW.; Denlinger, LC. Role of infection in the development and exacerbation of asthma. Expert Rev Respir Med. 2010, 4, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Jounio, U.; Juvonen, R.; Bloigu, A.; Silvennoinen-Kassinen, S.; Kaijalainen, T.; Kauma, H.; et al. Pneumococcal carriage is more common in asthmatic than in non-asthmatic young men. Clin Respir J. 2010, 4, 222–9. [Google Scholar] [CrossRef] [PubMed]
- Talbot, TR.; Hartert, TV.; Mitchel, E.; Halasa, NB.; Arbogast, PG.; Poehling, KA.; et al. Asthma as a risk factor for invasive pneumococcal disease. N Engl J Med. 2005, 352, 2082–90. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Z.; Zuo, X.; Pan, H.; Gu, Y.; Yuan, Y.; et al. The role of NTHi colonization and infection in the pathogenesis of neutrophilic asthma. Respir Res. 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Simpson, JL.; Daly, J.; Baines, KJ.; Yang, IA.; Upham, JW.; Reynolds, PN.; et al. Airway dysbiosis: Haemophilus influenza and Tropheryma in poorly controlled asthma. Eur Respir J. 2016, 47, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Versi, A.; Azim, A.; Ivan, FX.; Abdel-Aziz, MI.; Bates, S.; Riley, J.; et al. , U-BIOPRED study group. A severe asthma phenotype of excessive airway Haemophilus influenzae relative abundance associated with sputum neutrophilia. Clin Transl Med. 2024, 14, 70007. [Google Scholar] [CrossRef] [PubMed]
- Taylor, SL.; Leong, LEX. ; Mobegi, FM.; Choo, JM.; Wesselingh, S.; Yang, IA.; et al. Long-term azithromycin reduces Haemophilus influenzae and increases antibiotic resistance in severe asthma. Am J Respir Crit Care Med. 2019, 200, 309. [Google Scholar] [CrossRef]
- Romero-Espinoza, JA.; Moreno-Valencia, Y.; Coronel-Tellez, RH.; Castillejos-Lopez, M.; Hernandez, A.; Dominguez, A.; et al. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015. PLoS One 2018, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- McCauley, K.; Durack, J.; Valladares, R.; Fadrosh, DW.; Lin, DL.; Calatroni, A.; et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol. 2019, 144, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Nakajima, M.; Niki, Y.; Kawane, H.; Matsushima, T. Chlamydia pneumoniae and exacerbations of asthma in adults. Ann Allergy Asthma Immunol. 1998, 80, 405–409. [Google Scholar]
- Zhou, A.; 1998, 80, 40555n X. , Chen, Z.; Shen, H. Correlations of Mycoplasma pneumonia infection with airway inflammation and asthma control in patients with bronchial asthma. Chin J Pract Intern Med. 2014, 34, 794–796. [Google Scholar]
- Kocabas, A.; Avsar, M.; Hanta, I.; Koksal, F.; Kuleci, S. Chlamydophila pneumoniae infection in adult asthmatics patients. J Asthma. 2008, 45, 39–43. [Google Scholar] [CrossRef]
- Bébéar, C.; Raherison, C.; Nacka, F.; de Barbeyrac, B.; Pereyre, S.; Renaudin, H.; et al. Comparison of Mycoplasma pneumoniae infections in asthmatic children versus asthmatic adults. Pediatr Infect Dis J. 2014, 33, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, P.; Ma, Y. Prevalence of acute infection in adults with asthma exacerbation: A systematic review and meta-analysis. Ann Thorac Med. 2023, 18, 132–151. [Google Scholar] [CrossRef]
- McCauley, K.; Durack, J.; Valladares, R.; Fadrosh, DW.; Lin, DL.; Calatroni, A.; et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol. 2019, 144, 1187–1197. [Google Scholar] [CrossRef]
- Tang, HHF. ; Lang, A.; Teo, SM.; Judd, LM.; Gangnon, R.; Evans, MD.; et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. J Allergy Clin Immunol. 2021, 147, 1683–1691. [Google Scholar] [CrossRef]
- Teo, SM.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015, 17, 704–715. [Google Scholar] [CrossRef]
- Fazlollahi, M.; Lee, TD.; Andrade, J.; Oguntuyo, K.; Chun, Y.; Grishina, G.; et al. The nasal microbiome in asthma. J Allergy Clin Immunol. 2018, 142, 834–843. [Google Scholar] [CrossRef]
- Durack, J.; Lynch, SV.; Nariya, S.; Bhakta, NR.; Beigelman, A.; Castro, M.; et al. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol. 2017, 140, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, Z.; Zhou, J.; Yang, X.; You, L.; Yang, Q.; et al. Distinct Airway Microbiome and Metabolite Profiles in Eosinophilic and Neutrophilic Asthma. J Asthma Allergy 2025, 18, 1003–1022. [Google Scholar] [CrossRef]
- Huang, YJ.; Nariya, S.; Harris, JM.; Lynch, SV.; Choy, DF.; Arron, JR.; et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol. 2015, 136, 874–884. [Google Scholar] [CrossRef] [PubMed]
- McCauley, KE.; Flynn, K.; Calatroni, A.; DiMassa, V.; LaMere, B.; Fadrosh, DW.; et al. Seasonal airway microbiome and transcriptome interactions promote childhood asthma exacerbations. J Allergy Clin Immunol. 2022, 150, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Fahy, JV.; Dickey, BF. Airway mucus function and dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef]
- Birchenough, GMH.; Johansson, MEV.; Gustafsson, JK.; Bergström, JH.; Hansson, GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015; 8, 712–719.
- Ma, J.; Rubin, BK.; Voynow, JA. Sputum mucins, mucus, and goblet cells. Chest. 2018, 154, 169–176. [Google Scholar] [CrossRef]
- Bonser, LR.; Erle, DJ. The airway epithelium in asthma. Adv Immunol. 2019, 142, 1–34. [Google Scholar] [PubMed]
- Lachowicz-Scroggins, ME.; Yuan, S.; Kerr, SC.; Dunican, EM.; Yu, M.; Carrington, SD.; et al. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med. 2016, 194, 1296–1299. [Google Scholar] [CrossRef]
- Parker, D.; Ahn, D.; Cohen, T.; Prince, A. Innate immune signaling activated by MDR bacteria in the airway. Physiol Rev. 2016, 96, 19–53. [Google Scholar] [CrossRef]
- Schleimer, RP.; Kato, A.; Kern, R.; Kuperman, D.; Avila, PC. Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol. 2007, 120, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Di, YP.; Kuhn, JM.; Mangoni, M. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev. 2024, 104, 1643–1677. [Google Scholar] [CrossRef] [PubMed]
- Semple, F.; Dorin, JR. Beta-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun. 2014, 4, 337–348. [Google Scholar] [CrossRef]
- Hazlett, L.; Wu, M. Defensins in innate immunity. Cell Tissue Res. 2011, 343, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, D.; Landuyt, B.; Luyten, W. ; Schoofs L A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012, 280, 22–35. [Google Scholar] [CrossRef]
- Oppenheim, FG.; Xu, T.; McMillian, FM.; Levitz, SM.; Diamond, RD.; Offner, GD.; et al. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem. 1988, 263, 7472–7477. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak-Gorecka, M.; Majewski, P.; Grygier, B.; Murzyn, K.; Cichy, J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev. 2016, 28, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Berlutti, F.; Pantanella, F.; Natalizi, T.; Frioni, A.; Paesano, R.; Polimeni, A.; et al. Antiviral properties of lactoferrin–a natural immunity molecule. Molecules. 2011, 16, 6992–7018. [Google Scholar] [CrossRef]
- Cane, J.; Tregidgo, L.; Thulborn, S.; Finch, D.; Bafadhel, M. Antimicrobial Peptides SLPI and Beta Defensin-1 in Sputum are Negatively Correlated with FEV1. Int J Chron Obstruct Pulmon Dis. 2021, 16, 1437–1447. [Google Scholar] [CrossRef]
- Raundhal, M.; Morse, C.; Khare, A.; Oriss, TB.; Milosevic, J.; Trudeau, J.; et al. High IFN-gamma and low SLPI mark severe asthma in mice and humans. J Clin Invest. 2015, 125, 3037–3050. [Google Scholar] [CrossRef]
- Thijs, W.; Janssen, K.; van Schadewijk, AM.; Papapoulos, SE.; le Cessie, S.; Middeldorp, S.; et al. Nasal Levels of Antimicrobial Peptides in Allergic Asthma Patients and Healthy Controls: Differences and Effect of a Short 1,25(OH)2 Vitamin D3 Treatment. PLoS ONE 2015, 10, 0140986. [Google Scholar] [CrossRef]
- Beisswenger, C.; Kandler, K.; Hess, C.; Garn, H.; Felgentreff, K.; Wegmann, M.; et al. Allergic airway inflammation inhibits pulmonary antibacterial host defense. J Immunol. 2006, 177, 1833–1837. [Google Scholar] [CrossRef]
- Negishi, H.; Taniguchi, T.; Yanai, H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb Perspect Biol. 2018, 10, 028423. [Google Scholar] [CrossRef] [PubMed]
- Wark, PA.; Johnston, SL.; Bucchieri, F.; Powell, R.; Puddicombe, S.; Laza-Stanca, V.; et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005, 201, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Contoli, M.; Message, SD.; Laza-Stanca, V.; Edwards, MR.; Wark, PA.; Bartlett, NW.; et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006, 12, 1023–1026. [Google Scholar] [CrossRef]
- Sykes, A.; Edwards, MR.; Macintyre, J.; del RA, Bakhsoliani, E. ; Trujillo-Torralbo, MB.; et al. Rhinovirus 16-induced IFN-alpha and IFN-beta are deficient in bronchoalveolar lavage cells in asthmatic patients. J Allergy Clin Immunol. 2012, 129, 1506–1514. [Google Scholar] [CrossRef]
- Baraldo, S.; Contoli, M.; Bazzan, E.; Turato, G.; Padovani, A.; Marku, B.; et al. Deficient antiviral immune responses in childhood: distinct roles of atopy and asthma. J Allergy Clin Immunol. 2012, 130, 1307–1314. [Google Scholar] [CrossRef]
- Edwards, MR.; Regamey, N.; Vareille, M.; Kieninger, E.; Gupta, A.; Shoemark, A.; et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol. 2013, 6, 797–806. [Google Scholar] [CrossRef]
- Patel, DA.; You, Y.; Huang, G.; Byers, DE.; Kim, HJ.; Agapov, E.; et al. Interferon response and respiratory virus control are preserved in bronchial epithelial cells in asthma. J Allergy Clin Immunol. 2014, 134, 1402–1412. [Google Scholar] [CrossRef]
- Sykes, A.; Macintyre, J.; Edwards, MR.; del RA, Haas, J. ; Gielen, V.; et al. Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax 2014, 69, 240–246. [Google Scholar] [CrossRef]
- Zhu, J.; Message, SD.; Mallia, P.; Kebadze, T.; Contoli, M.; Ward, CK.; et al. Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. J Allergy Clin Immunol. 2019, 143, 114–125. [Google Scholar] [CrossRef]
- Gaberino, CL.; Altman, MC.; Gill, MA.; Bacharier, LB.; Gruchalla, RS.; O’Connor, GT.; et al. Dysregulation of airway and systemic interferon responses promotes asthma exacerbations in urban children. J Allergy Clin Immunol. 2025, 155, 1499–1509. [Google Scholar] [CrossRef]
- Djukanovic, R.; Harrison, T.; Johnston, SL.; Gabbay, F.; Wark, P.; Thomson, NC.; et al. The effect of inhaled IFN-beta on worsening of asthma symptoms caused by viral infections. a randomized trial. Am J Respir Crit Care Med. 2014, 190, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Gay, ACA. ; Banchero, M.; Carpaij, O.; Kole, TM.; Apperloo, L.; van Gosliga, D.; et al. Airway epithelial cell response to RSV is mostly impaired in goblet and multiciliated cells in asthma. Thorax. 2024, 79, 811–821. [Google Scholar] [CrossRef]
- Cui, H.; Wang, M.; Jiao, S.; Tian, S.; Liu, H.; Luo, B. Macrophages in chronic infections: regulation and remodeling. Front Immunol. 2025, 16, 1594988. [Google Scholar] [CrossRef]
- Britt RD Jr, Ruwanpathirana, A. ; Ford, ML.; Lewis, BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci. 2023, 24, 10451. [Google Scholar] [CrossRef]
- Draijer, C.; Boorsma, CE.; Robbe, P.; et al. Human asthma is characterized by more IRF5þ M1 and CD206þ M2 macrophages and less IL-10þ M2-like macrophages around airways compared with healthy airways. J Allergy Clin Immunol. 2017, 140, 280–283. [Google Scholar] [CrossRef]
- Grunwell, JR.; Stephenson, ST.; Tirouvanziam, R.; Brown, LAS. ; Brown, MR.; Fitzpatrick, AM. Children with Neutrophil-Predominant Severe Asthma Have Proinflammatory Neutrophils With Enhanced Survival and Impaired Clearance. J Allergy Clin Immunol Pract. 2019, 7, 516–525. [Google Scholar] [CrossRef]
- Alexis, NE.; Soukup, J.; Nierkens, S.; Becker, S. Association between airway hyperreactivity and bronchial macrophage dysfunction in individuals with mild asthma. Am J Physiol Lung Cell Mol Physiol. 2001, 280, 369–375. [Google Scholar] [CrossRef]
- Lay, JC.; Alexis, NE.; Zeman, KL.; Peden, DB.; Bennett, WD. In vivo uptake of inhaled particles by airway phagocytes is enhanced in patients with mild asthma compared with normal volunteers. Thorax 2009, 64, 313–320. [Google Scholar] [CrossRef]
- Kulkarni, N.; Kantar, A.; Costella, S.; Ragazzo, V.; Piacentini, G.; Boner, A.; et al. Macrophage phagocytosis and allergen avoidance in children with asthma. Front Pediatr. 2018, 6, 206. [Google Scholar] [CrossRef]
- Mace, EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol. 2023, 151, 371–385. [Google Scholar] [CrossRef]
- Pianigiani, T.; Paggi, I.; Cooper, GE.; Staples, KJ.; McDonnell, M.; Bergantini, L. Natural killer cells in the lung: novel insight and future challenge in the airway diseases. ERJ Open Res. 2025, 1, 00683–2024. [Google Scholar] [CrossRef]
- Devulder, J.; Chenivesse, C.; Ledroit, V.; Fry, S.; Lobert, PE.; Hober, D.; et al. Aberrant anti-viral response of natural killer cells in severe asthma. Eur Respir J. 2020, 55, 1802422. [Google Scholar] [CrossRef] [PubMed]
- Lepretre, F.; Gras, D.; Chanez, P.; Duez, C. Natural killer cells in the lung: potential role in asthma and virus-induced exacerbation? Eur Respir Rev. 2023, 32, 230036. [Google Scholar] [CrossRef]
- Fahy, JV.; Kim, KW.; Liu, J.; Boushey, H.A. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy Clin. Immunol. 1995, 95, 843–852. [Google Scholar] [CrossRef]
- Crisford, H.; Sapey, E.; Rogers, GB.; Taylor, S.; Nagakumar, P.; Lokwani, R.; et al. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 2021, 76, 835–844. [Google Scholar] [CrossRef]
- Kuks, PJM. ; Kole, TM.; Kraft, M.; Siddiqui, S.; Fabbri, LM.; Rabe, KF.; et al. Neutrophilic inflammation in sputum or blood does not define a clinically distinct asthma phenotype in ATLANTIS. ERJ Open Res. 2025, 11, 00616–2024. [Google Scholar]
- Ravindran, M.; Khan, MA.; Palaniyar, N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules 2019, 9, 365. [Google Scholar] [CrossRef]
- Cheng, OZ.; Palaniyar, N. NET balancing: a problem in inflammatory lung diseases. Front Immunol. 2013, 4, 1. [Google Scholar] [CrossRef]
- Dworski, R.; Simon, HU.; Hoskins, A.; Yousefi, S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol. 2011, 127, 1260–1266. [Google Scholar] [CrossRef]
- Alexis, NE.; Eldridge, MW.; Peden, DB. Effect of inhaled endotoxin on airway and circulating inflammatory cell phagocytosis and CD11b expression in atopic asthmatic subjects. J Allergy Clin Immunol. 2003, 112, 353–361. [Google Scholar] [CrossRef]
- McDowell, PJ.; Azim, A.; Busby, J.; Diver, S.; Yang, F.; Borg, C.; et al. Medical Research Council UK Refractory Asthma Stratification Programme (RASP-UK Consortium). Analysis of airway inflammation demonstrates a mechanism for T2-biologic failure in asthma. J Allergy Clin Immunol. 2025, 29, S0091-6749(25)00696-7, Epub ahead of print. [Google Scholar]
- Zambrano, F.; Uribe, P.; Schulz, M.; Hermosilla, C.; Taubert, A.; Sánchez, R. Antioxidants as Modulators of NETosis: Mechanisms, Evidence, and Therapeutic Potential. Int J Mol Sci. 2025, 26, 5272. [Google Scholar] [CrossRef] [PubMed]
- Tonello, S.; Vercellino, N.; D’Onghia, D.; Fracchia, A.; Caria, G.; Sola, D.; et al. Extracellular Traps in Inflammation: Pathways and Therapeutic Targets. Life 2025, 15, 627. [Google Scholar] [CrossRef]
- Anson, C.; Bjermer, L.; Lehtimäki, L.; Kankaanranta, H.; Karjalainen, J.; Altraja, A.; et al. Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. Eur Clin Respir J. 2022, 9, 2040707. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, M.; Tran, TN.; van den Berge, M.; Brusselle, GG.; Gopalan, G.; Jones, RCM. ; et al. Association between blood eosinophil count and risk of readmission for patients with asthma:Historical cohort study. PLoS One 2018, 13, 0201143. [Google Scholar] [CrossRef]
- Jackson, DJ.; Akuthota, P.; Roufosse, F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur Respir Rev. 2022, 31, 210150. [Google Scholar] [CrossRef]
- Pope, SM.; Brandt, EB.; Mishra, A.; Hogan, SP.; Zimmermann, N.; Matthaei, KI.; et al. IL-13 induces eosinophil recruitment into the lung by an IL-5-and eotaxin-dependent mechanism. J Allergy Clin Immunol. 2001, 108, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Kandikattu, HK.; Upparahalli Venkateshaiah, S.; Mishra, A. Synergy of interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev. 2019, 47, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Piñeros YS S, Bal, SM. ; Dijkhuis, A.; Majoor, CJ.; Dierdorp, BS.; Dekker, T.; et al. Eosinophils capture viruses, a capacity that is defective in asthma. Allergy. 2019, 74, 1898–1909. [Google Scholar] [CrossRef]
- Rosenberg, HF.; Domachowske, JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol. 2001, 70, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Fujieda, S.; Imoto, Y.; Kato, Y.; Ninomiya, T.; Tokunaga, T.; Tsutsumiuchi, T.; et al. Eosinophilic chronic rhinosinusitis. Allergol Int. 2019, 68, 403–412. [Google Scholar] [CrossRef]
- Barroso, MV.; Gropillo, I.; Detoni, MAA. ; Thompson-Souza, GA.; Muniz, VS.; Vasconcelos, CRI.; et al. Structural and signaling events driving Aspergillus fumigatus-induced human eosinophil extracellular trap release. Front Microbiol. 2021, 12, 633696. [Google Scholar] [CrossRef]
- Sasaki, H.; Miyata, J.; Kawana, A.; Fukunaga, K. Antiviral roles of eosinophils in asthma and respiratory viral infection. Front Allergy. 2025, 6, 1548338. [Google Scholar] [CrossRef]
- Dill-McFarland, KA.; Schwartz, JT.; Zhao, H.; Shao, B.; Fulkerson, PC.; Altman, MC.; et al. Eosinophil-mediated suppression and anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. 2022, 150, 666–675. [Google Scholar] [CrossRef]
- Hatchwell, L.; Collison, A.; Girkin, J.; Parsons, K.; Li, J.; Zhang, J.; et al. Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. Thorax 2015, 70, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Veerati, PC.; Troy, NM.; Reid, AT.; Li, NF.; Nichol, KS.; Kaur, P.; et al. Airway Epithelial Cell Immunity Is Delayed During Rhinovirus Infection in Asthma and COPD. Front Immunol. 2020, 15, 974. [Google Scholar] [CrossRef] [PubMed]
- Contoli, M.; Message, SD.; Laza-Stanca, V.; Edwards, MR.; Wark, PA.; Bartlett, NW.; et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006, 12, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Li, NS.; Yeh, YW.; Li, L.; Xiang, Z. Mast cells: key players in host defense against infection. Scand J Immunol. 2025, 102, 70046. [Google Scholar] [CrossRef]
- Portales-Cervantes, L.; Crump, OM.; Dada, S.; Liwski, CR.; Gotovina, J.; Haidl, ID.; et al. IL-4 enhances interferon production by virus-infected human mast cells. J Allergy Clin Immunol. 2020, 146, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Barra, J.; Liwski, CR.; Phonchareon, P.; Portales-Cervantes, L.; Gaston, D.; Karakach, TK.; et al. IL-5 enhances human mast cell survival and interferon responses to viral infection. J Allergy Clin Immunol. 2025, 155, 1968–1980. [Google Scholar] [CrossRef]
- Lam, N.; Lee, Y.; Farber, DL. A guide to adaptive immune memory. Nat Rev Immunol. 2024, 24, 810–829. [Google Scholar] [CrossRef] [PubMed]
- Bousfiha, A.; Moundir, A.; Tangye, SG.; Picard, C.; Jeddane, L.; Al-Herz, W.; et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol. 2022, 42, 1508–1520. [Google Scholar] [CrossRef]
- Gerek, ME.; Colkesen, F.; Onalan, T.; Akkus, FA.; Kilinc, M.; Evcen, R.; et al. Selective immunoglobulin E deficiency and its association with autoimmune and autoinflammatory diseases. Allergy Asthma Proc. 2025, 46, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Agress, A.; Oprea, Y.; Roy, S.; Strauch, C.; Rosenstreich, D.; Ferastraoaru, D. The Association Between Malignancy, Immunodeficiency, and Atopy in IgE-Deficient Patients. J Allergy Clin Immunol Pract. 2024, 12, 185–194. [Google Scholar] [CrossRef]
- Noonan, E.; Straesser, MD.; Makin, T.; Williams, A.; Al-Hazaymeh, A.; Routes, JM.; et al. Impaired Response to Polysaccharide Vaccine in Selective IgE Deficiency. J Clin Immunol. 2023, 43, 1448–1454. [Google Scholar] [CrossRef]
- Picado, C.; Ortiz de Landazuri, I.; Vlagea, A.; Bobolea, I.; Arismendi, E.; Amaro, R.; et al. Spectrum of Disease Manifestations in Patients with Selective Immunoglobulin E Deficiency. J Clin Med. 2021, 10, 4160. [Google Scholar] [CrossRef] [PubMed]
- Schroeder HW Jr, Cavacini, L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 4: (2 Suppl 2).
- Bonilla, FA.; Barlan, I.; Chapel, H.; Costa-Carvalho, BT.; Cunningham-Rundles, C.; de la Morena, MT.; et al. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. J Allergy Clin Immunol Pract. 2016, 4, 38–59. [Google Scholar] [CrossRef]
- Ameratunga, R.; Lehnert, K.; Woon, ST. All patients with common variable immunodeficiency disorders (CVID) should be routinely offered diagnostic genetic testing. Front Immunol. 2019, 10, 2678. [Google Scholar] [CrossRef]
- Moazzami, B.; Mohayeji Nasrabadi, MA.; Abolhassani, H.; Olbrich, P.; Azizi, G.; Shirzadi, R.; et al. Comprehensive assessment of respiratory complications in patients with common variable immunodeficiency. Ann Allergy Asthma Immunol. 2020, 124, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Filion, CA.; Taylor-Black, S.; Maglione, PJ.; Radigan, L.; Cunningham-Rundles, C. Differentiation of Common Variable Immunodeficiency from IgG Deficiency. J Allergy Clin Immunol Pract. 2019, 7, 1277–1284. [Google Scholar] [CrossRef]
- Bjelac, JA.; Blanch, MB.; Fernandez, J. Allergic disease in patients with common variable immunodeficiency at a tertiary care referral center. Ann Allergy Asthma Immunol. 2018, 120, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Agondi, RC.; Barros, MT.; Rizzo, LV.; Kalil, J.; Giavina-Bianchi, P. Allergic asthma in patients with common variable immunodeficiency. Allergy. 2010, 65, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.; Shamriz, O.; Toker, O.; Kadish, E.; Ribak, Y.; Talmon, A.; et al. Allergic-like disorders and asthma in patients with common variable immunodeficiency: a multi-center experience. J Asthma. 2022, 59, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Milota, T.; Bloomfield, M.; Parackova, Z.; Sediva, A.; Bartunkova, J.; Horvath, R. Bronchial Asthma and Bronchial Hyperresponsiveness and Their Characteristics in Patients with Common Variable Immunodeficiency. Int Arch Allergy Immunol. 2019, 178, 192–200. [Google Scholar] [CrossRef]
- Urm, SH.; Yun, HD.; Fenta, YA.; Yoo, KH.; Abraham, RS.; Hagan, J.; et al. Asthma and risk of selective IgA deficiency or common variable immunodeficiency: a population-based case-control study. Mayo Clin Proc. 2013, 88, 813–21. [Google Scholar] [CrossRef] [PubMed]
- Correa-Jimenez, O.; Restrepo-Gualteros, S.; Nino, G.; Cunningham-Rundles, C.; Sullivan, KE.; Fuleihan, RL.; et al. Respiratory Comorbidities Associated with Bronchiectasis in Patients with Common Variable Immunodeficiency in the USIDNET Registry. J Clin Immunol. 2023, 43, 2208–2220. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, C.; Metin, A.; Erkocoglu, M.; Kocabas, CN. Bronchial hyperreactivity in children with antibody deficiencies. Allergol Immunopathol 2015, 43, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Walsh, J.; Casey, D.; Murphy, J.; Plant, BJ.; O’Leary, P.; et al. Recurrent asthma exacerbations: co-existing asthma and common variable immunodeficiency. J Asthma. 2022, 59, 1177–1180. [Google Scholar] [CrossRef]
- Akaba, T.; Kondo, M.; Toriyama, M.; Kubo, A.; Hara, K.; Yamada, T.; et al. Common variable immunodeficiency diagnosed during the treatment of bronchial asthma: Unusual cause of wheezing. Respir Med Case Rep. 2015, 16, 41–44. [Google Scholar] [CrossRef]
- Petrov, AA.; Adatia, A.; Jolles, S.; Nair, P.; Azar, A.; Walter, JE. Antibody Deficiency, Chronic Lung Disease, and Comorbid Conditions: A Case-Based Approach. J Allergy Clin Immunol Pract. 2021, 9, 3899–3908. [Google Scholar] [CrossRef] [PubMed]
- Tiotiu, A.; Salvator, H.; Jaussaud, R.; Jankowski, R.; Couderc, L.-J. , Catherinot, E.; et al. Efficacy of immunoglobulin replacement therapy and azithromycin in severe asthma with antibody deficiency. Allergol Int 2020, 69, 215–222. [Google Scholar] [CrossRef]
- Barton, JC.; Barton, JC.; Bertoli, LF.; Acton, RT. Factors associated with IgG levels in adults with IgG subclass deficiency. BMC Immunol. 2021, 22, 53. [Google Scholar] [CrossRef]
- Ayres, JG.; Thompson, RA. Low IgG subclass levels in brittle asthma and in patients with exacerbations of asthma associated with respiratory infection. Respir Med. 1997, 91, 464–469. [Google Scholar] [CrossRef]
- Visca, D.; Ardesi, F.; Centis, R.; Pignatti, P.; Spanevello, A. Brittle Asthma: Still on Board? Biomedicines. 2023, 11, 3086. [Google Scholar] [CrossRef]
- Abrahamian, F.; Agrawal, S.; Gupta, S. Immunological and clinical profile of adult patients with selective immunoglobulin subclass deficiency: response to intravenous immunoglobulin therapy. Clin Exp Immunol. 2010, 159, 344–350. [Google Scholar] [CrossRef]
- Vivarelli, E.; Perlato, M.; Accinno, M.; Brugnoli, B.; Milanese, ME.; Cataudella, E.; et al. Asthma Phenotype Can Be Influenced by Recurrent Respiratory Infections in Patients with Primary Antibody Deficiency: The Impact of Ig Therapy. Respiration. 2025, 104, 457–465. [Google Scholar] [CrossRef]
- Kim, JH.; Ye, YM.; Ban, GY.; Shin, YS.; Lee, HY.; Nam, YH.; et al. Effects of Immunoglobulin Replacement on Asthma Exacerbation in Adult Asthmatics with IgG Subclass Deficiency. Allergy Asthma Immunol Res. 2017, 9, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, VR.; Alix, VC.; Hellu, TS.; Schuldt, MM. Primary Immunodeficiency: Specific antibody deficiency with normal IgG. Allergy Asthma Proc. 2024, 45, 321–325. [Google Scholar] [CrossRef]
- Perrard, N.; Stabler, S.; Sanges, S.; Terriou, L.; Lamblin, C.; Gaillard, S.; et al. Diagnosis, Characteristics, and Outcome of Selective Anti-polysaccharide Antibody Deficiencies in a Retrospective Cohort of 55 Adult Patients. J Clin Immunol. 2025, 45, 82. [Google Scholar] [CrossRef]
- Bonilla, FA.; Khan, DA.; Ballas, ZK.; Chinen, J.; Frank, MM.; Hsu, JT.; et al. Practice Parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015, 136, 1186–1205. [Google Scholar] [CrossRef]
- Keswani, A.; Dunn, NM.; Manzur, A.; Kashani, S.; Bossuyt, X.; Grammer, LC.; et al. The Clinical Significance of Specific Antibody Deficiency (SAD) Severity in Chronic Rhinosinusitis (CRS). J Allergy Clin Immunol Pract. 2017, 5, 1105–1111. [Google Scholar] [CrossRef]
- Schwartz, HJ.; Hostoffer, RW.; McFadden ER Jr, Berger, M. The response to intravenous immunoglobulin replacement therapy in patients with asthma with specific antibody deficiency. Allergy Asthma Proc. 2006, 27, 53–58. [Google Scholar] [PubMed]
- Weber-Mzell, D.; Kotanko, P.; Hauer, AC.; Goriup,U. , Haas, J.; Lanner, N.; et al. Gender, age and seasonal effects on IgA deficiency: A study of 7293 Caucasians. Eur. J. Clin. Investig. 2004, 34, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Yel, L. Selective IgA deficiency. J. Clin. Immunol. 2010, 30, 10–16. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, ZA.; El-Ghoneimy, DH.; Ortega-Martell, JA.; Radwan, N.; Aldave, JC.; Al-Herz, W.; et al. Allergic manifestations of inborn errors of immunity and their impact on the diagnosis: a world-wide study. World Allergy Organ J. 2022, 15, 100657. [Google Scholar] [CrossRef] [PubMed]
- Cunningham-Rundles, C. Physiology of IgA and IgA Deficiency. J. Clin. Immunol. 2001, 21, 303–330. [Google Scholar] [CrossRef]
- Vosughimotlagh, A.; Rasouli, SE.; Rafiemanesh, H.; Safarirad, M.; Sharifinejad, N.; Madanipour, A.; et al. Clinical manifestation for immunoglobulin A deficiency: a systematic review and meta-analysis. Allergy Asthma Clin Immunol. 2023, 19, 75. [Google Scholar] [CrossRef]
- Pastorino, AC.; Accioly, AP.; Lanzellotti, R.; Camargo, MC.; Jacob, CM.; Grumach, AS. Asthma—clinical and epidemiological aspects of 237 outpatients in a specialized pediatric unit. J Pediatr (Rio J). 1998, 74, 4958. [Google Scholar] [CrossRef] [PubMed]
- Morawska, I.; Kurkowska, S.; B˛ebnowska, D. , Hrynkiewicz, R.; Becht, R.; Michalski, A.; et al. The epidemiology and clinical presenta-tions of atopic diseases in selective IgA deficiency. J Clin Med. 2021, 10, 3809. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, A. Defining Primary Selective IgM Deficiency. J. Clin. Immunol. 2019, 39, 350–352. [Google Scholar] [CrossRef]
- Taietti, I.; Votto, M.; De Filippo, M.; Naso, M.; Montagna, L.; Montagna, D.; et al. Selective IgM Deficiency: Evidence, Controversies, and Gaps. Diagnostics 2023, 13, 2861. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, JT.; Nordby, GL. Human serum immunoglobulin concentrations: Prevalence of immunoglobulin deficiencies. J. Allergy Clin. Immunol. 1975, 55, 35–48. [Google Scholar] [CrossRef]
- Entezari, N.; Adab, Z.; Zeydi, M.; Saghafi, S.; Jamali, M.; Kardar, GA.; et al. The prevalence of Selective Immunoglobulin M Deficiency (SIgMD) in Iranian volunteer blood donors. Hum. Immunol. 2016, 77, 7–11. [Google Scholar] [CrossRef]
- Caka, C.; Cimen, O.; Kahyaoglu, P.; Tezcan, I.; Cagdas, D. Selective IgM deficiency: Follow-up and outcome. Pediatr Allergy Immunol. 2021, 32, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, MF.; Goldstein, AL.; Dunsky, EH.; Dvorin, DJ.; Belecanech, GA.; Shamir, K. Pediatric Selective IgM Immunodeficiency. J. Immunol. Res. 2008, 2008, 624850. [Google Scholar] [CrossRef] [PubMed]
- Lucuab-Fegurgur, DL.; Gupta, S. Comprehensive clinical and immunological features of 62 adult patients with selective primary IgM deficiency. Am J Clin Exp Immunol. 2019, 8, 55–67. [Google Scholar] [PubMed]
- Chovancova, Z.; Kralickova, P.; Pejchalova, A.; Bloomfield, M.; Nechvatalova, J.; Vlkova, M.; et al. Selective IgM Deficiency: Clinical and Laboratory Features of 17 Patients and a Review of the Literature. J Clin Immunol. 2017, 37, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, MF.; Goldstein, AL.; Dunsky, EH.; Dvorin, DJ.; Belecanech, GA.; Shamir, K. Selective IgM immunodeficiency: retrospective analysis of 36 adult patients with review of the literature. Ann Allergy Asthma Immunol. 2006, 97, 717–730. [Google Scholar] [CrossRef]
- Patel, SS.; Fergeson, JE.; Glaum, MC.; Lockey, RF. Symptomatic Primary Selective Immunoglobulin M Deficiency with Nonprotective Pneumococcal Titers Responsive to Subcutaneous Immunoglobulin Treatment. Int. Arch. Allergy Immunol. 2016, 170, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, LC.; Zarrin, AA. The production and regulation of IgE by the immune system. Nat Rev Immunol. 2014, 14, 247–259. [Google Scholar] [CrossRef]
- Vinnes, EW.; Røys, EÅ. ; Renstrøm, R.; Karlsen Sletten, IS.; Chakraborty, S. A systematic review of total IgE reference intervals—A 2024 update. Clin Chim Acta. 2025, 566, 120024. [Google Scholar] [CrossRef]
- Lawrence, MG.; Palacios-kibler T., V. , Workman, LJ.; Alexander, J.; Steinke, JW.; Payne, SC.; et al. Low Serum IgE is a Sensitive and Specific Marker for Common Variable Immunodeficiency (CVID). J Clin Immunol. 2019, 38, 225–233. [Google Scholar] [CrossRef]
- Smith, JK.; Krishnaswamy, GH.; Dykes, R.; Reynolds, S.; Berk, SL. Clinical manifestations of IgE hypogammaglobulinemia. Ann Allergy Asthma Immunol. 1997, 78, 313–318. [Google Scholar] [CrossRef]
- Magen, E.; Schlesinger, M.; David, M.; Ben-Zion, I.; Vardy, D. Selective IgE deficiency, immune dysregulation, and autoimmunity. Allergy Asthma Proc. 2014, 35, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ünsal, H.; Ekinci, A.; Aliyeva, G.; Bildik, HN.; Esenboğa, S.; Çağdaş, D. Characteristics of patients with low serum IgE levels and selective IgE deficiency: Data from an immunodeficiency referral center. Clin Immunol. 2025, 270, 110403. [Google Scholar] [CrossRef]
- Picado, C.; García-Herrera, AP.; Hernández-Rodríguez, J.; Vlagea, A.; Pascal, M.; Bartra, J.; et al. Skin Manifestations in Patients with Selective Immunoglobulin E Deficiency. J Clin Med. 2022, 11, 6795. [Google Scholar] [CrossRef] [PubMed]
- Nemet, S.; Elbirt, D.; Cohen, R.; Mahlab-Guri, K.; Bezalel-Rosenberg, S.; Asher, I.; et al. IgE deficiency (2.5 IU/mL) in children: Clinical insights from a population-based study of 123,393 subjects. Pediatr Allergy Immunol. 2025, 36, 70092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ni, J.; Kong, W.; Liu, J.; Chen, Y. Various clinical manifestations of 223 patients with IgE deficiency in a tertiary hospital in China: A cross-sectional study. Medicine 2024, 103, 38397. [Google Scholar] [CrossRef]
- Ferastraoaru, D.; Goodman, B.; Rosenstreich, D. Higher rates of malignancy in patients with immunoglobulin E deficiency and negative immediate hypersensitivity skin tests. Ann. Allergy Asthma Immunol. 2021, 126, 194–195. [Google Scholar] [CrossRef]
- Ferastraoaru, D.; Schwartz, D.; Rosenstreich, D. Increased Malignancy Rate in Children With IgE Deficiency: A Single-center Experience. J Pediatr Hematol Oncol. 2021, 43, 472–477. [Google Scholar] [CrossRef]
- Uygun, DFK. ; Uygun, V.; Başaran, A.; Kocatepe, G.; Kazlı, T.; Bingöl, A. High malignancy rate in IgE-deficient children. Int J Cancer. 2025, 156, 964–968. [Google Scholar] [CrossRef]
- Noonan, E.; Straesser, MD.; Makin, T.; Williams, A.; Al-Hazaymeh, A.; Routes, JM.; et al. Impaired Response to Polysaccharide Vaccine in Selective IgE Deficiency. J Clin Immunol. 2023, 43, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Beisswenger, C.; Kandler, K.; Hess, C.; Garn, H.; Felgentreff, K.; Wegmann, M.; et al. Allergic airway inflammation inhibits pulmonary antibacterial host defense. J Immunol. 2006, 177, 1833–1837. [Google Scholar] [CrossRef]
- O’Byrne, PM.; Barnes, PJ.; Rodriguez-Roisin, R.; Runnerstrom, E.; Sandstrom, T.; Svensson, K.; et al. Low dose inhaled budesonide and formoterol in mild persistent asthma: the OPTIMA randomized trial. Am J Respir Crit Care Med. 2001, 164(Pt 1), 1392–1397. [Google Scholar] [CrossRef]
- Pauwels, RA.; Löfdahl, CG.; Postma, DS.; Tattersfield, AE.; O’Byrne, P.; Barnes, PJ.; et al. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med. 1997, 337, 1405–1411. [Google Scholar] [CrossRef]
- Edwards, MR.; Haas, J.; Panettieri RA Jr, Johnson, M. ; Johnston, SL. Corticosteroids and beta2 agonists differentially regulate rhinovirus-induced interleukin-6 via distinct Cis-acting elements. J Biol Chem. 2007, 282, 15366–15375. [Google Scholar] [CrossRef] [PubMed]
- Van Ly, D.; King, NJ.; Moir, LM.; Burgess, JK.; Black, JL.; Oliver, BG. Effects of β2 Agonists, Corticosteroids, and Novel Therapies on Rhinovirus-Induced Cytokine Release and Rhinovirus Replication in Primary Airway Fibroblasts. J Allergy 2011, 2011, 457169. [Google Scholar] [CrossRef] [PubMed]
- Kan-O. K., Washio, Y.; Oki, T.; Fujimoto, T.; Ninomiya, T.; Yoshida, M.; et al. Effects of treatment with corticosteroids on human rhinovirus-induced asthma exacerbations in pediatric inpatients: a prospective observational study. BMC Pulm Med. 2023, 23, 487. [Google Scholar]
- Tacon, CE.; Newton, R.; Proud, D.; Leigh, R. Rhinovirus-induced MMP-9 expression is dependent on Fra-1, which is modulated by formoterol and dexamethasone. J Immunol. 2012, 188, 4621–30. [Google Scholar] [CrossRef]
- Skevaki, CL.; Christodoulou, I.; Spyridaki, IS.; Tiniakou, I.; Georgiou, V.; Xepapadaki, P.; et al. Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus. Clin Exp Allergy. 2009, 39, 1700–10. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Caldez, MJ.; Akira, S. Innate immunity in allergy. Allergy 2019, 74, 1660–1674. [Google Scholar] [CrossRef]
- Nasiri Kalmarzi, R.; Fakhimi, R.; Manouchehri, F.; Ataee, P.; Naleini, N.; Babaei, E.; et al. The relationship between B7 homologous 1 with interleukin-4, interleukin-17 and interferon gamma in patients with allergic rhinitis. Expert Rev. Clin. Immunol. 2019, 15, 897–901. [Google Scholar]
- Contoli, M.; Ito, K.; Padovani, A.; Poletti, D.; Marku, B.; Edwards, MR.; et al. Th2 cytokines impair innate immune responses to rhinovirus in respiratory epithelial cells. Allergy. 2015, 70, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Grutters, J.; Brinkman, L.; Aslander, M.; van den Bosch, J.; Koenderman, L.; Lammers, J. Asthma therapy modulates priming-associated blood eosinophil responsiveness in allergic asthmatics. Eur Respir J. 1999, 14, 915–922. [Google Scholar] [CrossRef]
- Berthon, BS.; Gibson, PG.; Wood, LG.; et al. A sputum gene expression signature predicts oral corticosteroid response in asthma. Eur Respir J 2017, 49, 1700180. [Google Scholar] [CrossRef]
- Gibson, PG.; Yang, IA.; Upham, JW.; Reynolds, PN.; Hodge, S.; James, AL.; et al. Efficacy of azithromycin in severe asthma from the AMAZES randomised trial. ERJ Open Res. 1923, 5, 00056–2019. [Google Scholar] [CrossRef]
- Thomas, D.; McDonald, VM.; Stevens, S.; Baraket, M.; Hodge, S.; James, A.; et al. Effect of Azithromycin on Asthma Remission in Adults with Persistent Uncontrolled Asthma: A Secondary Analysis of a Randomized, Double-Anonymized, Placebo-Controlled Trial. Chest. 2024, 166, 262–270. [Google Scholar] [CrossRef]
- Taylor, SL.; Leong, LEX. ; Mobegi, FM.; Choo, JM.; Wesselingh, S.; Yang, IA.; et al. Long-Term Azithromycin Reduces Haemophilus influenzae and Increases Antibiotic Resistance in Severe Asthma. Am J Respir Crit Care Med. 2019, 200, 309–317. [Google Scholar] [CrossRef]
- Lavoie, G.; Howell, I.; Melhorn, J.; Borg, C.; Bermejo-Sanchez, L.; Seymour, J.; et al. Effects of azithromycin in severe eosinophilic asthma with concomitant monoclonal antibody treatment. Thorax. 2025, 80, 113–116. [Google Scholar] [CrossRef]
- Ghanizada, M.; Malm Tillgren, S.; Praeger-Jahnsen, L.; Said, NM.; Ditlev, S.; et al. Effects of in vitro azithromycin treatment on bronchial epithelial antiviral immunity in asthma phenotypes. Front Allergy. 2025, 6, 1605109. [Google Scholar] [CrossRef] [PubMed]
- Gielen, V.; Johnston, SL.; Edwards, MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010, 36, 646–654. [Google Scholar] [CrossRef]
- Niessen, NM.; Gibson, PG.; Baines, KJ.; Barker, D.; Yang, IA.; Upham, JW.; et al. Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment. Allergy. 2021, 76, 2090–2101. [Google Scholar] [CrossRef]
- Lin, SJ.; Lee, WJ.; Liang, YW.; Yan, DC.; Cheng, PJ.; Kuo, ML. Azithromycin inhibits IL-5 production of T helper type 2 cells from asthmatic children. Int Arch Allergy Immunol. 2011, 156, 179–186. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, KM.; Kavati, A.; Ortiz, B.; Alhossan, A.; Lee, CS.; Abraham, I. Short- and long-term real-world effectiveness of omalizumab in severe allergic asthma: systematic review of 42 studies published 2008-2018. Expert Rev Clin Immunol. 2019, 15, 553–569. [Google Scholar] [CrossRef]
- Bousquet, J.; Humbert, M.; Gibson, PG.; Kostikas, K.; Jaumont, X.; Pfister, P.; et al. Real-World Effectiveness of Omalizumab in Severe Allergic Asthma: A Meta-Analysis of Observational Studies. J Allergy Clin Immunol Pract. 2021, 9, 2702–2714. [Google Scholar] [CrossRef] [PubMed]
- van Rensen, EL.; Evertse, CE.; van Schadewijk, WA.; van Wijngaarden, S.; Ayre, G.; Mauad, T.; et al. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment. Allergy. 2009, 64, 72–80. [Google Scholar] [CrossRef]
- Busse, WW.; Morgan, WJ.; Gergen, PJ.; Mitchell, HE.; Gern, JE.; Liu, AH.; et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011, 17, 1005–1015. [Google Scholar]
- Teach, SJ.; Gill, MA.; Togias, A.; Sorkness, CA.; Arbes SJ Jr, Calatroni, A. ; et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015, 136, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Kantor, DB.; McDonald, MC.; Stenquist, N.; Schultz, BJ.; Smallwood, CD.; Nelson, KA.; et al. Omalizumab Is Associated with Reduced Acute Severity of Rhinovirus-triggered Asthma Exacerbation. Am J Respir Crit Care Med. 2016, 194, 1552–1555. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, A.; Busse, WW.; Calatroni, A.; Togias, AG.; Grindle, KG.; Bochkov, YA.; et al. Effects of Omalizumab on Rhinovirus Infections, Illnesses, and Exacerbations of Asthma. Am J Respir Crit Care Med. 2017, 15, 985–992. [Google Scholar]
- Ke, X.; Kavati, A.; Wertz, D.; Huang, Q.; Wang, L.; Willey, VJ.; et al. Real-world Clinical Characteristics, Treatment Patterns, and Exacerbations in US Patients with Asthma Newly Treated With Omalizumab. Clin Ther. 2018, 40, 1140–1158. [Google Scholar] [CrossRef]
- Gill, MA.; Liu, AH.; Calatroni, A.; Krouse, RZ.; Shao, B.; Schiltz, A.; et al. Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab. J Allergy Clin Immunol. 2018, 141, 1735–1743. [Google Scholar] [CrossRef]
- Sheehan, WJ.; Krouse, RZ.; Calatroni, A.; Gergen, PJ.; Gern, JE.; Gill, MA.; et al. Aeroallergen Sensitization, Serum IgE, and Eosinophilia as Predictors of Response to Omalizumab Therapy During the Fall Season Among Children with Persistent Asthma. J Allergy Clin Immunol Pract. 2020, 8, 3021–3028. [Google Scholar] [CrossRef]
- Deeks, ED. Mepolizumab: A Review in Eosinophilic Asthma. BioDrugs 2016, 30, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Deeks, ED.; Brusselle, G. Reslizumab in Eosinophilic Asthma: A Review. Drugs 2017, 77, 777–784. [Google Scholar] [CrossRef]
- Chupp, GL.; Bradford, ES.; Albers, FC.; Bratton, DJ.; Wang-Jairaj, J.; Nelsen, LM.; et al. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med. 2017, 5, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Ortega, HG.; Liu, MC.; Pavord, ID.; Brusselle, GG.; FitzGerald, JM.; Chetta, A.; et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Pavord, ID.; Korn, S.; Howarth, P.; Bleecker, ER.; Buhl, R.; Keene, ON.; et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Pilette, C.; Canonica, GW.; Chaudhuri, R.; Chupp, G.; Lee, FE.; Lee, JK.; et al. REALITI-A Study: Real-World Oral Corticosteroid-Sparing Effect of Mepolizumab in Severe Asthma. J Allergy Clin Immunol Pract. 2022, 10, 2646–2656. [Google Scholar] [CrossRef]
- Castro, M.; Zangrilli, J.; Wechsler, ME.; Bateman, ED.; Brusselle, GG.; Bardin, P.; et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015, 3, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Jackson, DJ.; Bacharier, LB.; Gergen, PJ.; Gagalis, L.; Calatroni, A.; Wellford, S.; et al. Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet 2022, 400, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Dill-McFarland, KA.; Schwartz, JT.; Zhao, H.; Shao, B.; Fulkerson, PC.; Altman, MC.; et al. Eosinophil-mediated suppression and anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. 2022, 150, 666–675. [Google Scholar] [CrossRef]
- Sabogal Piñeros, YS.; Bal, SM.; van de Pol, MA.; Dierdorp, BS.; Dekker, T.; Dijkhuis, A.; et al. Anti-IL-5 in Mild Asthma Alters Rhinovirus-induced Macrophage, B-Cell, and Neutrophil Responses (MATERIAL). A Placebo-controlled,Double-Blind Study. Am J Respir Crit Care Med. 2019, 199, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Domvri, K.; Tsiouprou, I.; Bakakos, P.; Steiropoulos, P.; Katsoulis, K.; Kostikas, K.; et al. Effect of mepolizumab in airway remodeling in patients with late-onset severe asthma with an eosinophilic phenotype. J Allergy Clin Immunol. 2025, 155, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Matera, MG.; Calzetta, L.; Rinaldi, B.; Cazzola, M. Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opin Drug Metab Toxicol. 2017, 13, 1007–1013. [Google Scholar] [CrossRef]
- Bleecker, ER.; FitzGerald, JM.; Chanez, P.; Papi, A.; Weinstein, SF.; Barker, P.; et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2: 388, 2115. [Google Scholar]
- Korn, S.; Bourdin, A.; Chupp, G.; Cosio, BG.; Arbetter, D.; Shah, M.; et al. Integrated Safety and Efficacy Among Patients Receiving Benralizumab for Up to 5 Years. J Allergy Clin Immunol Pract. 2021, 9, 4381–4392. [Google Scholar] [CrossRef]
- DuBuske, L.; Newbold, P.; Wu, Y.; Trudo, F. Seasonal variability of exacerbations of severe, uncontrolled eosinophilic asthma and clinical benefits of benralizumab. Allergy Asthma Proc. 2018, 39, 345–349. [Google Scholar] [CrossRef] [PubMed]
- McCann, MR.; Kosloski, MP.; Xu, C.; Davis, JD.; Kamal, MA. Dupilumab: Mechanism of action, clinical, and translational science. Clin Transl Sci. 2024, 17, 13899. [Google Scholar] [CrossRef]
- Castro, M.; Corren, J.; Pavord, ID.; Maspero, J.; Wenzel, S.; Rabe, KF.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Bachert, C.; Busse, WW.; Gevaert, P.; Lee, SE.; Niederman, MS.; et al. Respiratory Infections and Anti-Infective Medication Use from Phase 3 Dupilumab Respiratory Studies. J Allergy Clin Immunol Pract. 2022, 10, 732–741. [Google Scholar] [CrossRef]
- Peters, AT.; Sagara, H.; Corren, J.; Domingo, C.; Altincatal, A.; Soler, X.; et al. Impact of dupilumab across seasons in patients with type 2, uncontrolled, moderate-to-severe asthma. Ann Allergy Asthma Immunol. 2024, 132, 477–484. [Google Scholar] [CrossRef]
- Boomer, J.; Choi, J.; Alsup, A.; McGregor, MC.; Lieu, J.; Johnson, C.; et al. Increased Muc5AC and Decreased Ciliated Cells in Severe Asthma Partially Restored by Inhibition of IL-4Rα Receptor. Am J Respir Crit Care Med. 2024, 210, 1409–1420. [Google Scholar] [CrossRef]
- Murai, Y.; Koya, T.; Koda, H.; Uji, W.; Tanaka, M.; Endo, M.; et al. Dupilumab efficacy in relation to changes in club cell secretory protein 16. Ann Allergy Asthma Immunol. 2025, 134, 556–562. [Google Scholar] [CrossRef]
- Martinu, T.; Todd, JL.; Gelman, AE.; Guerra, S.; Palmer, SM. Club cell secretory protein (CCSP/SCGB1A1) in lung disease: emerging concepts and potential therapeutics. Annu Rev Med 2023, 74, 427–441. [Google Scholar] [CrossRef]
- Gauvreau, GM.; Sehmi, R.; Ambrose, CS.; Griffiths, JM. Thymic stromal lymphopoietin:its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020, 24, 777–792. [Google Scholar] [CrossRef]
- Lugogo, NL.; Akuthota, P.; Sumino, K.; Mathur, SK.; Burnette, AF.; Lindsley, AW.; et al. Effectiveness and Safety of Tezepelumab in a Diverse Population of US Patients with Severe Asthma: Initial Results of the PASSAGE Study. Adv Ther. 2025, 42, 3334–3353. [Google Scholar] [CrossRef] [PubMed]
- Diver, S.; Khalfaoui, L.; Emson, C.; Wenzel, SE.; Menzies-Gow, A.; Wechsler, ME.; et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled,phase 2 trial. Lancet Respir Med. 2021, 9, 1299–1312. [Google Scholar] [CrossRef]
- Corren, J.; Menzies-Gow, A.; Chupp, G.; Israel, E.; Korn, S.; Cook, B.; et al. Efficacy of Tezepelumab in Severe, Uncontrolled Asthma:Pooled Analysis of the PATHWAY and NAVIGATOR Clinical Trials. Am J Respir Crit Care Med. 2023, 208, 13–24. [Google Scholar] [CrossRef]
- Pavord, ID.; Hoyte, FCL. ; Lindsley, AW.; Ambrose, CS.; Spahn, JD.; Roseti, SL.; et al. Tezepelumab reduces exacerbations across all seasons in patients with severe, uncontrolled asthma (NAVIGATOR). Ann Allergy Asthma Immunol. 2023, 131, 587–597. [Google Scholar] [CrossRef]
- Sverrild, A.; Cerps, S.; Nieto-Fontarigo, JJ.; Ramu, S.; Hvidtfeldt, M.; Menzel, M.; et al. Tezepelumab decreases airway epithelial IL-33 and T2-inflammation in response to viral stimulation in patients with asthma. Allergy 2024, 79, 656–666. [Google Scholar] [CrossRef] [PubMed]
- van Heerden, D.; van Binnendijk, RS.; Tromp, SAM. ; Savelkoul, HFJ.; van Neerven, RJJ.; den Hartog, G. Asthma-Associated Long TSLP Inhibits the Production of IgA. Int J Mol Sci. 2021, 22, 3592. [Google Scholar] [CrossRef] [PubMed]
- Lee, SH.; Ban, GY.; Kim, SC.; Chung, CG.; Lee, HY.; Lee, JH.; et al. Association between primary immunodeficiency and asthma exacerbation in adult asthmatics. Korean J Intern Med 2020, 35, 449–56. [Google Scholar] [CrossRef]
- Lee, SH.; Ban, GY.; Kim, SC.; Chung, CG.; Lee, HY.; Lee, JH.; et al. Association between primary immunodeficiency and asthma exacerbation in adult asthmatics. Korean J. Intern. Med. 2020, 35, 449–456. [Google Scholar] [CrossRef]
- Jarjour, NN.; Erzurum, SC.; Bleecker, ER.; Calhoun, WJ.; Castro, M.; Comhair, SA.; et al. Severe asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma Research Program. Am J Respir Crit Care Med. 2012, 185, 356–362. [Google Scholar] [CrossRef]
- Tanosaki, T.; Kabata, H.; Matsusaka, M.; Miyata, J.; Masaki, K.; Mochimaru, T.; et al. Clinical characteristics of patients with not well-controlled severe asthma in Japan: Analysis of the Keio Severe Asthma Research Program in Japanese population (KEIO-SARP) registry. Allergol Int. 2021, 70, 61–67. [Google Scholar] [CrossRef]
- Pembrey, L.; Barreto, ML.; Douwes, J.; Cooper, P.; Henderson, J.; Mpairwe, H.; et al. Understanding asthma phenotypes: the World Asthma Phenotypes (WASP) international collaboration. ERJ Open Res. 2018, 4, 00013–2018. [Google Scholar] [CrossRef]
- Lee, T.; Kim, J.; Kim, S.; Kim, K.; Park, Y.; Kim, Y.; et al. Risk factors for asthma-related healthcare use: longitudinal analysis using the NHI claims database in a Korean asthma cohort. PLoS One 2014, 9, 112844. [Google Scholar] [CrossRef]
- Simpson, AJ.; Hekking, PP.; Shaw, DE.; Fleming, LJ.; Roberts, G.; Riley, JH.; et al. Treatable traits in the European U-BIOPRED adult asthma cohorts. Allergy 2019, 74, 406–411. [Google Scholar] [CrossRef]
- Fahy, JV.; Jackson, ND.; Sajuthi, SP.; Pruesse, E.; Moore, CM.; Everman, JL.; et al. Type 1 Immune Responses Related to Viral Infection Influence Corticosteroid Response in Asthma. Am J Respir Crit Care Med. 2025, 211, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Moore, WC.; Bleecker, ER.; Curran-Everett, D.; Erzurum, SC.; Ameredes, BT.; Bacharier, L.; et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol. 2007, 119, 405–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
