Submitted:
19 September 2025
Posted:
22 September 2025
You are already at the latest version
Abstract
Keywords:
- Series Note
-
Highlights (Key Points)
- Many established carcinogens also damage mitochondria, driving oxidative stress, inflammation, and insulin resistance.
- Shared mitochondrial mechanisms plausibly link toxins to cancer, ASCVD, T2DM, neurodegeneration, and skin aging.
- Diet patterns (high carbohydrate intake, ultra-processed foods, excess omega-6 seed oils) function as metabolic/toxic stressors.
- Risk mitigation should combine exposure reduction with mitochondrial support within an integrative framework.
Table of Contents
- Introduction
- Chapter 1: The Mitochondrial Connection to Chronic Disease
- Chapter 2: Toxins Categorized by Source
-
2.1 Industrial Chemicals
- 2.1.1 Benzene
- 2.1.2 Formaldehyde
- 2.1.3 Phthalates
-
2.2 Pesticides
- 2.2.1 Glyphosate
- 2.2.2 Atrazine
-
2.3 Heavy Metals
- 2.3.1 Lead
- 2.3.2 Mercury
- 2.3.3 Cadmium
-
2.4 Airborne Pollutants
- 2.4.1 PM2.5 (Particulate Matter)
-
2.5 Food Additives and Contaminants
- 2.5.1 Nitrosamines
- 2.5.2 Aflatoxins
-
2.6 Household Chemicals and Personal Care Products
- 2.6.1 Parabens
- 2.6.2 Triclosan
-
2.7 Radiation and Electronic Emissions
- 2.7.1 Radon
- 2.7.2 Electromagnetic Fields (EMF)
-
2.8 Toxins Used in Cancer Therapy
- 2.8.1 Cisplatin
-
2.9 Dietary Toxins
- 2.9.1 High Carbohydrate Diet
- 2.9.2 Ultra-Processed Foods
- 2.9.3 Omega-6 Rich Seed Oils
- Chapter 3: Shared Mechanisms of Mitochondrial Injury
-
Chapter 4: Systemic Effects on Major Diseases
- 4.1 Cancer
- 4.2 Atherosclerotic Cardiovascular Disease (ASCVD)
- 4.3 Type 2 Diabetes Mellitus (T2DM)
- 4.4 Neurodegeneration and Skin Aging
Introduction
- 1.
-
Industrial Chemicals
-
Benzene, commonly found in plastics, detergents, pesticides, and cigarette smoke, has well-documented toxic effects on overall health. Its mechanisms of toxicity include damaging mitochondrial DNA (mtDNA), disrupting the electron transport chain (ETC), promoting oxidative stress, increasing reactive oxygen species (ROS), causing genetic mutations, and impairing glucose metabolism [1,2,3,4,5]. Long-term overexposure to benzene can lead to a wide range of diseases, including but not limited to:
- ○
- ○
- ○
- ○
- Aging (Skin): Causes dryness, reduced elasticity, early signs of aging like wrinkles and fine lines, disrupts the skin barrier and collagen production, increases susceptibility to environmental damage, and may lead to dermatitis, irritation, and potential skin cancer through oxidative stress [11].
-
Formaldehyde, commonly found in building materials, furniture, and cosmetics, with well-documented toxic effects on overall health. Its mechanisms of toxicity include forming DNA crosslinks, disrupting mitochondrial DNA (mtDNA) replication, and altering glucose homeostasis [1,2,3,4,5,12]. Despite regulations, formaldehyde exposure often exceeds national standards in various environments, particularly in China, the world's largest producer and consumer of formaldehyde [13]. Long-term overexposure to formaldehyde can lead to a wide range of diseases, including but not limited to:
- ○
- ○
- ○
- ○
-
Phthalates: widely used plasticizers in consumer products, commonly found in plastics, food packaging, and cosmetics, have well-documented toxic effects on overall health [1,2,3,4,5,21,22,23]. Their mechanisms of toxicity include mimicking estrogen, interfering with mitochondrial membrane potential, increased oxidative stress and impairing insulin signaling. Long-term overexposure to formaldehyde can lead to a wide range of diseases, including but not limited to:
- ○
- Cancer Risk: Linked to hormone-dependent cancers.
- ○
- ○
- T2DM Risk: Promotes insulin resistance, dyslipidemia, and beta-cell dysfunction [27].
- ○
- Aging (Skin): Disrupts hormones, contributing to acne, premature aging, altered skin elasticity, fine lines, dullness, and reduced hydration.
-
- 2.
-
Pesticides
-
Glyphosate:one of the world’s most commonly used herbicides (e.g., Roundup), has well-documented toxic effects on overall health [1,2,3,4,5]. Its mechanisms include impairing mitochondrial complex II, reducing ATP production, and affecting glucose metabolism. Long-term overexposure to formaldehyde can lead to a wide range of diseases, including but not limited to:
- ○
- ○
- ○
- ○
-
Atrazine:one of the world’s most commonly used herbicides, has well-documented toxic effects on overall health [1,2,3,4,5,38,39]. Its mechanisms include increasing reactive oxygen species (ROS), damaging mitochondrial DNA (mtDNA) leading to mitochondrial dysfunction, and interfering with insulin receptor function, disrupting endocrine system, leading to following diseases.
- ○
- ○
- ○
- ○
- Aging (Skin): Atrazine induces oxidative stress and damage, impairing skin repair mechanisms and leading to chronic inflammation, premature aging, and early wrinkle formation.
-
- 3.
-
Heavy Metals
-
Lead: Sources of lead exposure include paint, contaminated water, and industrial emissions. As a common staple food, rice can be a significant source of lead exposure in some populations due to irrigation with contaminated water. Lead exposure increases risks of cancer, ASCVD, T2DM, and aging (including skin aging) by inducing oxidative stress, DNA damage, vascular inflammation, and disrupting glucose metabolism. Lead exposure accelerates cellular senescence and collagen degradation, disrupts mitochondrial function, shortens telomeres, and degrades collagen, contributing to systemic and skin aging, emphasizing the need to minimize environmental lead exposure and detox for better health and longevity [1,2,3,4,5].
- ○
- Cancer Risk: Linked to kidney and brain cancers.
- ○
- ○
- ○
- Aging (Skin): Reduces skin elasticity, inhibits collagen production, causes discoloration, and may lead to sagging skin, uneven tone, hair loss, and brittle nails [57].
-
Mercury: Mercury exposure primarily comes from contaminated fish and seafood, industrial emissions, gold mining, mercury-containing products (e.g., dental amalgams, cosmetics), and occupational or environmental contamination. Mercury exposure increases risks of cancer, ASCVD, T2DM, and aging (including skin aging) by inducing oxidative stress, chronic inflammation, mitochondrial dysfunction, and DNA damage [1,2,3,4,5]. These mechanisms accelerate cellular senescence, disrupt glucose metabolism, damage vascular and skin integrity, and promote carcinogenesis.
-
Cadmium: Common sources of cadmium exposure include contaminated food (especially rice, leafy vegetables, and shellfish), cigarette smoke, industrial emissions, and occupational exposure in mining, smelting, and battery production. Cadmium exposure increases risks of cancer, ASCVD, T2DM, and aging (including skin aging) by inducing oxidative stress, chronic inflammation, and DNA damage, while disrupting glucose metabolism and endothelial function. It accelerates cellular senescence, impairs collagen synthesis, and promotes carcinogenesis and vascular dysfunction, contributing to systemic and skin aging [1,2,3,4,5].
- ○
- ○
- ○
- ○
-
- 4.
-
Airborne Pollutants
- 5.
-
Food Additives and Contaminants
-
Nitrosamines: Nitrosamines, found in tobacco, and contaminated water, and processed meats, and even common prescription drugs [100,101,102,103,104,105], increase risks of cancer, ASCVD, T2DM, and aging (including skin aging) by impairing mitochondrial complexes, disrupting insulin signaling, and increasing reactive oxygen species (ROS) [1,2,3,4,5].
- ○
- ○
- Heart Disease Risk: Promotes arterial damage [111].
- ○
- ○
-
Aflatoxins: Aflatoxin contamination, a common foodborne toxin from fungi in grains, nuts, and dairy, significantly increases risks of cancer (especially liver cancer), ASCVD, T2DM, and aging (including skin aging) by causing DNA damage, oxidative stress, mitochondrial dysfunction—depolarizing mitochondrial membranes, reducing ATP production, and altering glucose metabolism—inflammation, and disrupted metabolic processes [1,2,3,4,5].
- ○
- Cancer Risk: Strongly associated with liver cancer.
- ○
- Heart Disease Risk: Contributes to vascular inflammation.
- ○
- T2DM Risk: Impairs beta-cell viability and increases insulin resistance.
- ○
- Aging (Skin): Impairs skin repair processes, weakens the skin barrier, disrupts pigmentation, and causes uneven tone and reduced skin integrity.
-
- 6.
-
Household Chemicals and Personal Care Products
-
Parabens: Parabens, widely used preservatives in cosmetics, personal care products and processed foods, increase risks of cancer (especially hormone-related, with parabens detected in 99% of human breast tissue samples [116]), ASCVD, T2DM, autism [117] and aging (including skin aging) by mimicking estrogen [118], disrupting mitochondrial membrane potential, and impairing glucose uptake [1,2,3,4,5]. Parabens has been found in 99% of human breast tissue samples.
- ○
- ○
- Heart Disease Risk: Promotes vascular inflammation [122].
- ○
- ○
-
Triclosan, a common antimicrobial found in personal care products (such as antibacterial soaps and toothpaste) and household items, increases risks of cancer, ASCVD, T2DM, and aging (including skin aging) by disrupting thyroid [131] and other endocrine function [132], impairing mitochondrial activity, promoting oxidative stress, impairing insulin signaling, and altering lipid and glucose metabolism [1,2,3,4,5,133,134,135,136].
- ○
- ○
- Heart Disease Risk: Impairs vascular function, disrupts lipid metabolism, leading to cardiovascular and renal damage [142].
- ○
- ○
-
- 7.
-
Radiation and Electronic Emissions
-
Radon, a radioactive gas from soil and building materials, increases risks of cancer (especially lung cancer), ASCVD, T2DM, and aging (including skin aging) through mechanisms such as DNA damage, oxidative stress, chronic inflammation, and mitochondrial dysfunction [1,2,3,4,5].
- ○
- ○
- ○
-
Electromagnetic Fields (EMF): Electromagnetic fields (EMF) from electronic devices and power lines increase risks of cancer, ASCVD, T2DM, and aging (including skin aging) by inducing oxidative stress, DNA damage, mitochondrial dysfunction, increasing ROS, impairing insulin receptor signaling, promoting inflammation, and disrupting cellular signaling and metabolic processes [1,2,3,4,5].
- ○
- ○
- ○
- ○
-
- 8.
-
Toxins Used in Cancer Therapy
-
Cisplatin, primarily from chemotherapy or environmental contamination, increases risks of secondary cancers, ASCVD, T2DM, and accelerated aging, including skin aging. Its mechanisms include oxidative stress, DNA damage, mitochondrial dysfunction, and chronic inflammation, which disrupt cellular repair, impair endothelial function, promote insulin resistance, and degrade skin collagen and elastin. Additionally, cisplatin depletes antioxidants and damages stem cell populations, exacerbating systemic and skin aging processes [1,2,3,4,5,167,168].
- ○
- ○
- ○
- ○
-
- 9.
-
Dietary Toxins
-
High Carbohydrate Diet: In addition to the above traditionally recognized toxins, dietary high carbohydrate intake has been receiving increasing attention as to their link to increased risks of chronic diseases, including cancer, cardiovascular diseases, diabetes and accelerated aging, through several mechanisms including hyperglycemia, advanced glycation end products (AGEs) formation, insulin resistance, increased inflammation, leaky gut and mitochondrial dysfunction. High carb diet increases risks for many diseases including but not limited to:
- ○
- ○
- ○
- ○
- High Ultra-Processed Foods Intake: increase risks of cancer, ASCVD, T2DM, and aging by promoting chronic inflammation, oxidative stress, hormonal imbalances, and gut dysbiosis while lacking essential nutrients. Cancer Risk: Increases risk for various cancers [201,202,203,204].Heart Disease Risk: Increases cardiovascular disease risk [205,206,207,208,209,210,211].T2DM Risk: Increases type 2 diabetes mellitus risk [212,213,214,215,216]. Aging: Accelerates biological aging, shortens telomere, and increased overall mortality [217,218,219,220], as well as accelerated skin aging [221].
-
High Intake of Omega-6 Rich Seed Oils in the Diet: Emerging research suggests high dietary intake of omega-6-rich seed oils (e.g., soybean, sunflower, and corn oils) may increase risks of cancer, ASCVD, T2DM, and aging by promoting chronic inflammation, oxidative stress, and an imbalance in the omega-6 to omega-3 ratio. These oils generate pro-inflammatory eicosanoids, exacerbate insulin resistance, and increase lipid peroxidation, leading to cellular damage and accelerated aging. Reducing omega-6 intake and restoring omega-3 balance is critical for lowering these risks and improving health.
-
-
Key Takeaways
- T2DM Risk: Many of these toxins disrupt insulin sensitivity, glucose metabolism, and pancreatic beta-cell function through oxidative stress and mitochondrial dysfunction.
- Interconnected Risks: The overlap between cancer, heart disease, and T2DM highlights the critical role
Discussion
- Cancer: Toxins such as benzene, formaldehyde, and heavy metals are well-documented carcinogens. They induce DNA damage, disrupt repair mechanisms, and increase oxidative stress, creating an environment conducive to cancer development. However, their mitochondrial effects amplify this risk by impairing cellular energy homeostasis and promoting chronic inflammation—a hallmark of cancer progression.
- Heart Disease: Many toxins, including particulate matter, pesticides, and heavy metals, damage vascular endothelial cells and increase arterial stiffness through oxidative stress and mitochondrial dysfunction. By disrupting mitochondrial signaling, these substances impair the heart's energy supply and contribute to hypertension, atherosclerosis, and myocardial dysfunction.
- Type 2 Diabetes Mellitus: The link between toxins and T2DM is increasingly evident, with substances such as phthalates, cadmium, and glyphosate implicated in insulin resistance and beta-cell dysfunction. Toxins disrupt mitochondrial function in insulin-sensitive tissues, leading to impaired glucose uptake and systemic metabolic imbalances.
Conclusion
References
- Whysner, D.J. The Alchemy of Disease: How Chemicals and Toxins Cause Cancer and Other Illnesses; 1st edition.; Columbia University Press: New York, New York Chichester, 2020; ISBN 978-0-231-18112-9.
- Environmental Oncology: Theory and Impact; Bernicker, E.H., Ed.; Springer International Publishing: Cham, 2023; ISBN 978-3-031-33749-9.
- TOX-SICK: From Toxic to Not Sick: Somers, Suzanne: 9780385347747: Amazon.com: Books Available online: https://www.amazon.com/TOX-SICK-Toxic-Sick-Suzanne-Somers/dp/038534774X?utm_source=chatgpt.com (accessed on Nov 22, 2024).
- Snook, A.E. Toxins and Cancer Therapy; MDPI, 2021; ISBN 978-3-0365-0190-1.
- Marusic, K.; Landrigan, P.J. A New War on Cancer: The Unlikely Heroes Revolutionizing Prevention; Island Press: Washington, DC, 2023; ISBN 978-1-64283-219-8.
- Smith, M.T. Advances in understanding benzene health effects and susceptibility. Annu Rev Public Health 2010, 31. [CrossRef]
- Kalf, G.F. Recent advances in the metabolism and toxicity of benzene. Crit Rev Toxicol 1987, 18, 141–159. [CrossRef]
- Bahadar, H.; Mostafalou, S.; Abdollahi, M. Current understandings and perspectives on non-cancer health effects of benzene: a global concern. Toxicol Appl Pharmacol 2014, 276, 83–94. [CrossRef]
- Abplanalp, W.; DeJarnett, N.; Riggs, D.W.; Conklin, D.J.; McCracken, J.P.; Srivastava, S.; Xie, Z.; Rai, S.; Bhatnagar, A.; O’Toole, T.E. Benzene exposure is associated with cardiovascular disease risk. PLoS One 2017, 12, e0183602. [CrossRef]
- Abplanalp, W.T.; Wickramasinghe, N.S.; Sithu, S.D.; Conklin, D.J.; Xie, Z.; Bhatnagar, A.; Srivastava, S.; O’Toole, T.E. Benzene Exposure Induces Insulin Resistance in Mice. Toxicol Sci 2019, 167, 426–437. [CrossRef]
- Gist, G.L.; Burg, J.R. Benzene--a review of the literature from a health effects perspective. Toxicol Ind Health 1997, 13, 661–714. [CrossRef]
- Tesfaye, S. Full article: Occupational formaldehyde exposure linked to increased systemic health impairments and counteracting beneficial effects of selected antioxidants Available online: https://www.tandfonline.com/doi/full/10.1080/20905068.2021.1926172 (accessed on Nov 23, 2024).
- Tang, X.; Bai, Y.; Duong, A.; Smith, M.T.; Li, L.; Zhang, L. Formaldehyde in China: production, consumption, exposure levels, and health effects. Environ Int 2009, 35, 1210–1224. [CrossRef]
- Utuh, I.A.; Ugwoha, E. Effects of Formaldehyde Exposure on Human Body-A Review Article. Asian Journal of Medicine and Health 2021, 131–142. [CrossRef]
- Solomons, K.; Cochrane, J.W. Formaldehyde toxicity. Part II. Review of acute and chronic effects on health. S Afr Med J 1984, 66, 103–106.
- Protano, C. [PDF] The Carcinogenic Effects of Formaldehyde Occupational Exposure: A Systematic Review | Semantic Scholar Available online: https://www.semanticscholar.org/reader/d198a58fb98504d5b445dafde9ca4003a9787301 (accessed on Nov 23, 2024).
- Zhang, Y.; Yang, Y.; He, X.; Yang, P.; Zong, T.; Sun, P.; Sun, R.; Yu, T.; Jiang, Z. The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development. Journal of Cellular and Molecular Medicine 2021, 25, 5358. [CrossRef]
- Tan, T.; Zhang, Y.; Luo, W.; Lv, J.; Han, C.; Hamlin, J.N.R.; Luo, H.; Li, H.; Wan, Y.; Yang, X.; et al. Formaldehyde induces diabetes-associated cognitive impairments. FASEB J 2018, 32, 3669–3679. [CrossRef]
- Saito, A.; Tanaka, H.; Usuda, H.; Shibata, T.; Higashi, S.; Yamashita, H.; Inagaki, N.; Nagai, H. Characterization of skin inflammation induced by repeated exposure of toluene, xylene, and formaldehyde in mice. Environ Toxicol 2011, 26, 224–232. [CrossRef]
- Latorre, N.; Silvestre, J.F.; Monteagudo, A.F. [Allergic contact dermatitis caused by formaldehyde and formaldehyde releasers]. Actas Dermosifiliogr 2011, 102, 86–97. [CrossRef]
- Brassea-Pérez, E.; Hernández-Camacho, C.J.; Labrada-Martagón, V.; Vázquez-Medina, J.P.; Gaxiola-Robles, R.; Zenteno-Savín, T. Oxidative stress induced by phthalates in mammals: State of the art and potential biomarkers. Environ Res 2022, 206, 112636. [CrossRef]
- Chang, W.-H.; Herianto, S.; Lee, C.-C.; Hung, H.; Chen, H.-L. The effects of phthalate ester exposure on human health: A review. Sci Total Environ 2021, 786, 147371. [CrossRef]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J Hazard Mater 2017, 340, 360–383. [CrossRef]
- Mariana, M.; Cairrao, E. Phthalates Implications in the Cardiovascular System. J Cardiovasc Dev Dis 2020, 7, 26. [CrossRef]
- Mariana, M.; Castelo-Branco, M.; Soares, A.M.; Cairrao, E. Phthalates’ exposure leads to an increasing concern on cardiovascular health. J Hazard Mater 2023, 457, 131680. [CrossRef]
- Lucas, A.; Herrmann, S.; Lucas, M. The role of endocrine-disrupting phthalates and bisphenols in cardiometabolic disease: the evidence is mounting. Curr Opin Endocrinol Diabetes Obes 2022, 29, 87–94. [CrossRef]
- Mariana, M.; Cairrao, E. The Relationship between Phthalates and Diabetes: A Review. Metabolites 2023, 13, 746. [CrossRef]
- Samsel, A.; Seneff, S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip Toxicol 2013, 6, 159–184. [CrossRef]
- Begum, J. Health Risks of Glyphosate Herbicide Available online: https://www.webmd.com/cancer/herbicide-glyphosate-cancer (accessed on Nov 23, 2024).
- Roy, N.M.; Ochs, J.; Zambrzycka, E.; Anderson, A. Glyphosate induces cardiovascular toxicity in Danio rerio. Environ Toxicol Pharmacol 2016, 46, 292–300. [CrossRef]
- Lu, J.; Wang, W.; Zhang, C.; Xu, W.; Chen, W.; Tao, L.; Li, Z.; Cheng, J.; Zhang, Y. Characterization of glyphosate-induced cardiovascular toxicity and apoptosis in zebrafish. Sci Total Environ 2022, 851, 158308. [CrossRef]
- Prasad, M.; Gatasheh, M.K.; Alshuniaber, M.A.; Krishnamoorthy, R.; Rajagopal, P.; Krishnamoorthy, K.; Periyasamy, V.; Veeraraghavan, V.P.; Jayaraman, S. Impact of Glyphosate on the Development of Insulin Resistance in Experimental Diabetic Rats: Role of NFκB Signalling Pathways. Antioxidants (Basel) 2022, 11, 2436. [CrossRef]
- Tang, P.; Wang, Y.; Liao, Q.; Zhou, Y.; Huang, H.; Liang, J.; Zeng, X.; Qiu, X. Relationship of urinary glyphosate concentrations with glycosylated hemoglobin and diabetes in US adults: a cross-sectional study. BMC Public Health 2024, 24, 1644. [CrossRef]
- Beyond Pesticides Pesticide-Induced Diseases: Diabetes Available online: https://www.beyondpesticides.org/resources/pesticide-induced-diseases-database/diabetes (accessed on Nov 23, 2024).
- George, J.; Prasad, S.; Mahmood, Z.; Shukla, Y. Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach. J Proteomics 2010, 73, 951–964. [CrossRef]
- Pintas, M. Roundup Skin Absorption? Available online: https://www.pintas.com/lawsuit/roundup-weed-killer/can-roundup-be-absorbed-through-skin/ (accessed on Nov 23, 2024).
- Amerio, P.; Motta, A.; Toto, P.; Pour, S.M.; Pajand, R.; Feliciani, C.; Tulli, A. Skin toxicity from glyphosate-surfactant formulation. J Toxicol Clin Toxicol 2004, 42, 317–319. [CrossRef]
- Pathak, R.K.; Dikshit, A.K. Atrazine and Human Health. IJE 2012, 1, 14–23. [CrossRef]
- Zimmerman, A.D.; Mackay, L.; Kemppainen, R.J.; Jones, M.A.; Read, C.C.; Schwartz, D.; Foradori, C.D. The Herbicide Atrazine Potentiates Angiotensin II-Induced Aldosterone Synthesis and Release From Adrenal Cells. Front Endocrinol (Lausanne) 2021, 12, 697505. [CrossRef]
- Remigio, R.V.; Andreotti, G.; Sandler, D.P.; Erickson, P.A.; Koutros, S.; Albert, P.S.; Hurwitz, L.M.; Parks, C.G.; Lubin, J.H.; Hofmann, J.N.; et al. An Updated Evaluation of Atrazine-Cancer Incidence Associations among Pesticide Applicators in the Agricultural Health Study Cohort. Environ Health Perspect 2024, 132, 27010. [CrossRef]
- Rusiecki, J.A.; De Roos, A.; Lee, W.J.; Dosemeci, M.; Lubin, J.H.; Hoppin, J.A.; Blair, A.; Alavanja, M.C.R. Cancer incidence among pesticide applicators exposed to atrazine in the Agricultural Health Study. J Natl Cancer Inst 2004, 96, 1375–1382. [CrossRef]
- Lin, J.; Li, H.-X.; Xia, J.; Li, X.-N.; Jiang, X.-Q.; Zhu, S.-Y.; Ge, J.; Li, J.-L. The chemopreventive potential of lycopene against atrazine-induced cardiotoxicity: modulation of ionic homeostasis. Sci Rep 2016, 6, 24855. [CrossRef]
- Olayinka, E.T. Evaluation of the toxicological effects of atrazine-metolachlor in male rats: in vivo and in silico studies Available online: https://eaht.org/journal/view.php?doi=10.5620/eaht.2022021 (accessed on Nov 25, 2024).
- Gammon, D.W.; Aldous, C.N.; Carr, W.C.; Sanborn, J.R.; Pfeifer, K.F. A risk assessment of atrazine use in California: human health and ecological aspects. Pest Manag Sci 2005, 61, 331–355. [CrossRef]
- Montgomery, M.P.; Kamel, F.; Saldana, T.M.; Alavanja, M.C.R.; Sandler, D.P. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993-2003. Am J Epidemiol 2008, 167, 1235–1246. [CrossRef]
- Evangelou, E.; Ntritsos, G.; Chondrogiorgi, M.; Kavvoura, F.K.; Hernández, A.F.; Ntzani, E.E.; Tzoulaki, I. Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environ Int 2016, 91, 60–68. [CrossRef]
- Choi, S.; Kwon, J.; Kwon, P.; Lee, C.; Jang, S.-I. Association between Blood Heavy Metal Levels and Predicted 10-Year Risk for A First Atherosclerosis Cardiovascular Disease in the General Korean Population. International Journal of Environmental Research and Public Health 2020, 17, 2134. [CrossRef]
- Cook, M.K.; Zhang, J.; Wei, Y. Blood Lead Levels and Risk of Deaths from Cardiovascular Disease. Am J Cardiol 2022, 173, 132–138. [CrossRef]
- Prokopowicz, A.; Sobczak, A.; Szuła-Chraplewska, M.; Zaciera, M.; Kurek, J.; Szołtysek-Bołdys, I. Effect of occupational exposure to lead on new risk factors for cardiovascular diseases. Occup Environ Med 2017, 74, 366–373. [CrossRef]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 2018, 362, k3310. [CrossRef]
- Lamas, G.A.; Bhatnagar, A.; Jones, M.R.; Mann, K.K.; Nasir, K.; Tellez-Plaza, M.; Ujueta, F.; Navas-Acien, A.; American Heart Association Council on Epidemiology and Prevention; Council on Cardiovascular and Stroke Nursing; Council on Lifestyle and Cardiometabolic Health; Council on Peripheral Vascular Disease; and Council on the Kidney in Cardiovascular Disease Contaminant Metals as Cardiovascular Risk Factors: A Scientific Statement From the American Heart Association. J Am Heart Assoc 2023, 12, e029852. [CrossRef]
- Leff, T.; Stemmer, P.; Tyrrell, J.; Jog, R. Diabetes and Exposure to Environmental Lead (Pb). Toxics 2018, 6, 54. [CrossRef]
- Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Kuraeiad, S.; Wongrith, P.; Vesey, D.A.; Gobe, G.C.; Satarug, S. Effects of Environmental Exposure to Cadmium and Lead on the Risks of Diabetes and Kidney Dysfunction. International Journal of Environmental Research and Public Health 2022, 19, 2259. [CrossRef]
- Wang, B.; Chen, C.; Zhang, W.; Chen, Y.; Xia, F.; Wang, N.; Lu, Y. Exposure to lead and cadmium is associated with fasting plasma glucose and type 2 diabetes in Chinese adults. Diabetes Metab Res Rev 2022, 38, e3578. [CrossRef]
- Little, B.B.; Reilly, R.; Walsh, B.; Vu, G.T. Cadmium Is Associated with Type 2 Diabetes in a Superfund Site Lead Smelter Community in Dallas, Texas. International Journal of Environmental Research and Public Health 2020, 17, 4558. [CrossRef]
- Tyrrell, J.B.; Hafida, S.; Stemmer, P.; Adhami, A.; Leff, T. Lead (Pb) exposure promotes diabetes in obese rodents. J Trace Elem Med Biol 2017, 39, 221–226. [CrossRef]
- Fletcher, J.; Noghanibehambari, H. Toxified to the Bone: Early-Life and Childhood Exposure to Lead and Men’s Old-Age Mortality 2023. [CrossRef]
- J, R.; T, V.; A, Q.; E, C.; R, R. Association of blood mercury levels with non-melanoma skin cancer in the United States using NHANES data from 2003-2016. Environmental Epidemiology 2019, 3, 341. [CrossRef]
- Virtanen, J.K.; Voutilainen, S.; Rissanen, T.H.; Mursu, J.; Tuomainen, T.-P.; Korhonen, M.J.; Valkonen, V.-P.; Seppänen, K.; Laukkanen, J.A.; Salonen, J.T. Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 2005, 25, 228–233. [CrossRef]
- Hu, X.F.; Lowe, M.; Chan, H.M. Mercury exposure, cardiovascular disease, and mortality: A systematic review and dose-response meta-analysis. Environ Res 2021, 193, 110538. [CrossRef]
- Tsai, T.-L.; Kuo, C.-C.; Pan, W.-H.; Wu, T.-N.; Lin, P.; Wang, S.-L. Type 2 diabetes occurrence and mercury exposure - From the National Nutrition and Health Survey in Taiwan. Environ Int 2019, 126, 260–267. [CrossRef]
- He, K. Mercury Exposure in Young Adulthood and Incidence of Diabetes Later in Life | Diabetes Care | American Diabetes Association Available online: https://diabetesjournals.org/care/article/36/6/1584/33259/Mercury-Exposure-in-Young-Adulthood-and-Incidence (accessed on Nov 25, 2024).
- Roy, C.; Tremblay, P.-Y.; Ayotte, P. Is mercury exposure causing diabetes, metabolic syndrome and insulin resistance? A systematic review of the literature. Environ Res 2017, 156, 747–760. [CrossRef]
- Pamphlett, R. The prevalence of inorganic mercury in human cells increases during aging but decreases in the very old. Sci Rep 2021, 11, 16714. [CrossRef]
- McElroy, J.A.; Shafer, M.M.; Trentham-Dietz, A.; Hampton, J.M.; Newcomb, P.A. Cadmium exposure and breast cancer risk. J Natl Cancer Inst 2006, 98, 869–873. [CrossRef]
- Lin, Y.-S.; Caffrey, J.L.; Lin, J.-W.; Bayliss, D.; Faramawi, M.F.; Bateson, T.F.; Sonawane, B. Increased risk of cancer mortality associated with cadmium exposures in older Americans with low zinc intake. J Toxicol Environ Health A 2013, 76, 1–15. [CrossRef]
- Kazantzis, G.; Lam, T.H. Cancer mortality of cadmium workers. Br J Ind Med 1986, 43, 430–431. [CrossRef]
- Verougstraete, V.; Lison, D.; Hotz, P. Cadmium, Lung and Prostate Cancer: A Systematic Review of Recent Epidemiological Data. Journal of Toxicology and Environmental Health, Part B 2003, 6, 227–256. [CrossRef]
- Florez-Garcia, V.A.; Guevara-Romero, E.C.; Hawkins, M.M.; Bautista, L.E.; Jenson, T.E.; Yu, J.; Kalkbrenner, A.E. Cadmium exposure and risk of breast cancer: A meta-analysis. Environ Res 2023, 219, 115109. [CrossRef]
- Adams, S.V.; Passarelli, M.N.; Newcomb, P.A. Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occup Environ Med 2012, 69, 153–156. [CrossRef]
- Larsson, S.C.; Orsini, N.; Wolk, A. Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis. Am J Epidemiol 2015, 182, 375–380. [CrossRef]
- Verzelloni, P.; Urbano, T.; Wise, L.A.; Vinceti, M.; Filippini, T. Cadmium exposure and cardiovascular disease risk: A systematic review and dose-response meta-analysis. Environ Pollut 2024, 345, 123462. [CrossRef]
- Ma, S.; Zhang, J.; Xu, C.; Da, M.; Xu, Y.; Chen, Y.; Mo, X. Increased serum levels of cadmium are associated with an elevated risk of cardiovascular disease in adults. Environ Sci Pollut Res Int 2022, 29, 1836–1844. [CrossRef]
- Tellez-Plaza, M.; Guallar, E.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Silbergeld, E.K.; Devereux, R.B.; Navas-Acien, A. Cadmium exposure and incident cardiovascular disease. Epidemiology 2013, 24, 421–429. [CrossRef]
- Lee, M.-S.; Park, S.K.; Hu, H.; Lee, S. Cadmium exposure and cardiovascular disease in the 2005 Korea National Health and Nutrition Examination Survey. Environ Res 2011, 111, 171–176. [CrossRef]
- Hecht, E.M.; Landy, D.C.; Ahn, S.; Hlaing, W.M.; Hennekens, C.H. Hypothesis: cadmium explains, in part, why smoking increases the risk of cardiovascular disease. J Cardiovasc Pharmacol Ther 2013, 18, 550–554. [CrossRef]
- Li, H.; Fagerberg, B.; Sallsten, G.; Borné, Y.; Hedblad, B.; Engström, G.; Barregard, L.; Andersson, E.M. Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmö Diet and Cancer Cohort Study. Environ Health 2019, 18, 56. [CrossRef]
- Shi, P.; Yan, H.; Fan, X.; Xi, S. A benchmark dose analysis for urinary cadmium and type 2 diabetes mellitus. Environ Pollut 2021, 273, 116519. [CrossRef]
- Filippini, T.; Wise, L.A.; Vinceti, M. Cadmium exposure and risk of diabetes and prediabetes: A systematic review and dose-response meta-analysis. Environ Int 2022, 158, 106920. [CrossRef]
- Son, Y.-O.; Lee, J.-C.; Hitron, J.A.; Pan, J.; Zhang, Z.; Shi, X. Cadmium induces intracellular Ca2+- and H2O2-dependent apoptosis through JNK- and p53-mediated pathways in skin epidermal cell line. Toxicol Sci 2010, 113, 127–137. [CrossRef]
- Zhang, Y.; Liu, M.; Xie, R. Associations between cadmium exposure and whole-body aging: mediation analysis in the NHANES. BMC Public Health 2023, 23, 1675. [CrossRef]
- Ghazipura, M.; Garshick, E.; Cromar, K. Ambient PM2.5 exposure and risk of lung cancer incidence in North America and Europe*. Environ. Res. Commun. 2019, 1, 015004. [CrossRef]
- Wong, C.M.; Tsang, H.; Lai, H.K.; Thomas, G.N.; Lam, K.B.; Chan, K.P.; Zheng, Q.; Ayres, J.G.; Lee, S.Y.; Lam, T.H.; et al. Cancer Mortality Risks from Long-term Exposure to Ambient Fine Particle. Cancer Epidemiol Biomarkers Prev 2016, 25, 839–845. [CrossRef]
- Gupta, A.; Singh, A.; Tarimci, B.; Sindhu, A.K.; Bathvar, P.; Bedi, S.; Theik, N.W.Y.; Shah, V.; Malhotra, S.; Khealani, M.; et al. PM 2.5 and risk of lung cancer and associated mortality: An umbrella meta-analysis. JCO 2024, 42, e20012–e20012. [CrossRef]
- Mokbel, K. Breath of Danger: Unveiling PM2.5’s Stealthy Impact on Cancer Risks. Anticancer Res 2024, 44, 1365–1368. [CrossRef]
- Li, J.; Tang, W.; Li, S.; He, C.; Dai, Y.; Feng, S.; Zeng, C.; Yang, T.; Meng, Q.; Meng, J.; et al. Ambient PM2.5 and its components associated with 10-year atherosclerotic cardiovascular disease risk in Chinese adults. Ecotoxicol Environ Saf 2023, 263, 115371. [CrossRef]
- Wang, S.; Zhao, G.; Zhang, C.; Kang, N.; Liao, W.; Wang, C.; Xie, F. Association of Fine Particulate Matter Constituents with the Predicted 10-Year Atherosclerotic Cardiovascular Disease Risk: Evidence from a Large-Scale Cross-Sectional Study. Toxics 2023, 11, 812. [CrossRef]
- Ma, T.; Knobel, P.; Hadley, M.; Colicino, E.; Amini, H.; Federman, A.; Schwartz, J.; Steenland, K.; Sade, M.Y. PM2.5 components mixture and atherosclerotic cardiovascular disease mortality: a national analysis of Medicare enrollees 2024, 2024.03.23.24304739. [CrossRef]
- Yuan, C.; Liu, F.; Huang, K.; Shen, C.; Li, J.; Liang, F.; Yang, X.; Cao, J.; Chen, S.; Hu, D.; et al. Association of Long-Term Exposure to Ambient Fine Particulate Matter with Atherosclerotic Cardiovascular Disease Incidence Varies across Populations with Different Predicted Risks: The China-PAR Project. Environ Sci Technol 2023, 57, 9934–9942. [CrossRef]
- Yuan, C.; Liu, F.; Huang, K.; Shen, C.; Li, J.; Liang, F.; Yang, X.; Cao, J.; Chen, S.; Hu, D.; et al. Association of Long-Term Exposure to Ambient Fine Particulate Matter with Atherosclerotic Cardiovascular Disease Incidence Varies across Populations with Different Predicted Risks: The China-PAR Project. Environ Sci Technol 2023, 57, 9934–9942. [CrossRef]
- Liu, C.; Yang, C.; Zhao, Y.; Ma, Z.; Bi, J.; Liu, Y.; Meng, X.; Wang, Y.; Cai, J.; Chen, R.; et al. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. Environ Int 2016, 92–93, 416–421. [CrossRef]
- Qiu, H.; Schooling, C.M.; Sun, S.; Tsang, H.; Yang, Y.; Lee, R.S.-Y.; Wong, C.-M.; Tian, L. Long-term exposure to fine particulate matter air pollution and type 2 diabetes mellitus in elderly: A cohort study in Hong Kong. Environ Int 2018, 113, 350–356. [CrossRef]
- Li, C.-Y.; Wu, C.-D.; Pan, W.-C.; Chen, Y.-C.; Su, H.-J. Association Between Long-term Exposure to PM2.5 and Incidence of Type 2 Diabetes in Taiwan: A National Retrospective Cohort Study. Epidemiology 2019, 30 Suppl 1, S67–S75. [CrossRef]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D.; van Donkelaar, A.; Jerrett, M.; Martin, R.V.; Brook, J.R.; et al. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ Health Perspect 2013, 121, 804–810. [CrossRef]
- Chilian-Herrera, O.L.; Tamayo-Ortiz, M.; Texcalac-Sangrador, J.L.; Rothenberg, S.J.; López-Ridaura, R.; Romero-Martínez, M.; Wright, R.O.; Just, A.C.; Kloog, I.; Bautista-Arredondo, L.F.; et al. PM2.5 exposure as a risk factor for type 2 diabetes mellitus in the Mexico City metropolitan area. BMC Public Health 2021, 21, 2087. [CrossRef]
- Kim, K.E.; Cho, D.; Park, H.J. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci 2016, 152, 126–134. [CrossRef]
- Vierkötter, A.; Schikowski, T.; Ranft, U.; Sugiri, D.; Matsui, M.; Krämer, U.; Krutmann, J. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol 2010, 130, 2719–2726. [CrossRef]
- Ding, A.; Yang, Y.; Zhao, Z.; Hüls, A.; Vierkötter, A.; Yuan, Z.; Cai, J.; Zhang, J.; Gao, W.; Li, J.; et al. Indoor PM2.5 exposure affects skin aging manifestation in a Chinese population. Sci Rep 2017, 7, 15329. [CrossRef]
- Ryu, Y.S.; Kang, K.A.; Piao, M.J.; Ahn, M.J.; Yi, J.M.; Bossis, G.; Hyun, Y.-M.; Park, C.O.; Hyun, J.W. Particulate matter-induced senescence of skin keratinocytes involves oxidative stress-dependent epigenetic modifications. Exp Mol Med 2019, 51, 1–14. [CrossRef]
- Li, K.; Ricker, K.; Tsai, F.C.; Hsieh, C.J.; Osborne, G.; Sun, M.; Marder, M.E.; Elmore, S.; Schmitz, R.; Sandy, M.S. Estimated Cancer Risks Associated with Nitrosamine Contamination in Commonly Used Medications. Int J Environ Res Public Health 2021, 18, 9465. [CrossRef]
- Horne, S.; Vera, M.D.; Nagavelli, L.R.; Sayeed, V.A.; Heckman, L.; Johnson, D.; Berger, D.; Yip, Y.Y.; Krahn, C.L.; Sizukusa, L.O.; et al. Regulatory Experiences with Root Causes and Risk Factors for Nitrosamine Impurities in Pharmaceuticals. J Pharm Sci 2023, 112, 1166–1182. [CrossRef]
- Charoo, N.A.; Dharani, S.; Khan, M.A.; Rahman, Z. Nitroso Impurities in Drug Products: An Overview of Risk Assessment, Regulatory Milieu, and Control Strategy. AAPS PharmSciTech 2023, 24, 60. [CrossRef]
- Schlingemann, J.; Burns, M.J.; Ponting, D.J.; Martins Avila, C.; Romero, N.E.; Jaywant, M.A.; Smith, G.F.; Ashworth, I.W.; Simon, S.; Saal, C.; et al. The Landscape of Potential Small and Drug Substance Related Nitrosamines in Pharmaceuticals. J Pharm Sci 2023, 112, 1287–1304. [CrossRef]
- Doshi, C. Nitrosodimethylamine Impurities in Metformin Drug Products Physician Insight. Journal of Diabetology 2021, 12, 120–127, doi:DOI: 10.4103/jod.jod_60_20.
- Ponting, D.J.; Dobo, K.L.; Kenyon, M.O.; Kalgutkar, A.S. Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients. J Med Chem 2022, 65, 15584–15607. [CrossRef]
- Tricker, A.R.; Preussmann, R. Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res 1991, 259, 277–289. [CrossRef]
- Ramírez, N.; Özel, M.Z.; Lewis, A.C.; Marcé, R.M.; Borrull, F.; Hamilton, J.F. Exposure to nitrosamines in thirdhand tobacco smoke increases cancer risk in non-smokers. Environ Int 2014, 71, 139–147. [CrossRef]
- Loh, Y.H.; Jakszyn, P.; Luben, R.N.; Mulligan, A.A.; Mitrou, P.N.; Khaw, K.-T. N-Nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Am J Clin Nutr 2011, 93, 1053–1061. [CrossRef]
- Jakszyn, P.; Gonzalez, C.-A. Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World J Gastroenterol 2006, 12, 4296–4303. [CrossRef]
- Lin, K.; Shen, W.; Shen, Z.; Cai, S.; Wu, Y. Estimation of the potential for nitrosation and its inhibition in subjects from high- and low-risk areas for esophageal cancer in southern China. Int J Cancer 2003, 107, 891–895. [CrossRef]
- Sheweita, S.A.; El-Bendery, H.A.; Mostafa, M.H. Novel study on N-nitrosamines as risk factors of cardiovascular diseases. Biomed Res Int 2014, 2014, 817019. [CrossRef]
- Tong, M.; Neusner, A.; Longato, L.; Lawton, M.; Wands, J.R.; de la Monte, S.M. Nitrosamine exposure causes insulin resistance diseases: relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer’s disease. J Alzheimers Dis 2009, 17, 827–844.
- Tong, M.; Longato, L.; de la Monte, S.M. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 2010, 10, 4. [CrossRef]
- Nguyen, N.N.; Tran, T.D.L.; Ho, D.K.N.; Nguyen, S.H.; Huynh, B.P.L.; Chen, Y.-C. A systematic review and meta-analysis investigating the association between dietary nitrate, nitrite, and nitrosamine and diabetes. Clinical Nutrition ESPEN 2023, 58, 636. [CrossRef]
- Lim, D.S. Risk assessment of N-nitrosodiethylamine (NDEA) and N-nitrosodiethanolamine (NDELA) in cosmetics: Journal of Toxicology and Environmental Health, Part A: Vol 81 , No 12 - Get Access Available online: https://www.tandfonline.com/doi/full/10.1080/15287394.2018.1460782 (accessed on Nov 27, 2024).
- Darbre, P.D.; Harvey, P.W. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: a review of the literature with reference to new exposure data and regulatory status. J Appl Toxicol 2014, 34, 925–938. [CrossRef]
- Barkoski, J.M.; Busgang, S.A.; Bixby, M.; Bennett, D.; Schmidt, R.J.; Barr, D.B.; Panuwet, P.; Gennings, C.; Hertz-Picciotto, I. Prenatal phenol and paraben exposures in relation to child neurodevelopment including autism spectrum disorders in the MARBLES study. Environ Res 2019, 179, 108719. [CrossRef]
- Hager, E.; Chen, J.; Zhao, L. Minireview: Parabens Exposure and Breast Cancer. International Journal of Environmental Research and Public Health 2022, 19, 1873. [CrossRef]
- Gaberc, T. Life Habits, Frequency of Application and Long-Term Exposure to Cosmetic Products Containing Parabens Can Cause Higher Breast Cancer Risk among Women. Journal of Biomedical Research 2023, 4. [CrossRef]
- Downs, C.A.; Amin, M.M.; Tabatabaeian, M.; Chavoshani, A.; Amjadi, E.; Afshari, A.; Kelishadi, R. Parabens preferentially accumulate in metastatic breast tumors compared to benign breast tumors and the association of breast cancer risk factors with paraben accumulation. Environmental Advances 2023, 11, 100325. [CrossRef]
- Amin, M.M.; Tabatabaeian, M.; Chavoshani, A.; Amjadi, E.; Hashemi, M.; Ebrahimpour, K.; Klishadi, R.; Khazaei, S.; Mansourian, M. Paraben Content in Adjacent Normal-malignant Breast Tissues from Women with Breast Cancer. Biomed Environ Sci 2019, 32, 893–904. [CrossRef]
- Yin, T.; Zhu, X.; Cheang, I.; Zhou, Y.; Liao, S.; Lu, X.; Zhou, Y.; Yao, W.; Li, X.; Zhang, H. Urinary Phenols and Parabens Metabolites with Cardiovascular Disease in United States Adult 2021. [CrossRef]
- Song, Y.; Wang, M.; Nie, L.; Liao, W.; Wei, D.; Wang, L.; Wang, J.; Xu, Q.; Huan, C.; Jia, Z.; et al. Exposure to parabens and dysglycemia: Insights from a Chinese population. Chemosphere 2023, 340, 139868. [CrossRef]
- Li, A.J.; Xue, J.; Lin, S.; Al-Malki, A.L.; Al-Ghamdi, M.A.; Kumosani, T.A.; Kannan, K. Urinary concentrations of environmental phenols and their association with type 2 diabetes in a population in Jeddah, Saudi Arabia. Environ Res 2018, 166, 544–552. [CrossRef]
- Liu, W.; Zhou, Y.; Li, J.; Sun, X.; Liu, H.; Jiang, Y.; Peng, Y.; Zhao, H.; Xia, W.; Li, Y.; et al. Parabens exposure in early pregnancy and gestational diabetes mellitus. Environ Int 2019, 126, 468–475. [CrossRef]
- Bellavia, A.; Chiu, Y.-H.; Brown, F.M.; Mínguez-Alarcón, L.; Ford, J.B.; Keller, M.; Petrozza, J.; Williams, P.L.; Ye, X.; Calafat, A.M.; et al. Urinary concentrations of parabens mixture and pregnancy glucose levels among women from a fertility clinic. Environmental Research 2019, 168, 389–396. [CrossRef]
- Hendryx, M.; Luo, J. Association between exposure to parabens and total mortality in US adults. Environ Res 2022, 205, 112415. [CrossRef]
- Yan, W.; Li, M.; Guo, Q.; Li, X.; Zhou, S.; Dai, J.; Zhang, J.; Wu, M.; Tang, W.; Wen, J.; et al. Chronic exposure to propylparaben at the humanly relevant dose triggers ovarian aging in adult mice. Ecotoxicol Environ Saf 2022, 235, 113432. [CrossRef]
- Li, M.; Zhou, S.; Wu, Y.; Li, Y.; Yan, W.; Guo, Q.; Xi, Y.; Chen, Y.; Li, Y.; Wu, M.; et al. Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice. Environ Pollut 2021, 285, 117254. [CrossRef]
- Darbre, P.D. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks - Darbre - 2008 - Journal of Applied Toxicology - Wiley Online Library. Journal of Applied Toxicology 2008.
- Crofton, K.M.; Paul, K.B.; Devito, M.J.; Hedge, J.M. Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environ Toxicol Pharmacol 2007, 24, 194–197. [CrossRef]
- Wang, C.-F.; Tian, Y. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. Environ Pollut 2015, 206, 195–201. [CrossRef]
- Milanović, M.; Đurić, L.; Milošević, N.; Milić, N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. Environ Sci Pollut Res Int 2023, 30, 25119–25140. [CrossRef]
- Fang, J.-L.; Stingley, R.L.; Beland, F.A.; Harrouk, W.; Lumpkins, D.L.; Howard, P. Occurrence, efficacy, metabolism, and toxicity of triclosan. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2010, 28, 147–171. [CrossRef]
- Lin, J.-Y.; Yin, R.-X. Exposure to Endocrine-Disrupting Chemicals and Type 2 Diabetes Mellitus in Later Life. Expo Health 2023, 15, 199–229. [CrossRef]
- Dann, A.B.; Hontela, A. Triclosan: environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology 2011, 31, 285–311. [CrossRef]
- Winitthana, T.; Lawanprasert, S.; Chanvorachote, P. Triclosan Potentiates Epithelial-To-Mesenchymal Transition in Anoikis-Resistant Human Lung Cancer Cells. PLOS ONE 2014, 9, e110851. [CrossRef]
- Lee, H.-R.; Hwang, K.-A.; Nam, K.-H.; Kim, H.-C.; Choi, K.-C. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol 2014, 27, 834–842. [CrossRef]
- Yang, H.; Wang, W.; Romano, K.A.; Gu, M.; Sanidad, K.Z.; Kim, D.; Yang, J.; Schmidt, B.; Panigrahy, D.; Pei, R.; et al. A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice. Sci Transl Med 2018, 10, eaan4116. [CrossRef]
- Yueh, M.-F.; Taniguchi, K.; Chen, S.; Evans, R.M.; Hammock, B.D.; Karin, M.; Tukey, R.H. The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc Natl Acad Sci U S A 2014, 111, 17200–17205. [CrossRef]
- Dinwiddie, M.T.; Terry, P.D.; Chen, J. Recent Evidence Regarding Triclosan and Cancer Risk. International Journal of Environmental Research and Public Health 2014, 11, 2209–2217. [CrossRef]
- Huang, W.; Cao, G.; Deng, C.; Chen, Y.; Wang, T.; Chen, D.; Cai, Z. Adverse effects of triclosan on kidney in mice: Implication of lipid metabolism disorders. J Environ Sci (China) 2023, 124, 481–490. [CrossRef]
- Xie, X.; Lu, C.; Wu, M.; Liang, J.; Ying, Y.; Liu, K.; Huang, X.; Zheng, S.; Du, X.; Liu, D.; et al. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013-2014). Environ Int 2020, 136, 105445. [CrossRef]
- Yueh, M.-F.; He, F.; Chen, C.; Vu, C.; Tripathi, A.; Knight, R.; Karin, M.; Chen, S.; Tukey, R.H. Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 2020, 117, 31259–31266. [CrossRef]
- Alfhili, M.A.; Lee, M.-H. Triclosan: An Update on Biochemical and Molecular Mechanisms. Oxid Med Cell Longev 2019, 2019, 1607304. [CrossRef]
- Weatherly, L.M.; Shane, H.L.; Friend, S.A.; Lukomska, E.; Baur, R.; Anderson, S.E. Topical Application of the Antimicrobial Agent Triclosan Induces NLRP3 Inflammasome Activation and Mitochondrial Dysfunction. Toxicol Sci 2020, 176, 147–161. [CrossRef]
- Baur, R.; Gandhi, J.; Marshall, N.B.; Lukomska, E.; Weatherly, L.M.; Shane, H.L.; Hu, G.; Anderson, S.E. Dermal Exposure to the Immunomodulatory Antimicrobial Chemical Triclosan Alters the Skin Barrier Integrity and Microbiome in Mice. Toxicol Sci 2021, 184, 223–235. [CrossRef]
- Baysson, H.; Tirmarche, M. [Indoor radon exposure and lung cancer risk: a review of case-control studies]. Rev Epidemiol Sante Publique 2004, 52, 161–171. [CrossRef]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, R.W.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.I.; et al. Residential Radon and Risk of Lung Cancer: A Combined Analysis of 7 North American Case-Control Studies. Epidemiology 2005, 16, 137. [CrossRef]
- Villeneuve, P.J.; Morrison, H.I. Coronary heart disease mortality among Newfoundland fluorspar miners. Scandinavian Journal of Work, Environment & Health 1997, 23, 221–226. [CrossRef]
- Nusinovici, S.; Vacquier, B.; Leuraud, K.; Metz-Flamant, C.; Caër-Lorho, S.; Acker, A.; Laurier, D. Mortality from circulatory system diseases and low-level radon exposure in the French cohort study of uranium miners, 1946–1999. Scandinavian Journal of Work, Environment & Health 2010, 36, 373–383. [CrossRef]
- Buchheit, S.F.; Collins, J.M.; Anthony, K.; Love, S.M.; Stewart, J.; Gondalia, R.; Manson, J.E.; Reiner, A.P.; Schwartz, G.; Vitolins, M.; et al. Abstract 025: Radon Exposure And Incident Stroke Risk In The Women’s Health Initiative. Circulation 2022, 145, A025–A025. [CrossRef]
- Anthony, K.M.; Collins, J.M.; Love, S.-A.M.; Stewart, J.D.; Buchheit, S.F.; Gondalia, R.; Schwartz, G.G.; Huang, D.Y.; Meliker, J.R.; Zhang, Z.; et al. Radon Exposure, Clonal Hematopoiesis, and Stroke Susceptibility in the Women’s Health Initiative. Neurology 2024, 102, e208055. [CrossRef]
- Goldsborough, E.; Osuji, N.; Blaha, M.J. Assessment of Cardiovascular Disease Risk: A 2022 Update. Endocrinol Metab Clin North Am 2022, 51, 483–509. [CrossRef]
- Wada, T.; Kinugawa, T.; Tanaka, S. ON RADIATION-INDUCED AGING: ACCELERATED OR PREMATURE AGING. Radiation Protection Dosimetry 2022, 198, 1155–1159. [CrossRef]
- Al-Jumayli, M.; Brown, S.L.; Chetty, I.J.; Extermann, M.; Movsas, B. The Biological Process of Aging and the Impact of Ionizing Radiation. Semin Radiat Oncol 2022, 32, 172–178. [CrossRef]
- Sun, J.-W.; Li, X.-R.; Gao, H.-Y.; Yin, J.-Y.; Qin, Q.; Nie, S.-F.; Wei, S. Electromagnetic Field Exposure and Male Breast Cancer Risk: A Meta-analysis of 18 Studies. Asian Pacific Journal of Cancer Prevention 2013, 14, 523–528. [CrossRef]
- Zhang, Y.; Lai, J.; Ruan, G.; Chen, C.; Wang, D.W. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: a pooled analysis of epidemiologic studies. Environ Int 2016, 88, 36–43. [CrossRef]
- Zhao, G.; Lin, X.; Zhou, M.; Zhao, J. Relationship between exposure to extremely low-frequency electromagnetic fields and breast cancer risk: a meta-analysis. Eur J Gynaecol Oncol 2014, 35, 264–269.
- Bandara, P.; Weller, S. Cardiovascular disease: Time to identify emerging environmental risk factors. Eur J Prev Cardiol 2017, 24, 1819–1823. [CrossRef]
- Parizek, D.; Visnovcova, N.; Hamza Sladicekova, K.; Misek, J.; Jakus, J.; Jakusova, J.; Kohan, M.; Visnovcová, Z.; Ferencova, N.; Tonhajzerova, I. Electromagnetic fields - do they pose a cardiovascular risk? Physiol Res 2023, 72, 199–208. [CrossRef]
- Diabetes&Environment Diabetes and the Environment - Radiation Available online: https://www.diabetesandenvironment.org/home/environmental-chemicals/radiation (accessed on Nov 27, 2024).
- Havas, M. Dirty electricity elevates blood sugar among electrically sensitive diabetics and may explain brittle diabetes. Electromagn Biol Med 2008, 27, 135–146. [CrossRef]
- Author, A.S.C.G. Can Your Cell Phone Age You Faster? (Probably). Annmarie Skin Care 2018.
- Kim, K.; Lee, Y.S.; Kim, N.; Choi, H.-D.; Kang, D.-J.; Kim, H.R.; Lim, K.-M. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. Int J Mol Sci 2020, 22, 170. [CrossRef]
- Techwellness TECH SKIN. How the Light And Invisible EMF From Our Screens Causes Damage and Wrinkles Available online: https://techwellness.com/blogs/expertise/tech-skin-how-the-light-from-our-screens-causes-damage-and-wrinkles (accessed on Nov 27, 2024).
- Chattaraj, A. Cisplatin-Induced Ototoxicity: A Concise Review of the Burden, Prevention, and Interception Strategies | JCO Oncology Practice. JCO Oncology Practice 2023, 19.
- Seng, S.M. Risk of venous thromboembolism in cancer patients treated with cisplatin: A systematic review and meta-analysis. | Journal of Clinical Oncology. Journal of Clinical Oncology 2012, 30.
- Ministerie van Volksgezondheid, W. en S. Cisplatin; Health-based calculated occupational cancer risk values - Advisory report - The Health Council of the Netherlands Available online: https://www.healthcouncil.nl/documents/advisory-reports/2005/04/19/cisplatin (accessed on Nov 30, 2024).
- Travis, L.B.; Holowaty, E.J.; Bergfeldt, K.; Lynch, C.F.; Kohler, B.A.; Wiklund, T.; Curtis, R.E.; Hall, P.; Andersson, M.; Pukkala, E.; et al. Risk of leukemia after platinum-based chemotherapy for ovarian cancer. N Engl J Med 1999, 340, 351–357. [CrossRef]
- Dertinger, S.D.; Avlasevich, S.L.; Torous, D.K.; Bemis, J.C.; Phonethepswath, S.; Labash, C.; Carlson, K.; Mereness, J.; Cottom, J.; Palis, J.; et al. Persistence of Cisplatin-Induced Mutagenicity in Hematopoietic Stem Cells: Implications for Secondary Cancer Risk Following Chemotherapy. Toxicological Sciences 2014, 140, 307–314. [CrossRef]
- Kadambi, S.; Clasen, S.C.; Fung, C. How to Manage Cisplatin-Based Chemotherapy-Related Cardiovascular Disease in Patients With Testicular Cancer. JACC CardioOncol 2022, 4, 409–412. [CrossRef]
- van den Belt-Dusebout, A.W.; Nuver, J.; de Wit, R.; Gietema, J.A.; ten Bokkel Huinink, W.W.; Rodrigus, P.T.R.; Schimmel, E.C.; Aleman, B.M.P.; van Leeuwen, F.E. Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol 2006, 24, 467–475. [CrossRef]
- Feldman, D.R.; Schaffer, W.L.; Steingart, R.M. Late cardiovascular toxicity following chemotherapy for germ cell tumors. J Natl Compr Canc Netw 2012, 10, 537–544. [CrossRef]
- Clasen, S.C.; Dinh, P.C.; Hou, L.; Fung, C.; Sesso, H.D.; Travis, L.B. Cisplatin, environmental metals, and cardiovascular disease: an urgent need to understand underlying mechanisms. Cardio-Oncology 2021, 7, 34. [CrossRef]
- Herradón, E.; González, C.; Uranga, J.A.; Abalo, R.; Martín, M.I.; López-Miranda, V. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments. Front Pharmacol 2017, 8, 196. [CrossRef]
- Basu, L.; Smith, A.; Rick, K.; Hoyeck, M.; Fadzeyeva, E.; Mulvihill, E.; Mennigen, J.; Bruin, J. Cisplatin Impairs Mitochondrial Function and Insulin Secretion in Mouse Islets. Canadian Journal of Diabetes 2022, 46, S30. [CrossRef]
- Muhammad, S.A.; Qousain Naqvi, S.T.; Nguyen, T.; Wu, X.; Munir, F.; Jamshed, M.B.; Zhang, Q. Cisplatin’s potential for type 2 diabetes repositioning by inhibiting CDKN1A, FAS, and SESN1. Comput Biol Med 2021, 135, 104640. [CrossRef]
- Haugnes, H.S.; Aass, N.; Fosså, S.D.; Dahl, O.; Klepp, O.; Wist, E.A.; Svartberg, J.; Wilsgaard, T.; Bremnes, R.M. Components of the metabolic syndrome in long-term survivors of testicular cancer. Ann Oncol 2007, 18, 241–248. [CrossRef]
- Huang, C.-Y. Hyperglycemia crisis in head and neck cancer patients with platinum-based chemotherapy. Journal of the Chinese Medical Association: JCMA 2008, 81, 1060–1064, doi:DOI: 10.1016/j.jcma.2018.05.008.
- Nan, D.N. Diabetes Mellitus Following Cisplatin Treatment: Acta Oncologica: Vol 42, No 1. Acta Oncologica 2009, 42, 75–78.
- Chiang, A.C.A.; Huo, X.; Kavelaars, A.; Heijnen, C.J. Chemotherapy accelerates age-related development of tauopathy and results in loss of synaptic integrity and cognitive impairment. Brain, Behavior, and Immunity 2019, 79, 319–325. [CrossRef]
- Hurria, A.; Jones, L.; Muss, H.B. Cancer Treatment as an Accelerated Aging Process: Assessment, Biomarkers, and Interventions. Am Soc Clin Oncol Educ Book 2016, 35, e516-522. [CrossRef]
- Romieu, I.; Lazcano-Ponce, E.; Sanchez-Zamorano, L.M.; Willett, W.; Hernandez-Avila, M. Carbohydrates and the risk of breast cancer among Mexican women. Cancer Epidemiol Biomarkers Prev 2004, 13, 1283–1289.
- Lajous, M.; Boutron-Ruault, M.-C.; Fabre, A.; Clavel-Chapelon, F.; Romieu, I. Carbohydrate intake, glycemic index, glycemic load, and risk of postmenopausal breast cancer in a prospective study of French women. Am J Clin Nutr 2008, 87, 1384–1391. [CrossRef]
- Wen, W.; Shu, X.O.; Li, H.; Yang, G.; Ji, B.-T.; Cai, H.; Gao, Y.-T.; Zheng, W. Dietary carbohydrates, fiber, and breast cancer risk in Chinese women. Am J Clin Nutr 2009, 89, 283–289. [CrossRef]
- Amadou, A.; Degoul, J.; Hainaut, P.; Chajes, V.; Biessy, C.; Torres Mejia, G.; Huybrechts, I.; Moreno Macia, H.; Ortega, C.; Angeles-Llerenas, A.; et al. Dietary Carbohydrate, Glycemic Index, Glycemic Load, and Breast Cancer Risk Among Mexican Women. Epidemiology 2015, 26, 917–924. [CrossRef]
- Sieri, S.; Agnoli, C.; Pala, V.; Grioni, S.; Brighenti, F.; Pellegrini, N.; Masala, G.; Palli, D.; Mattiello, A.; Panico, S.; et al. Dietary glycemic index, glycemic load, and cancer risk: results from the EPIC-Italy study. Sci Rep 2017, 7, 9757. [CrossRef]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Rogers, G.; Yoshida, M.; Saltzman, E.; Jacques, P.F. Dietary carbohydrates and cardiovascular disease risk factors in the Framingham offspring cohort. J Am Coll Nutr 2009, 28, 150–158. [CrossRef]
- Jo, U.; Park, K. Carbohydrate Intake and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2023, 15, 1740. [CrossRef]
- Chan, H.-T.; Chan, Y.-H.; Yiu, K.H.; Li, S.-W.; Tam, S.; Lau, C.-P.; Tse, H.-F. Worsened arterial stiffness in high-risk cardiovascular patients with high habitual carbohydrate intake: a cross-sectional vascular function study. BMC Cardiovasc Disord 2014, 14, 24. [CrossRef]
- Hosseini, F.; Jayedi, A.; Khan, T.A.; Shab-Bidar, S. Dietary carbohydrate and the risk of type 2 diabetes: an updated systematic review and dose-response meta-analysis of prospective cohort studies. Sci Rep 2022, 12, 2491. [CrossRef]
- Alhazmi, A.; Stojanovski, E.; McEvoy, M.; Garg, M.L. Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Am Coll Nutr 2012, 31, 243–258. [CrossRef]
- Sluijs, I.; Cadier, E.; Beulens, J.W.J.; van der A, D.L.; Spijkerman, A.M.W.; van der Schouw, Y.T. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr Metab Cardiovasc Dis 2015, 25, 376–381. [CrossRef]
- Sluijs, I.; van der Schouw, Y.T.; van der A, D.L.; Spijkerman, A.M.; Hu, F.B.; Grobbee, D.E.; Beulens, J.W. Carbohydrate quantity and quality and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. Am J Clin Nutr 2010, 92, 905–911. [CrossRef]
- AlEssa, H.B.; Bhupathiraju, S.N.; Malik, V.S.; Wedick, N.M.; Campos, H.; Rosner, B.; Willett, W.C.; Hu, F.B. Carbohydrate quality and quantity and risk of type 2 diabetes in US women. Am. J. Clin. Nutr. 2015, 102, 1543–1553. [CrossRef]
- Sawicki, C.M.; Braun, K.V.; Haslam, D.E.; Alessa, H.B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Abstract P216: Carbohydrate Quantity and Quality, and Risk of Type 2 Diabetes: Results From Three Large Prospective US Cohorts. Circulation 2023, 147, AP216–AP216. [CrossRef]
- Danby, F.W. Nutrition and aging skin: sugar and glycation. Clin Dermatol 2010, 28, 409–411. [CrossRef]
- Umbayev, B.; Askarova, S.; Almabayeva, A.; Saliev, T.; Masoud, A.-R.; Bulanin, D. Galactose-Induced Skin Aging: The Role of Oxidative Stress. Oxid Med Cell Longev 2020, 2020, 7145656. [CrossRef]
- Cosgrove, M.C.; Franco, O.H.; Granger, S.P.; Murray, P.G.; Mayes, A.E. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am J Clin Nutr 2007, 86, 1225–1231. [CrossRef]
- Isaksen, I.M.; Dankel, S.N. Ultra-processed food consumption and cancer risk: A systematic review and meta-analysis. Clin Nutr 2023, 42, 919–928. [CrossRef]
- Lian, Y.; Wang, G.-P.; Chen, G.-Q.; Chen, H.-N.; Zhang, G.-Y. Association between ultra-processed foods and risk of cancer: a systematic review and meta-analysis. Front Nutr 2023, 10, 1175994. [CrossRef]
- Chang, K.; Gunter, M.J.; Rauber, F.; Levy, R.B.; Huybrechts, I.; Kliemann, N.; Millett, C.; Vamos, E.P. Ultra-processed food consumption, cancer risk and cancer mortality: a large-scale prospective analysis within the UK Biobank. EClinicalMedicine 2023, 56, 101840. [CrossRef]
- Kliemann, N.; Al Nahas, A.; Vamos, E.P.; Touvier, M.; Kesse-Guyot, E.; Gunter, M.J.; Millett, C.; Huybrechts, I. Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms. Br J Cancer 2022, 127, 14–20. [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [CrossRef]
- Juul, F.; Vaidean, G.; Lin, Y.; Deierlein, A.L.; Parekh, N. Ultra-Processed Foods and Incident Cardiovascular Disease in the Framingham Offspring Study. J Am Coll Cardiol 2021, 77, 1520–1531. [CrossRef]
- Du, S.; Kim, H.; Rebholz, C.M. Higher Ultra-Processed Food Consumption Is Associated with Increased Risk of Incident Coronary Artery Disease in the Atherosclerosis Risk in Communities Study. J Nutr 2021, 151, 3746–3754. [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 2021, 125, 308–318. [CrossRef]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes Rev 2021, 22, e13146. [CrossRef]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies. Nutr J 2020, 19, 86. [CrossRef]
- Qu, Y.; Hu, W.; Huang, J.; Tan, B.; Ma, F.; Xing, C.; Yuan, L. Ultra-processed food consumption and risk of cardiovascular events: a systematic review and dose-response meta-analysis. EClinicalMedicine 2024, 69, 102484. [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Bielemann, R.M.; da Silva, B.G.C.; Dos Santos, F.S.; Mintem, G.C.; Flores, T.R.; Arcêncio, R.A.; Nunes, B.P. Ultra-processed food and risk of type 2 diabetes: a systematic review and meta-analysis of longitudinal studies. Int J Epidemiol 2022, 51, 1120–1141. [CrossRef]
- Srour, B. Ultra-processed food intake and risk of type 2 diabetes in a French cohort of middle-aged adults | European Journal of Public Health | Oxford Academic Available online: https://academic.oup.com/eurpub/article/29/Supplement_4/ckz185.388/5624712?login=false (accessed on Nov 25, 2024).
- Llavero-Valero, M.; Escalada-San Martín, J.; Martínez-González, M.A.; Basterra-Gortari, F.J.; de la Fuente-Arrillaga, C.; Bes-Rastrollo, M. Ultra-processed foods and type-2 diabetes risk in the SUN project: A prospective cohort study. Clin Nutr 2021, 40, 2817–2824. [CrossRef]
- Levy, R.B.; Rauber, F.; Chang, K.; Louzada, M.L. da C.; Monteiro, C.A.; Millett, C.; Vamos, E.P. Ultra-processed food consumption and type 2 diabetes incidence: A prospective cohort study. Clin Nutr 2021, 40, 3608–3614. [CrossRef]
- Moradi, S.; Hojjati Kermani, M.A.; Bagheri, R.; Mohammadi, H.; Jayedi, A.; Lane, M.M.; Asbaghi, O.; Mehrabani, S.; Suzuki, K. Ultra-Processed Food Consumption and Adult Diabetes Risk: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2021, 13, 4410. [CrossRef]
- Esposito, S.; Gialluisi, A.; Di Castelnuovo, A.; Costanzo, S.; Ruggiero, E.; Iacoviello, L.; Bonaccio, M. Ultra-Processed Food Consumption and Biological Aging in Italian Adults from the Moli-Sani Study Cohort. Proceedings 2023, 91, 97. [CrossRef]
- Alonso-Pedrero, L.; Ojeda-Rodríguez, A.; Martínez-González, M.A.; Zalba, G.; Bes-Rastrollo, M.; Marti, A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr 2020, 111, 1259–1266. [CrossRef]
- Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; López-García, E.; Moreno-Franco, B.; Laclaustra, M.; Donat-Vargas, C.; Ordovás, J.M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J Gerontol A Biol Sci Med Sci 2020, 75, 1126–1133. [CrossRef]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; Mendonça, R. de D.; de la Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, l1949. [CrossRef]
- Cao, C.; Xiao, Z.; Wu, Y.; Ge, C. Diet and Skin Aging—From the Perspective of Food Nutrition. Nutrients 2020, 12, 870. [CrossRef]
- Yam, D.; Eliraz, A.; Berry, E.M. Diet and disease--the Israeli paradox: possible dangers of a high omega-6 polyunsaturated fatty acid diet. Isr J Med Sci 1996, 32, 1134–1143.
- Shapira, N. Israeli “cancer shift” over heart disease mortality may be led by greater risk in women with high intake of n-6 fatty acids. Eur J Cancer Prev 2007, 16, 486–494. [CrossRef]
- Rose, D.P.; Connolly, J.M.; Meschter, C.L. Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. J Natl Cancer Inst 1991, 83, 1491–1495. [CrossRef]
- Montecillo-Aguado, M.; Tirado-Rodriguez, B.; Antonio-Andres, G.; Morales-Martinez, M.; Tong, Z.; Yang, J.; Hammock, B.D.; Hernandez-Pando, R.; Huerta-Yepez, S. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins. Int J Mol Sci 2022, 23, 6179. [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Omega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis. Open Heart 2018, 5, e000898. [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J. The Importance of Maintaining a Low Omega-6/Omega-3 Ratio for Reducing the Risk of Autoimmune Diseases, Asthma, and Allergies. Mo Med 2021, 118, 453–459.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
