Submitted:
17 September 2025
Posted:
18 September 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Postmortem Interval (PMI) Estimation
Insect Succession
Insect Temperature-Dependent Development/Thermal Summation Model
PMI and Statistical Use
- (a)
- Acceptable Reproduction: Experiments should be repeatable with several set or units. Insufficient repeatability resulted in limited comprehension of the inherent variation in insect succession. Moreover, in particular instances, to enhance inferential power of a succession dataset a collection of larger samples over a period of time and ensuring consistent methodology at the a similar point or contemporaneously sites at comparable seasonal periods [117,128,129]. In cases, where there is insufficient sampling effort, pseudoreplication may develop and this diminishes the inferential strength. Pseudoreplication occurs when there is the lack of adequate treatment replication and such results render the comparison invalid.
- (b)
- Independence of Experimental Units: This guarantees that there is no discernible correlation (i.e. interdependence) among experimental units; a fundamental supposition of most statistical tests. Experimental establishment dealing with carrion-insect succession, suggest a minimum distance of 50m for spatial independence which prevents cross-colonization of insect cohorts especially larvae, though this may be inadequate in halting actively vagile adults. One study designed to evaluate carcass independence; this was done by placing 32 domestic pig carcasses at least 30 m apart for over two years. The analyses of succession intervals and community-similarity indices established that this distance was sufficient to ensure each carcass functioned as an independent sampling unit [95].
- (c)
- Capturing a Representative Range of Natural Variability: This is a prerequisite that is often flouted in forensic entomology field studies. It necessities the use of diverse study locations in order to justification for prospective locational effects and integrate site-to-site variation. Relying on a single study location reduces exterior cogency and limits inferential influence that specific location.
Funding
Acknowledgments
Conflicts of Interest
References
- Byrd, J.H.; Castner, J.L. Insects of Forensic Importance. In Forensic Entomology the Utility of Arthropods in Legal Investigations, 2nd ed.; Byrd, J.H., Castner, J.L., Eds.; CRC Press, Taylor &Francis Group: Boca Raton, FL, USA, 2010; pp. 39–124. [Google Scholar]
- Gennard, D.E.; Szpila, K. The scope of forensic entomology. In Forensic entomology an introduction, 2nd ed.; Gennard, D.E., Ed.; John Wiley & Sons, Ltd, 2012; pp 1-11.
- Harvey, M.; Gasz, N.; Voss, S. Entomology-based methods for estimation of postmortem interval. Research and Reports in Forensic Med. Sci. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Huntington, T.E.; Weidner, L.M.; Hall, R.D. Introduction perceptions and status of forensic entomology. In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd,.J.H., Tomberlin, J.K, Eds.; Taylor & Francis Group, LLC, 2019; pp. xxiii-xxxiv.
- Brundage, A. Diptera Development: A Forensic Science Perspective. In Life Cycle and Development of Diptera; Sarwar, M Ed.; 2019.
- Catts, E.P.; Goff, M.L. Forensic entomology in criminal investigations. Ann. Rev. Entomol. 1992, 37, 253–72. [Google Scholar] [CrossRef]
- Rivers, D.B.; Dahlem, G.A. Role of insects and other arthropods in urban and stored product entomology. In The Science of Forensic Entomology. Wiley-Blackwell, Chichester, West Sussex, United Kingdom, 2014a; pp. 29- 46.
- Hall, R.D. Perceptions and status of forensic entomology. In: In Forensic Entomology. Byrd, J.H., Castner, J.L., Eds.; CRC Press, Boca Raton, FL, USA, 2001; pp 1–15.
- Hagstrum, D.W.; Subramanyam, B. A review of stored-product entomology information resources. American Entomologist 2009, 55, 174–183. [Google Scholar] [CrossRef]
- Benecke, M.; Lessig, R. Child neglect and forensic entomology. Forensic Sci. Int. 2001, 120, 155–159. [CrossRef]
- Benecke, M.; Josephi, E.; Zweihof, R. Neglect of the elderly: forensic entomology cases and considerations. Forensic Sci. Int. 2004, 146S, S195–S199. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Sanford, M.R. Forensic Entomology and Wildlife. In Wildlife Forensics; Methods and Applications; Huffman, J.E., Wallace, J.R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 81–107. [Google Scholar]
- Sanford, M.R.; Whitworth, T.L.; Phatak, D.R. Human wound colonization by Lucilia eximia and Chrysomya rufifacies (Diptera: Calliphoridae): Myiasis, perimortem, or postmortem colonization? J. Med. Entomol. 2014, 51, 716–719. [Google Scholar] [CrossRef]
- Sanford, M.R. Forensic entomology of decomposing humans and their decomposing pets. Forensic Sci. Int. 2015, 247, e11–e17. [Google Scholar] [CrossRef]
- Anderson, G.S.; Byrd, J.H. Wildlife forensic entomology. In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd,.J.H., Tomberlin, J.K, Eds.; Taylor & Francis Group, LLC, 2019; pp. 476-483.
- Byrd, J.H.; Brundage, A. Forensic entomology. In Veterinary Forensic Medicine and Forensic Sciences 1st ed.; Byrd, J., Norris, P., Bradley-Siemens, N. Eds.; CRC Press Taylor & Francis Group, LLC, 2019; pp. 68-111.
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.R.J. Forensic entomology: applications and limitations. Forensic Sci. Med. Pathol. 2011, 7(4), 379–392. [Google Scholar] [CrossRef] [PubMed]
- Magni, P.; Guercini, S.; Leighton, A.; Dadour, I. Forensic entomologists: an evaluation of their status. J. Insect Sci. 2013, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.H. Forensic Entomology: https://emedicine.medscape.com/article/1780557-overview#a3, 2019.
- Carvalho, L.M.L. Toxicology and forensic entomology. In Current Concepts in Forensic Entomology; Amendt, J., Campobasso, C.P., Goff, M.L., Grassberger, M. Eds.; Springer Science, New York, 2010; pp. 163–178.
- Campobasso, C.P.; Bugelli, V.; Carfora, A. Borriello, R.; Villet, M. Advances in entomotoxicology - Weaknesses and Strengths. In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd,.J.H., Tomberlin, J.K, Taylor & Francis Group, LLC, 2019; pp. 288-307.
- Amendt, J.; Campobasso, C.P.; Gaudry, E.; Reiter, C.; LeBlanc, H.N.; Hall, M.J.R. . Best practice in forensic entomology—standards and guidelines. Int. J. Legal Med. 2007; 121, 90–104. [Google Scholar]
- Rivers, D.B.; Dahlem, G.A. Postmortem interval. In The Science of Forensic Entomology. Wiley-Blackwell, Chichester, West Sussex, United Kingdom, 2014b; pp. 215- 235.
- Prahlow, J. Postmortem changes and time of death. In Forensic Pathology for Police, Death Investigations, Attorneys and Forensic Scientists. 1st ed. Prahlow J. Ed.; Humana Press: 2010; pp. 179-183.
- Madea, B. Supravitality in tissues. In Estimation of the Time since Death, 3rd ed.; Madea, B., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 17–40. [Google Scholar]
- Hilal, M.; El-sayed, W.; Said, A.; Magdy, A. Updates in Estimating Postmortem Interval. Sohag Medical Journal, 2017, 21(3), 171–174. [Google Scholar]
- Paczkowski, S. Schütz S. Post-mortem volatiles of vertebrate tissue. Appl. Microbiol. Biotechnol. 2011, 91(4), 917–935. [Google Scholar] [CrossRef]
- Madea, B.; Kernbach-Wighton, G. Autolysis, Putrefactive Changes and Postmortem Chemistry. In Estimation of the Time since Death, 3rd ed.; Madea, B., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 153–212. [Google Scholar]
- Tozzo, P.; Scrivano, S.; Sanavio, M.; Caenazzo, L. The Role of DNA Degradation in the Estimation of Post-Mortem Interval: A Systematic Review of the Current Literature. Int. J. Mol. Sci. 2020, 21, 3540. [Google Scholar] [CrossRef] [PubMed]
- Madea, B. Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci. Int., 2005, 15, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Canepari, S.; Frati, P.; Fineschi, V.; Materazzi, S. “2nd Analytical Platform” To Update Procedures in Thanatochemistry: Estimation of Post Mortem Interval in Vitreous Humor. Analytical. Chem. 2019, 91(11), 7025–7031. [Google Scholar] [CrossRef]
- Liu, L.; Shu, X.; Ren, L.; Zhou, H.; Li, Y.; Liu, W.; Zhu, C.; Liu, L. Determination of the early time of death by computerized image analysis of DNA degradation: Which is the best quantitative indicator of DNA degradation? J. Huazhong Univ. Sci. Technol. Med. Sci., 2007, 27, 362–366. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; Shan, D.; Zhang, H.; Guan, D. DNA degradation within mouse brain and dental pulp cells 72 h postmortem. Neural Regen. Res. 2012, 7, 290–294. [Google Scholar]
- Williams, T.; Soni, S.; White, J.; Can, G.; Javan, G.T. Evaluation of DNA degradation using flow cytometry: Promising tool for postmortem interval determination. Am. J. Forensic Med. Pathol. 2015, 36, 104–110. [Google Scholar] [CrossRef]
- Sidova, M.; Tomankovaa, S.; Abaffya, P.; Kubistaa, M.; Sindelka, R. : Effects of post-mortem and physical degradation on RNA integrity and quality. Biomolecular Detection and Quantification. 2015, 5, 3–6. [Google Scholar] [CrossRef]
- Catts, E.P. Problems in estimating the postmortem interval in death investigations. J Agricul. Entomol. 1992, 9, 245–255. [Google Scholar]
- Catts, E.P.; Haskell, N.H. Entomology and Death: A Procedural Guide, 2nd ed.; Clemson, SC. 2008.
- Forbes, S.L. Potential determinants of postmortem and post burial interval of buried remains. In Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains; Tibbett, M., Carter, D. O., Eds.; Boca Raton (FL), CRC Press; 2009; pp. 225–246.
- Hoffman, E.M.; Curran, A.M.; Dulgerian, N.; Stockham, R.A.; Eckenrode, B.A. Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci. Int. 2009, 186(1-3), 6–13. [Google Scholar] [CrossRef]
- Swann, L.; Forbes, S.; Lewis, S. Analytical separations of mammalian decomposition products for forensic science: a review. Anal. Chim. Acta 2010, 682(1-2), 9–22. [Google Scholar]
- Statheropoulos, M.; Agapiou, A.; Zorba, E.; Mikedi, K.; Karma, S.; Pallis, G.; Eliopoulos, C. Spiliopoulou, C.. Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci. Int 2011, 210(1-3), 154–163. [CrossRef] [PubMed]
- Iqbal, M.A.; Ueland, M.; Forbes, S.L. Recent advances in the estimation of post-mortem interval in forensic taphonomy, Aust. J. Forensic Sci. 2020, 52, 107–123. [Google Scholar]
- Wells, J.D.; LaMotte, L.R. Estimating the postmortem interval. In Forensic Entomology: The Utility of Insects in Legal Investigations; Byrd, J.H., Castner, J.L., Eds.; Boca Raton, Fla: 2010, Taylor &Francis Group, LLC pp. 367-388.
- Tomberlin, J.K.; Byrd, J.H.; Wallace, J.R.; Benbow, M.E. Assessment of Decomposition Studies Indicates Need for Standardized and Repeatable Research Methods in Forensic Entomology. J. Forensic Res. 2012, 3, 147. [Google Scholar] [CrossRef]
- Faris, A.M.; Wang, H.H.; Tarone, A.M.; Grant, W.E. Forensic entomology: evaluating uncertainty associated with Postmortem Interval (PMI) estimates with ecological models. J. Med. Entomol. 2016, 53(5), 1117–1130. [Google Scholar] [CrossRef]
- LaMotte, L.R.; Roe, A.L.; Wells, J.D.; Higley, L.G. A Statistical Method to Construct Confidence Sets on Carrion Insect Age from Development. J. Agri. Biol. Environ. Statist. 2017, 22(2), 161–171. [Google Scholar]
- Wang, Y.; Hu, G.; Zhang, Y.; Wang, M.; Amendt, J.; Wang, J. Development of Muscina stabulans at constant temperatures with implications for minimum postmortem interval estimation. Forensic Sci. Int. 2019, 298, 71–9. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.D.; LaMotte, L.R. Estimating the postmortem interval. In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd,.J.H., Tomberlin, J.K, Eds.; Taylor & Francis Group, LLC, 2019; pp. 213-224.
- Bala, M.; Sharma, A. Review of some recent techniques of age determination of blow flies having forensic implications. Egypt Forensic Sci. 2016, 6, 203–208. [Google Scholar]
- Villet, M.H.; Amendt, J. Advances in entomological methods for estimating time of death. In Forensic Pathology Reviews; Turk, E.E., Ed.; Heidelberg, Germany: Humana Press, 2011; pp. 213–238. [Google Scholar]
- Grassberger, M.; Reiter, C. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci. Int. 2001, 120, 32–6. [Google Scholar] [CrossRef] [PubMed]
- Reiter, C. Zum Wachstumsverhalten der Maden der blauen Schmeißfliege Calliphora vicina. Z. Rechtsmed. 1984, 91, 295–308. [Google Scholar] [CrossRef]
- Gennard, D.E. Calculating the post mortem interval. In Forensic Entomology: An Introduction; John Wiley & Sons Ltd., Chichester, UK, 2007; pp.121-138.
- Higley, L.G.; Haskel, N.H. Insect development and forensic entomology. In Forensic Entomology the Utility of Arthropods in Legal Investigations, 2nd ed.; Byrd, J.H., Castner, J.L., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 389–405. [Google Scholar]
- Penilla, R.P.; Rodriguez, M.H.; Lopez, A.D.; Viader-Salvado, J.M.; Sanchez, C.N. Pteridine concentrations differ between insectary- reared and field–collected Anopheles albimanus mosquitoes of the same physiological age. Med. Vet. Entomol. 2002, 16, 225–234. [Google Scholar]
- Davies, K.; Harvey, M.L. Internal Morphological Analysis for age estimation of blowfly pupae (Diptera: Calliphoridae) in postmortem interval estimation. J. Forensic Sci. 2013, 58(1), 79–84. [Google Scholar] [CrossRef]
- Tarone, A.M.; Jennings, K.C.; Foran, D.R. Aging blowfly eggs using gene expression: a feasibility study. J. Forensic Sci. 2007, 52(6), 1350–1354. [Google Scholar]
- Tarone, A.M.; Foran, D.R. Gene expression during blow fly development: improving the precision of age estimates in forensic entomology. J. Forensic Sci. 2011.56, S112–S122. [CrossRef] [PubMed]
- Boehme, P.; Spahn, P.; Amendt, J.; Zehner, R. Differential gene expression during metamorphosis: a promising approach for age estimation of forensically important Calliphora vicina pupae. Int. J. Legal Med. 2013, 127(1), 243–249. [Google Scholar] [CrossRef]
- Byrne, A.L.; Camann, M.A.; Cyr, T.L.; Catts, E.P.; Espelie, K.E. Forensic implications of biochemical differences among geographic populations of the black blowfly, Phormia regina (Meigen). J. Forensic Sci. 1995, 40(3), 372–377. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.H.; Ye, G.Y.; Hu, C.; Xu, X.H.; Li, K. Developmental changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Med. Vet. Entomol. 2006, 20(4), 438–444. [Google Scholar] [CrossRef]
- Zhu, G.H.; Ye, G.; Li, K.; Zhu, J.; Zhu, G.; Hu, C. Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. J. Med. Entomol. 2007a, 44(3), 450–456. [Google Scholar]
- Moore, H.E.; Adam, CD.; Drijfhout, F.P. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the Postmortem Interval. J. Forensic Sci. 2012, 58(2), 404–412. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ye, G.Y.; Xu, Y.; Hu, C.; Zhu, G.H. Age-dependent changes in cuticular hydrocarbons of larvae in Aldrichina grahami (Aldrich) (Diptera: Calliphoridae). Forensic Sci. Int. 2014, 242, 236–241. [Google Scholar] [CrossRef]
- Ellison, J.R.; Hampton, E.N. Age determination using apodeme structure in adult screwworm flies (Cochliomyia hominivorax). J. Insect Physiol. 1982, 28(9), 731–736. [Google Scholar] [CrossRef]
- Zhu, G.H.; Xu, X.H.; Yu, X.J.; Zhang, Y.; Wang. J.F. Puparial case hydrocarbon of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Sci. Int. 2007b, 169, 1–5.
- Frederickx, C.; Dekeirsschieter, J.; Brostaux, Y.; Wathelet, J.P.; Verheggen, F.J.; Haubruge, E. Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology. Forensic Sci. Int 2012, 219(1-3), 215–220. [Google Scholar]
- Paula, M.C.; Michelutti, K.B.; Eulalio, A.; Piva, R.C.; Cardoso, C.; Antonialli-Junior, W.F. New method for estimating the post-mortem interval using the chemical composition of different generations of empty puparia: Indoor cases. PloS One 2018, 13(12), e0209776. [Google Scholar] [PubMed]
- Goff, M. L. Estimation of the postmortem interval using arthropod development and succession patterns. Forensic Sci. Rev. 1993, 5, 81–94. [Google Scholar]
- Aubernon, C.; Hedouin, V.; Charabidze, D. The maggot, the ethologist and the forensic entomologist: Sociality and thermoregulation in necrophagous larvae. J Adv. Res. 2019, 16, 67–73. [Google Scholar] [CrossRef]
- Anderson, G. Insect Succession on Carrion and Its Relationship to Determining Time of Death. In Forensic Entomology; Byrd, J.H., Castner, J.L., Eds.; CRC Press, Boca Raton, FL, USA, 2001; pp. 143–175.
- Goff, M.L. Early postmortem changes and stages of decomposition. In Current Concepts in Forensic Entomology, Amendt, J., Campobasso, C.P., Goff, M.L., Grassberger, M. Eds.; Springer, London, 2010; pp. 1–24.
- Perez, A.E.; Haskell, N.H.; Wells, J.D. Evaluating the utility of hexapod species for calculating a confidence interval about a succession based postmortem interval estimate. Forensic Sci. Int. 2014, 241, 91–95. [Google Scholar] [CrossRef]
- Gallagher, M.B.; Sandhu, S.; Kimsey, R. Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J. Forensic Sci. 2010, 55, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Tomberlin, J.K.; Benbow, M.E.; Tarone, A.M.; Mohr, R.M. Basic research in evolution and ecology enhances forensics. Trends in Ecology & Evolution. 2011a, 26, 53–55. [Google Scholar]
- Matuszewski, S.; Szafalowicz, M. Temperature-dependent appearance of forensically useful beetles on carcasses. Forensic Sci. Int. 2013, 229, 92–99. [Google Scholar] [CrossRef]
- Wells, J.D. To the Editor: Misstatements Concerning Forensic Entomology Practice in Recent Publications, J. Med. Entomol. 2014, 51(3), 489–490. [Google Scholar]
- Tarone, AM.; Sanford, M.R. Is PMI the Hypothesis or the Null Hypothesis? J. Med Entomol. 2017, 54(5), 1109–1115. [Google Scholar]
- Sanford, M.R.; Tarone, A.M. Is PMI the Hypothesis or the Null Hypothesis? In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd, J.H, Tomberlin JK, Eds.; Taylor & Francis Group, LLC, 2019; pp. 311-332.
- Tomberlin, J.; Mohr, R.; Benbow, M.; Tarone, A.; VanLaerhoven, S. A roadmap for bridging basic and applied research in forensic entomology. Annu. Rev. Entomol. 2011b, 56, 401–421. [Google Scholar]
- Villet, M.H.; Richards, C.S.; Midgley, J.M. Contemporary precision, bias and accuracy of minimum post-mortem intervals estimated using development of carrion-feeding insects. In Current Concepts in Forensic Entomology; Amendt, J., Campobasso, C.P., Goff, M.L., Grassberger, M. Eds.; Springer, London, 2010; pp. 109–137.
- Wells, J.D.; LaMotte, L.R. The Role of a PMI-Prediction Model in Evaluating Forensic Entomology Experimental Design, the Importance of Covariates, and the Utility of Response Variables for Estimating Time Since Death. Insects. 2017, 8(2), 47. [Google Scholar] [CrossRef]
- Greenberg, B.; Kunich, C. Entomology and the Law: Flies as forensic indicators, Cambridge University Press, Cambridge, United Kingdom, 2002.
- Matuszewski, S.; Madra-Bielewicz, A. Validation of temperature methods for the estimation of pre-appearance interval in carrion insects. Forensic Sci. Med. Pat. 2016, 12, 50–57. [Google Scholar] [CrossRef]
- Van den Oever, R. A review of the literature as to the present possibilities and limitations in estimating the time of death. Medicine, Science and the Law, 1976, 16, 269–276. [Google Scholar] [CrossRef]
- Goff, L.; Odom, B.C. Forensic Entomology in the Hawaiian Islands. Am. J. Forens. Med. Path. 1987, 8, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Costa, J.; de Mello-Patiu, C.A. Application of Forensic Entomology to estimate of the postmortem interval (PMI) in homicide investigations by the Rio de Janeiro Police Department in Brazil. Aggrawal´s Internet J. Forensic Med. & Tox. 2004, 5(1), 40–44. [Google Scholar]
- Anderson, G.S. The use of entomological evidence in analyzing cases of neglect and abuse in humans and animals, In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd,.J.H., Tomberlin, J.K, Eds.; Taylor & Francis Group, LLC, 2019; pp. 445-459.
- Drury, W.H.; Nisbet, I.C.T. Succession. J. Arnold Arboretum. 1973, 54(3), 331–368. [Google Scholar]
- Campobasso, C.P.; Di Vella, G.; Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 2001, 120, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Amendt, J.; Krettek, R.; Zehner, R. Forensic entomology. Naturwissenschaften. 2004, 91, 51–65. [Google Scholar] [PubMed]
- Benecke, M. Arthropods and corpses.. In Forensic Pathology Reviews. Vol. 2. Tsokos M, Ed.; Totowa (NJ), Humana Press Inc; 2004, pp. 207–240.
- Hall, M.J.M. Trapping the flies that cause myiasis: Their responses to host-stimuli. Ann. Trop. Med. Parasitol. 1995, 89, 333–357. [Google Scholar] [CrossRef]
- Matuszewski, S.; Bajerlein, D.; Konwerski, S.; Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: Composition and residency patterns of carrion fauna. Forensic Sci. Int. 2010, 195, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.E. "The Development of an Insect Succession Model Suitable for Time-Since-Death Statistics" Graduate Theses, Dissertations, and Problem Reports. 7339, 2014.
- Anderson, G.S. Factors that influence insect succession on carrion. In: Forensic Entomology.-The Utility of Arthropods in Legal Investigations, 2nd ed.; Byrd, J.H., Castner, J.L., Eds,; CRC Press, Boca Raton, FL, 2010; pp. 201-250.
- Nassu, M. P.; Thyssen, P.J.; Linhares, A.X. Developmental rate of immature of two fly species of forensic importance: Sarcophaga (Liopygia) ruficornis and Microcerella halli (Diptera: Sarcophagidae). Parasitol. Res. 2014, 113, 217–222. [Google Scholar] [PubMed]
- Matuszewski, S.; Frątczak, K.; Konwerski, S.; Bajerlein, D.; Szpila, K.; Jarmusz, M.; Szafałowicz, M.; Grzywacz, A.; Mądra, A. Effect of body mass and clothing on carrion entomofauna. Int. J. Legal Med. 2016, 130(1), 221–232. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.; Frazer, B.D.; Gilbert, N.; Gutierrez, A.P.; Mackauer, M. Temperature requirements of some aphids and their parasites. J. Applied Ecol. 1974, 11(2), 431–438. [Google Scholar] [CrossRef]
- Beck, S.D. Insect Thermoperiodism, Ann. Rev. Entomol. 1983, 28, 91–108. [Google Scholar] [CrossRef]
- Wagner, T.L.; Wu, H.I.; Sharpe, P.J.H.; Schoolfield, R.M.; Coulson, R.N. Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America, 1984, 77(2), 208–225. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Milliken, G.A. Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Annals Entomol. Soc. Amer. 1988, 81, 539–546. [Google Scholar]
- Megyesi, M.S.; Nawrocki, S.P.; Haskell, N.H. Using Accumulated Degree-Days to Estimate the Postmortem Interval from Decomposed Human Remains, J. Forensic Sci. 2005, 50, 618–626. [Google Scholar] [CrossRef]
- Michaud, J.P.; Moreau, G. A statistical approach based on accumulated degree-days to predict decomposition-related processes in forensic studies. J. Forensic Sci. 2011, 56, 229–232. [Google Scholar] [CrossRef]
- Reibe, S.; Doetinchem, V.; Madea, B. A new simulation-based model for calculating post-mortem intervals using developmental data for Lucilia sericata (Dipt. Calliphoridae). Parasitol. Research 2010, 107(1), 9–16. [Google Scholar]
- Reibe-Pal, S.; Madea, B. Calculating time since death in a mock crime case comparing a new computational method (ExLAC) with the ADH method. Forensic Sci. Int. 2015, 248, 78–81. [Google Scholar] [CrossRef]
- Logan, J.; Woolkind, D.; Hoyt, S.; Tanigoshi, L. An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology. 1976, 5, 1133–1140. [Google Scholar] [CrossRef]
- Lactin, D.; Holliday, D.; Johnson, L.; Craigen, R. Improved rate model of temperature-dependent development by arthropods. Environmental Entomology. 1995, 24(1), 68–75. [Google Scholar] [CrossRef]
- Ikemoto, T.; Takai, K.A. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environmental Entomology, 2000, 29, 671–682. [Google Scholar] [CrossRef]
- Voss, S.C.; Spafford, H.; Dadou, I.R. Temperature-dependent development of Nasonia vitripennis on five forensically important carrion fly species. Entomologia Experimental et Applicata. 2010, 135(1), 37–47. [Google Scholar] [CrossRef]
- Giannelli, P.C.; Imwinkelried, E.J. Scientific evidence. 2nd ed. Vols. 1 and 2; Charlottesville, VA: Michie Co. 1993; Quoted by Hall, R. D (2019).
- Hall, R.D. The forensic entomologist as expert witness. In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed.; Byrd,.J.H., Tomberlin, J.K, Eds.; Taylor & Francis Group, LLC, 2019; pp. 333-348.
- Faigman, D. Science and the law: Is science different for lawyers? Science, 2002, 297, 339–340.
- Tarone, A.M.; Foran, D.R. Generalized additive models and Lucilia sericata growth: assessing confidence intervals and error rates in forensic entomology. J. Forensic Sci. 2008, 53, 942–948. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Strengthening Forensic Science in the United States: A Path Forward. In Committee on the Judiciary House of Representatives: 2009, U.S. Government Printing Office: Washington, DC, USA.
- Saks, M.J.; Koehler, J.J. The coming paradigm shift in forensic identification science. Science. 2005, 309, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Michaud, J.P. Schoenly, K.G.; Moreau, G. Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology. J. Med. Entomol. 2012, 49, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Moreau, G.; Michaud, J.P.; Schoenly, K. Experimental Design, Inferential Statistics, and Computer. In Forensic Entomology International Dimensions and Frontiers; Tomberlin, J.K., Benbow, E.M. Eds; CRC Press, Taylor & Francis Group, LLC, 2015; pp. 205-229.
- VanLaerhoven, S.L. Blind validation of postmortem interval estimates using developmental rates of blowflies. Forensic Sci. Int. 2008, 180, 76–80. [Google Scholar] [CrossRef]
- Schoenly, K.G. A statistical analysis of successional patterns in carrion-arthropod assemblages: implications for forensic entomology and determination of the postmortem interval. J. Forensic Sci. 1992, 37(6), 1489–1513. [Google Scholar] [CrossRef]
- Schoenly, K.; Griest, K.; Rhine, S. An experimental field protocol for investigating the postmortem interval using multidisciplinary indicators. J. Forensic Sci. 1991, 36, 1395–1415. [Google Scholar] [CrossRef]
- Schoenly, K.; Goff, M.L.; Wells, J.D.; Lord, W.D. Quantifying statistical uncertainty in entomology-based estimates of the postmortem interval in medicolegal investigations: a simulation study. Amer. Entomologist. 1996, 42, 106–112. [Google Scholar] [CrossRef]
- Wells, J.D.; LaMotte, LR. Estimating maggot age from weight using inverse prediction. J. Forensic Sci. 1995, 40, 585–590. [Google Scholar] [CrossRef]
- LaMotte, L.R.; Wells, J.D. P-values for postmortem intervals from arthropod succession data. J. Agric. Biol. Environ. Stat. 2000, 5, 58–68. [Google Scholar] [CrossRef]
- Michaud, J.P.; Moreau, G. Predicting the visitation of carcasses by carrion-related insects under different rates of degree-day accumulation. Forensic Sci. Int. 2009, 185, 78–83. [Google Scholar] [CrossRef]
- Ieno, E.N.; Amendt, J.; Fremdt, H.; Saveliev, A.A.; Zuur, A.F. Analyzing forensic entomological data using additive mixed effects modelling. In Current Concepts in Forensic Entomology; Amendt, J., Campobasso, C.P., Goff, M. L., Grassberger, M. Eds.; Springer Science, Springer, New York, 2010; pp. 139–162.
- Baqué, M.; Amendt, J. Strengthen forensic entomology in court—the need for data exploration and the validation of a generalised additive mixed model. Int. J. Legal Med. 2013, 127, 213–223. [CrossRef]
- Moreau, G. The Pitfalls in the Path of Probabilistic Inference in Forensic Entomology: A Review Insects 2021, 12, 240-251.
- Michaud, J.P.; Moreau, G. Effect of variable rates of daily sampling of fly larvae on decomposition and carrion-insect community assembly: implications for forensic entomology field study protocols. J. Med. Entomol. 2013, 50, 890–897. [Google Scholar] [CrossRef]
- Schoenly, K.; Goff, M.L.; Early, M. A BASIC algorithm for calculating the postmortem interval from arthropod successional data. J Forensic Sci. 1992, 37, 808–823. [Google Scholar] [CrossRef]
- Byrd, J.H.; Allen, J.C. Computer modeling of insect growth and its application to forensic entomology, In Forensic Entomology. Byrd, J.H., Castner, J.L., Eds.; CRC Press, Boca Raton, FL, USA, 2001; pp. 303–330.
- LaMotte, L.R. Statistical Methods for Combining Multivariate and Categorical Data in Postmortem Interval Estimation. Document Number: 250467, 2016, Award Number: 2013-DN-BX-K042 Document of the Office of Justice Programs National Criminal Justice Reference Service.
- LaMotte, L.R.; Wells, J.D. Inverse prediction for heteroscedastic response using mixed models software. Communications in Statistics – Simulation and Computation, accepted author version posted online 2015.
- LaMotte, LR. Wells JD. Inverse prediction for multivariate mixed models with standard software. Statistical Papers. 2016, 57(4), 929938. [Google Scholar] [CrossRef]
- Wells, J.; LaMotte, L. The role of a PMI-prediction model in evaluating forensic entomology experimental design, the importance of covariates, and the utility of response variables for estimating time since death. Insects. 2017, 8(2), 47. [Google Scholar] [CrossRef]
- LaMotte, L.R. On inverse prediction in mixed linear models. Comm. Stat. Simul. Comput. 2014, 43(9), 2106–2116. [Google Scholar] [CrossRef]
- Wells, J.D.; Lecheta, M.C.; Moura, M.O.; LaMotte, L.R. An evaluation of sampling methods used to produce insect growth models for postmortem interval estimation. Int. J. Legal Med. 2015, 129, 405–410. [Google Scholar] [CrossRef]
- Matuszewski, S. Estimating the pre-appearance interval from temperature in Necrodes littoralis L. (Coleoptera: Silphidae). Forensic Sci. Int. 2011, 212, 180–88. [Google Scholar] [CrossRef]
- Matuszewski, S. Estimating the preappearance interval from temperature in Creophilus maxillosus L (Coleoptera: Staphylinidae) J. Forensic Sci. 2012, 57, 136–145. [Google Scholar] [CrossRef]
- Matuszewski, S. A general approach for postmortem interval based on uniformly distributed and interconnected qualitative indicators. Int. J. Leg. Med. 2017, 131, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.D. A forensic entomological analysis can yield an estimate of postmortem interval, and not just a minimum postmortem interval: An explanation and illustration using a case. J. Forensic Sci. 2019, 64, 634–637. [Google Scholar] [CrossRef]
- Tarone, AM.; Benoit, JB. Insect development as it relates to forensic entomology, In Forensic Entomology-The Utility of Arthropods in Legal Investigations, 3rd ed., Byrd, J.H., Tomberlin, J.K., Taylor & Francis Group, LLC, 2019; pp. 226-252.
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Matuszewski, S. Post-Mortem Interval Estimation Based on Insect Evidence: Current Challenges. Insects 2021, 12, 314. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).