Submitted:
12 September 2025
Posted:
16 September 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results
2.1. Toxin Events
2.2. Physical Environment
2.3. Biological Environment
2.4. Chemical Environment


3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Online Data Acquisition
5.2. SPATT Sampling
5.3. Untargeted LCMS/MS
5.4. Dereplication and Molecular Networking
5.5. Statistics and Visualization
Supplementary Materials
Conflicts of Interest
Abbreviations
| ACN | Acetonitrile |
| ASP | Amnesiac shellfish poisoning |
| BEUTI | Biologically effective upwelling transport index |
| CCS | California current system |
| Chl | Chlorophyll |
| cDA | Cellular domoic acid |
| DA | Domoic acid |
| ENSO | El Niño Southern Oscillation |
| ESI | Electrospray ionization |
| FBMN | Feature based molecular networking |
| GF/F | Glass fiber filter |
| GNPS | Global natural products social molecular networking |
| HABs | Harmful algal blooms |
| LCMS/MS | Liquid chromotagraphy tandem mass spectrometry |
| MeOH | Methanol |
| MQ | Milli-Q water |
| NDBC | National data buoy center |
| NPA | Natural product atlas |
| PCA | Principal component analysis |
| pDA | Particulate domoic acid |
| RAI | Relative abundant index |
| SCW | Santa Cruz Municipal Wharf |
| SPATT | Solid phase adsorption toxin tracking |
References
- Tsikoti, C.; Genitsaris, S. Review of Harmful Algal Blooms in the Coastal Mediterranean Sea, with a Focus on Greek Waters. Diversity 2021, 13, 396. [Google Scholar] [CrossRef]
- Anderson, C.R.; Berdalet, E.; Kudela, R.M.; Cusack, C.K.; Silke, J.; O’Rourke, E.; Dugan, D.; McCammon, M.; Newton, J.A.; Moore, S.K.; et al. Scaling Up From Regional Case Studies to a Global Harmful Algal Bloom Observing System. Frontiers in Marine Science 2019, 6. [Google Scholar] [CrossRef]
- Petroff, R.; Hendrix, A.; Shum, S.; Grant, K.S.; Lefebvre, K.A.; Burbacher, T.M. Public Health Risks Associated with Chronic, Low-Level Domoic Acid Exposure: A Review of the Evidence. Pharmacology and Therapeutics 2021, 227, 107865. [Google Scholar] [CrossRef]
- Bates, S.S.; Hubbard, K.A.; Lundholm, N.; Montresor, M.; Leaw, C.P. Pseudo-Nitzschia, Nitzschia, and Domoic Acid: New Research since 2011. Harmful Algae 2018, 79, 3–43. [Google Scholar] [CrossRef]
- Bargu, S.; Powell, C.L.; Wang, Z.; Doucette, G.J.; Silver, M.W. Note on the Occurrence of Pseudo-Nitzschia Australis and Domoic Acid in Squid from Monterey Bay, CA (USA). Harmful Algae 2008, 7, 45–51. [Google Scholar] [CrossRef]
- Bernstein, S.; Ruiz-Cooley, R.I.; Kudela, R.; Anderson, C.R.; Dunkin, R.; Field, J.C. Stable Isotope Analysis Reveals Differences in Domoic Acid Accumulation and Feeding Strategies of Key Vectors in a California Hotspot for Outbreaks. Harmful Algae 2021, 110, 102117. [Google Scholar] [CrossRef]
- Kvrgić, K.; Lešić, T.; Džafić, N.; Pleadin, J. Occurrence and Seasonal Monitoring of Domoic Acid in Three Shellfish Species from the Northern Adriatic Sea. Toxins 2022, 14, 33. [Google Scholar] [CrossRef]
- Scholin, C.A.; Gulland, F.; Doucette, G.J.; Benson, S.; Busman, M.; Chavez, F.P.; Cordaro, J.; DeLong, R.; De Vogelaere, A.; Harvey, J.; et al. Mortality of Sea Lions along the Central California Coast Linked to a Toxic Diatom Bloom. Nature 2000, 403, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Work, T.M.; Barr, B.; Beale, A.M.; Fritz, L.; Michael, A.; Wright, J.L.C.; Url, S. Epidemiology of Domoic Acid Poisoning in Brown Pelicans ( Pelecanus Occidentalis ) and Brandt’ s Cormorants (Phalacrocorax Penicillatus ) in California. Journal of Zoo and Wildlife Medicine 1993, 24, 54–62. [Google Scholar]
- Moriarty, M.E.; Tinker, M.T.; Miller, M.A.; Tomoleoni, J.A.; Staedler, M.M.; Fujii, J.A.; Batac, F.I.; Dodd, E.M.; Kudela, R.M.; Zubkousky-White, V.; et al. Exposure to Domoic Acid Is an Ecological Driver of Cardiac Disease in Southern Sea Otters✰. Harmful Algae 2021, 101, 101973. [Google Scholar] [CrossRef]
- Lefebvre, K.A.; Quakenbush, L.; Frame, E.; Huntington, K.B.; Sheffield, G.; Stimmelmayr, R.; Bryan, A.; Kendrick, P.; Ziel, H.; Goldstein, T.; et al. Prevalence of Algal Toxins in Alaskan Marine Mammals Foraging in a Changing Arctic and Subarctic Environment. Harmful Algae 2016, 55, 13–24. [Google Scholar] [CrossRef]
- Mazzillo, F.F.M.; Pomeroy, C.; Kuo, J.; Ramondi, P.T.; Prado, R.; Silver, M.W. Angler Exposure to Domoic Acid via Consumption of Contaminated Fishes. Aquatic Biology 2010, 9, 1–12. [Google Scholar] [CrossRef]
- Dyson, K.; Huppert, D.D. Regional Economic Impacts of Razor Clam Beach Closures Due to Harmful Algal Blooms (HABs) on the Pacific Coast of Washington. Harmful Algae 2010, 9, 264–271. [Google Scholar] [CrossRef]
- McCabe, R.M.; Hickey, B.M.; Kudela, R.M.; Lefebvre, K.A.; Adams, N.G.; Bill, B.D.; Gulland, F.M.D.; Thomson, R.E.; Cochlan, W.P.; Trainer, V.L. An Unprecedented Coastwide Toxic Algal Bloom Linked to Anomalous Ocean Conditions. Geophysical Research Letters 2016, 43, 10,366–10,376. [Google Scholar] [CrossRef]
- Kenitz, K.M.; Anderson, C.R.; Carter, M.L.; Eggleston, E.; Seech, K.; Shipe, R.; Smith, J.; Orenstein, E.C.; Franks, P.J.S.; Jaffe, J.S.; et al. Environmental and Ecological Drivers of Harmful Algal Blooms Revealed by Automated Underwater Microscopy. Limnology & Oceanography 2023, 68, 598–615. [Google Scholar] [CrossRef]
- Chavez, F.P.; Messié, M. A Comparison of Eastern Boundary Upwelling Ecosystems. Progress in Oceanography 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Skogsberg, T. Hydrography of Monterey Bay, California. Thermal Conditions, 1929-1933. Transactions of the American Philosophical Society 1936, 29, 125–152. [Google Scholar] [CrossRef]
- Kudela, R.; Chavez, F. The Impact of Coastal Runoff on Ocean Color during an El Niño Year in Central California. Deep Sea Research Part II: Topical Studies in Oceanography 2004, 51, 1173–1185. [Google Scholar] [CrossRef]
- Sandoval-Belmar, M.; Smith, J.; Moreno, A.R.; Anderson, C.; Kudela, R.M.; Sutula, M.; Kessouri, F.; Caron, D.A.; Chavez, F.P.; Bianchi, D. A Cross-Regional Examination of Patterns and Environmental Drivers of Pseudo-Nitzschia Harmful Algal Blooms along the California Coast. Harmful Algae 2023, 126, 102435. [Google Scholar] [CrossRef]
- Schnetzer, A.; Jones, B.H.; Schaffner, R.A.; Cetinic, I.; Fitzpatrick, E.; Miller, P.E.; Seubert, E.L.; Caron, D.A. Coastal Upwelling Linked to Toxic Pseudo-Nitzschia Australis Blooms in Los Angeles Coastal Waters, 2005–2007. Journal of Plankton Research 2013, 35, 1080–1092. [Google Scholar] [CrossRef]
- Brunson, J.K.; Thukral, M.; Ryan, J.P.; Anderson, C.R.; Kolody, B.C.; James, C.C.; Chavez, F.P.; Leaw, C.P.; Rabines, A.J.; Venepally, P.; et al. Molecular Forecasting of Domoic Acid during a Pervasive Toxic Diatom Bloom. Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2319177121. [Google Scholar] [CrossRef]
- Hasle, G.R. Are Most of the Domoic Acid-Producing Species of the Diatom Genus Pseudo-Nitzschia Cosmopolites? Harmful Algae 2002, 1, 137–146. [Google Scholar] [CrossRef]
- Harðardóttir, S.; Pančić, M.; Tammilehto, A.; Krock, B.; Møller, E.; Nielsen, T.; Lundholm, N. Dangerous Relations in the Arctic Marine Food Web: Interactions between Toxin Producing Pseudo-Nitzschia Diatoms and Calanus Copepodites. Marine Drugs 2015, 13, 3809–3835. [Google Scholar] [CrossRef] [PubMed]
- Lundholm, N.; Krock, B.; John, U.; Skov, J.; Cheng, J.; Pančić, M.; Wohlrab, S.; Rigby, K.; Nielsen, T.G.; Selander, E.; et al. Induction of Domoic Acid Production in Diatoms—Types of Grazers and Diatoms Are Important. Harmful Algae 2018, 79, 64–73. [Google Scholar] [CrossRef]
- Sison-Mangus, M.P.; Jiang, S.; Kudela, R.M.; Mehic, S. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Graham, W.M.; Largier, J.L. Upwelling Shadows as Nearshore Retention Sites: The Example of Northern Monterey Bay. Continental Shelf Research 1997, 17, 509–532. [Google Scholar] [CrossRef]
- Schulien, J.A.; Peacock, M.B.; Hayashi, K.; Raimondi, P.; Kudela, R.M. Phytoplankton and Microbial Abundance and Bloom Dynamics in the Upwelling Shadow of Monterey Bay, California, from 2006 to 2013. Marine Ecology Progress Series 2017, 572, 43–56. [Google Scholar] [CrossRef]
- Trapp, A.; Hayashi, K.; Fiechter, J.; Kudela, R.M. What Happens in the Shadows - Influence of Seasonal and Non-Seasonal Dynamics on Domoic Acid Monitoring in the Monterey Bay Upwelling Shadow. Harmful Algae 2023, 129, 102522. [Google Scholar] [CrossRef]
- MacKenzie, L.A. In Situ Passive Solid-Phase Adsorption of Micro-Algal Biotoxins as a Monitoring Tool. Current Opinion in Biotechnology 2010, 21, 326–331. [Google Scholar] [CrossRef]
- Roué, M.; Darius, H.T.; Chinain, M. Solid Phase Adsorption Toxin Tracking (Spatt) Technology for the Monitoring of Aquatic Toxins: A Review. Toxins 2018, 10. [Google Scholar] [CrossRef]
- Thukral, M.; Allen, A.E.; Petras, D. Progress and Challenges in Exploring Aquatic Microbial Communities Using Non-Targeted Metabolomics. The ISME Journal 2023, 17, 2147–2159. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, A.; Salib, M.N.; Chase, A.B.; Hammerlindl, H.; Muskat, M.N.; Luedtke, S.; Da Silva, E.B.; O’Donoghue, A.J.; Wu, L.F.; Altschuler, S.J.; et al. Small Molecule in Situ Resin Capture Provides a Compound First Approach to Natural Product Discovery. Nat Commun 2024, 15, 5230. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.P.; Kudela, R.M.; Birch, J.M.; Blum, M.; Bowers, H.A.; Chavez, F.P.; Doucette, G.J.; Hayashi, K.; Marin, R.; Mikulski, C.M.; et al. Causality of an Extreme Harmful Algal Bloom in Monterey Bay, California, during the 2014–2016 Northeast Pacific Warm Anomaly. Geophysical Research Letters 2017, 44, 5571–5579. [Google Scholar] [CrossRef]
- Paduan, J.D.; Cook, M.S.; Tapia, V.M. Patterns of Upwelling and Relaxation around Monterey Bay Based on Long-Term Observations of Surface Currents from High Frequency Radar. Deep Sea Research Part II: Topical Studies in Oceanography 2018, 151, 129–136. [Google Scholar] [CrossRef]
- Trainer, V.L.; Hickey, B.M.; Horner, R.A. Biological and Physical Dynamics of Domoic Acid Production off the Washington Coast. Limnol. Oceanogr. 2002, 47, 1438–1446. [Google Scholar] [CrossRef]
- Tweddle, J.; Strutton, P.; Foley, D.; O’Higgins, L.; Wood, A.; Scott, B.; Everroad, R.; Peterson, W.; Cannon, D.; Hunter, M.; et al. Relationships among Upwelling, Phytoplankton Blooms, and Phycotoxins in Coastal Oregon Shellfish. Mar. Ecol. Prog. Ser. 2010, 405, 131–145. [Google Scholar] [CrossRef]
- Bowers, H.A.; Ryan, J.P.; Hayashi, K.; Woods, A.L.; Marin, R.; Smith, G.J.; Hubbard, K.A.; Doucette, G.J.; Mikulski, C.M.; Gellene, A.G.; et al. Diversity and Toxicity of Pseudo-Nitzschia Species in Monterey Bay: Perspectives from Targeted and Adaptive Sampling. Harmful Algae 2018, 78, 129–141. [Google Scholar] [CrossRef]
- Lecher, A.L.; Mackey, K.; Kudela, R.; Ryan, J.; Fisher, A.; Murray, J.; Paytan, A. Nutrient Loading through Submarine Groundwater Discharge and Phytoplankton Growth in Monterey Bay, CA. Environ. Sci. Technol. 2015, 49, 6665–6673. [Google Scholar] [CrossRef]
- Lane, J.Q.; Raimondi, P.T.; Kudela, R.M. Development of a Logistic Regression Model for the Prediction of Toxigenic Pseudo-Nitzschia Blooms in Monterey Bay, California. Marine Ecology Progress Series 2009, 383, 37–51. [Google Scholar] [CrossRef]
- Lelong, A.; Hégaret, H.; Soudant, P.; Bates, S.S. Pseudo-Nitzschia (Bacillariophyceae) Species, Domoic Acid and Amnesic Shellfish Poisoning: Revisiting Previous Paradigms. Phycologia 2012, 51, 168–216. [Google Scholar] [CrossRef]
- Pednekar, S.M.; Bates, S.S.; Kerkar, V.; Matondkar, S.G.P. Environmental Factors Affecting the Distribution of Pseudo-Nitzschia in Two Monsoonal Estuaries of Western India and Effects of Salinity on Growth and Domoic Acid Production by P. Pungens. Estuaries and Coasts 2018, 41, 1448–1462. [Google Scholar] [CrossRef]
- Ryan, J.P.; Fischer, A.M.; Kudela, R.M.; Gower, J.F.R.; King, S.A.; Marin, R.; Chavez, F.P. Influences of Upwelling and Downwelling Winds on Red Tide Bloom Dynamics in Monterey Bay, California. Continental Shelf Research 2009, 29, 785–795. [Google Scholar] [CrossRef]
- Ryan, J.P.; Gower, J.F.R.; King, S.A.; Bissett, W.P.; Fischer, A.M.; Kudela, R.M.; Kolber, Z.; Mazzillo, F.; Rienecker, E.V.; Chavez, F.P. A Coastal Ocean Extreme Bloom Incubator: COASTAL BLOOM INCUBATOR. Geophys. Res. Lett. 2008, 35, n/a–n/a. [Google Scholar] [CrossRef]
- Quijano-Scheggia, S.I.; Olivos-Ortiz, A.; Garcia-Mendoza, E.; Sánchez-Bravo, Y.; Sosa-Avalos, R.; Salas Marias, N.; Lim, H.C. Phylogenetic Relationships of Pseudo-Nitzschia Subpacifica (Bacillariophyceae) from the Mexican Pacific, and Its Production of Domoic Acid in Culture. PLoS ONE 2020, 15, e0231902. [Google Scholar] [CrossRef]
- Heaney, S.I.; Eppley, R.W. Light, Temperature and Nitrogen as Interacting Factors Affecting Diel Vertical Migrations of Dinoflagellates in Culture. J Plankton Res 1981, 3, 331–344. [Google Scholar] [CrossRef]
- Haroardóttir, S.; Wohlrab, S.; Hjort, D.M.; Krock, B.; Nielsen, T.G.; John, U.; Lundholm, N. Transcriptomic Responses to Grazing Reveal the Metabolic Pathway Leading to the Biosynthesis of Domoic Acid and Highlight Different Defense Strategies in Diatoms. BMC Molecular Biology 2019, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Selander, E.; Berglund, E.C.; Engström, P.; Berggren, F.; Eklund, J.; Harðardóttir, S.; Lundholm, N.; Grebner, W.; Andersson, M.X. Copepods Drive Large-Scale Trait-Mediated Effects in Marine Plankton. Science Advances 2019, 5, 3–9. [Google Scholar] [CrossRef]
- Amin, S.A.; Parker, M.S.; Armbrust, E.V. Interactions between Diatoms and Bacteria. Microbiol Mol Biol Rev 2012, 76, 667–684. [Google Scholar] [CrossRef]
- Koester, I.; Quinlan, Z.A.; Nothias, L.; White, M.E.; Rabines, A.; Petras, D.; Brunson, J.K.; Dührkop, K.; Ludwig, M.; Böcker, S.; et al. Illuminating the Dark Metabolome of Pseudo-nitzschia –Microbiome Associations. Environmental Microbiology 2022, 24, 5408–5424. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Takata, Y.; Kodama, M. Direct Contact between Pseudo-Nitzschia Multiseries and Bacteria Is Necessary for the Diatom to Produce a High Level of Domoic Acid. Fish Sci 2009, 75, 771–776. [Google Scholar] [CrossRef]
- Sison-Mangus, M.P.; Jiang, S.; Tran, K.N.; Kudela, R.M. Host-Specific Adaptation Governs the Interaction of the Marine Diatom, Pseudo-Nitzschia and Their Microbiota. The ISME Journal 2014, 8, 63–76. [Google Scholar] [CrossRef]
- Brunson, J.K.; McKinnie, S.M.K.; Chekan, J.R.; McCrow, J.P.; Miles, Z.D.; Bertrand, E.M.; Bielinski, V.A.; Luhavaya, H.; Oborník, M.; Smith, G.J.; et al. Biosynthesis of the Neurotoxin Domoic Acid in a Bloom-Forming Diatom. Science 2018, 361, 1356–1358. [Google Scholar] [CrossRef]
- Steen, A.D.; Kusch, S.; Abdulla, H.A.; Cakić, N.; Coffinet, S.; Dittmar, T.; Fulton, J.M.; Galy, V.; Hinrichs, K.-U.; Ingalls, A.E.; et al. Analytical and Computational Advances, Opportunities, and Challenges in Marine Organic Biogeochemistry in an Era of “Omics. ” Front. Mar. Sci. 2020, 7, 718. [Google Scholar] [CrossRef]
- Zendong, Z.; Bertrand, S.; Herrenknecht, C.; Abadie, E.; Jauzein, C.; Lemée, R.; Gouriou, J.; Amzil, Z.; Hess, P. Passive Sampling and High Resolution Mass Spectrometry for Chemical Profiling of French Coastal Areas with a Focus on Marine Biotoxins. Environmental Science and Technology 2016, 50, 8522–8529. [Google Scholar] [CrossRef] [PubMed]
- Tatters, A.O.; Smith, J.; Kudela, R.M.; Hayashi, K.; Howard, M.Da.; Donovan, A.R.; Loftin, K.A.; Caron, D.A. The Tide Turns: Episodic and Localized Cross-Contamination of a California Coastline with Cyanotoxins. Harmful Algae 2021, 103, 102003. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nature Biotechnology 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Jacox, M.G.; Edwards, C.A.; Hazen, E.L.; Bograd, S.J. Coastal Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the U.S. West Coast. J. Geophys. Res. Oceans 2018, 123, 7332–7350. [Google Scholar] [CrossRef]
- Miller, P.E.; Scholin, C.A. IDENTIFICATION AND ENUMERATION OF CULTURED AND WILD PSEUDO-NITZSCHIA (BACILLARIOPHYCEAE) USING SPECIES-SPECIFIC LSU rRNA-TARGETED FLUORESCENT PROBES AND FILTER-BASED WHOLE CELL HYBRIDIZATION. Journal of Phycology 1998, 34, 371–382. [Google Scholar] [CrossRef]
- Howard, M.D.A.; Hayashi, K.; Smith, J.; Kudela, R.; Caron, D. Standard Operating Procedure for Solid Phase Adsorption Toxin Testing (SPATT) Assemblage and Extraction of HAB Toxins. 2018.
- Bateman, R.H.; Carruthers, R.; Hoyes, J.B.; Jones, C.; Langridge, J.I.; Millar, A.; Vissers, J.P.C. A Novel Precursor Ion Discovery Method on a Hybrid Quadrupole Orthogonal Acceleration Time-of-Flight (Q-TOF) Mass Spectrometer for Studying Protein Phosphorylation. J. Am. Soc. Mass Spectrom. 2002, 13, 792–803. [Google Scholar] [CrossRef] [PubMed]
- van Santen, J.A.; Poynton, E.F.; Iskakova, D.; McMann, E.; Alsup, T.A.; Clark, T.N.; Fergusson, C.H.; Fewer, D.P.; Hughes, A.H.; McCadden, C.A.; et al. The Natural Products Atlas 2.0: A Database of Microbially-Derived Natural Products. Nucleic Acids Research 2022, 50, D1317–D1323. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In Silico Fragmentation for Computer Assisted Identification of Metabolite Mass Spectra. BMC Bioinformatics 2010, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R: A Language and Environment for Statistical Computing. 2022.
- Kassambra, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020.
- Lê, S.; Josse, J.; Husson, F. FactoMineR : An R Package for Multivariate Analysis. J. Stat. Soft. 2008, 25. [Google Scholar] [CrossRef]





| Toxin Event | Mean (µg L-1) | Duration (days) |
|---|---|---|
| Apr-May, 2023 | 0.16 | 35 |
| Feb-Mar, 2024 | 0.12 | 35 |
| Mar-Jun, 2014 | 2.41 (Max) | 85 |
| May-Sept, 2016 | 0.73 | 133 (Max) |
| Mean | 0.29 | 27 |
| ESI Mode | Only 2023 | Only 2024 | Both years | m/z range | Intensity |
|---|---|---|---|---|---|
| Positive | 148 | 161 | 3269 | 300-1195 | 1.3-183267.6 |
| Negative | 42 | 93 | 3646 | 300-1199 | 0.2-1888801.9 |
| Total | 6915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
