Submitted:
11 September 2025
Posted:
15 September 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Methodology
Discussion and Conclusion
References
- Einstein, A. Zur Elektrodynamik bewegter Körper. Annalen der Physik 1905, 17(10), 891–921. [Google Scholar] [CrossRef]
- Minkowski, H. Raum und Zeit. Physikalische Zeitschrift 1908, 9, 104–111. [Google Scholar]
- Cartan, E. Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. Comptes Rendus de l'Académie des Sciences 1922, 174, 593–595. [Google Scholar]
- Hehl, F. W.; Von der Heyde, P.; Kerlick, G. D.; Nester, J. M. General relativity with spin and torsion: Foundations and prospects. Reviews of Modern Physics 1976, 48(3), 393–416. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Sons, 1972. [Google Scholar]
- Misner, C. W.; Thorne, K. S.; Wheeler, J. A. Gravitation; W. H. Freeman, 1973. [Google Scholar]
- Carroll, S. M. Spacetime and Geometry: An Introduction to General Relativity; Addison Wesley, 2004. [Google Scholar]
- Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe; Jonathan Cape, 2004. [Google Scholar]
- Wald, R. M. General Relativity; University of Chicago Press, 1984. [Google Scholar]
- Hawking, S. W.; Ellis, G. F. R. The Large Scale Structure of Space-Time; Cambridge University Press, 1973. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press, 1995. [Google Scholar]
- Peskin, M. E.; Schroeder, D. V. An Introduction to Quantum Field Theory; Addison-Wesley, 1995. [Google Scholar]
- Itzykson, C.; Zuber, J. B. Quantum Field Theory; McGraw-Hill, 1980. [Google Scholar]
- Ryder, L. H. Quantum Field Theory; Cambridge University Press, 1996. [Google Scholar]
- Bailin, D.; Love, A. Introduction to Gauge Field Theory; Institute of Physics Publishing, 1993. [Google Scholar]
- Ehresmann, C. Les connexions infinitésimales dans un espace fibré différentiable; Colloque de topologie, 1950; pp. 29–55. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience Publishers, 1963. [Google Scholar]
- Spivak, M. Differential Geometry; Publish or Perish, 1979. [Google Scholar]
- Abraham, R.; Marsden, J. E. Foundations of Mechanics; Benjamin/Cummings, 1978. [Google Scholar]
- Arnold, V. I. Mathematical Methods of Classical Mechanics; Springer-Verlag, 1989. [Google Scholar]
- Goldstein, H.; Poole, C.; Safko, J. Classical Mechanics; Addison Wesley, 2001. [Google Scholar]
- Landau, L. D.; Lifshitz, E. M. The Classical Theory of Fields; Pergamon Press, 1975. [Google Scholar]
- Jackson, J. D. Classical Electrodynamics; John Wiley & Sons, 1999. [Google Scholar]
- Griffiths, D. J. Introduction to Electrodynamics; Cambridge University Press, 2017. [Google Scholar]
- French, A. P. Special Relativity; W. W. Norton & Company, 1968. [Google Scholar]
- Rindler, W. Introduction to Special Relativity; Oxford University Press, 2006. [Google Scholar]
- Taylor, E. F.; Wheeler, J. A. Spacetime Physics; W. H. Freeman, 1992. [Google Scholar]
- Møller, C. The Theory of Relativity; Oxford University Press, 1972. [Google Scholar]
- Sexl, R. U.; Urbantke, H. K. Relativity, Groups, Particles; Springer-Verlag, 2001. [Google Scholar]
- Will, C. M. The confrontation between general relativity and experiment. Living Reviews in Relativity 2014, 17(1), 4. [Google Scholar] [CrossRef]
- Hafele, J. C.; Keating, R. E. Around-the-world atomic clocks: Predicted relativistic time gains. Science 1972, 177(4044), 166–168. [Google Scholar] [CrossRef]
- Pound, R. V.; Rebka, G. A., Jr. Apparent weight of photons. Physical Review Letters 1960, 4(7), 337–341. [Google Scholar] [CrossRef]
- Ives, H. E.; Stilwell, G. R. An experimental study of the rate of a moving atomic clock. Journal of the Optical Society of America 1938, 28(7), 215–226. [Google Scholar] [CrossRef]
- Kennedy, R. J.; Thorndike, E. M. Experimental establishment of the relativity of time. Physical Review 1932, 42(3), 400–418. [Google Scholar] [CrossRef]
- Michelson, A. A.; Morley, E. W. On the relative motion of the Earth and the luminiferous ether. American Journal of Science 1887, 34(203), 333–345. [Google Scholar] [CrossRef]
- Lorentz, H. A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proceedings of the Royal Netherlands Academy of Arts and Sciences 1904, 6, 809–831. [Google Scholar]
- Poincaré, H. Sur la dynamique de l'électron. Comptes Rendus de l'Académie des Sciences 1905, 140, 1504–1508. [Google Scholar] [CrossRef]
- Dirac, P. A. M. The quantum theory of the electron. Proceedings of the Royal Society of London 1928, 117(778), 610–624. [Google Scholar]
- Feynman, R. P. The theory of positrons. Physical Review 1949, 76(6), 749–759. [Google Scholar] [CrossRef]
- Schwinger, J. On quantum-electrodynamics and the magnetic moment of the electron. Physical Review 1948, 73(4), 416–417. [Google Scholar] [CrossRef]
- Tomonaga, S. I. On a relativistically invariant formulation of the quantum theory of wave fields. Progress of Theoretical Physics 1946, 1(2), 27–42. [Google Scholar] [CrossRef]
- Yang, C. N.; Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Physical Review 1954, 96(1), 191–195. [Google Scholar] [CrossRef]
- Higgs, P. W. Broken symmetries and the masses of gauge bosons. Physical Review Letters 1964, 13(16), 508–509. [Google Scholar] [CrossRef]
- Weinberg, S. A model of leptons. Physical Review Letters 1967, 19(21), 1264–1266. [Google Scholar] [CrossRef]
- Glashow, S. L. Partial-symmetries of weak interactions. Nuclear Physics 1961, 22(4), 579–588. [Google Scholar] [CrossRef]
- Salam, A. Weak and electromagnetic interactions. In Proceedings of the 8th Nobel Symposium; 1968; pp. 367–377. [Google Scholar]
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 1933, 6, 110–127. [Google Scholar]
- Rubin, V. C.; Ford, W. K., Jr. Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophysical Journal 1970, 159, 379–403. [Google Scholar] [CrossRef]
- Peebles, P. J. E. Principles of Physical Cosmology; Princeton University Press, 1993. [Google Scholar]
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics 2020, 641, A6. [Google Scholar]
- Riess, A. G.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal 1998, 116(3), 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophysical Journal 1999, 517(2), 565–586. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Reviews of Modern Physics 1989, 61(1), 1–23. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant—the weight of the vacuum. Physics Reports 2003, 380(5-6), 235–320. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P. G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Physics Reports 2012, 513(1-3), 1–189. [Google Scholar] [CrossRef]
- Sotiriou, T. P.; Faraoni, V. f(R) theories of gravity. Reviews of Modern Physics 2010, 82(1), 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Reviews in Relativity 2010, 13(1), 3. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended theories of gravity. Physics Reports 2011, 509(4-5), 167–321. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S. D. Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Physics Reports 2011, 505(2-4), 59–144. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R. H. Mach's principle and a relativistic theory of gravitation. Physical Review 1961, 124(3), 925–935. [Google Scholar] [CrossRef]
- Kaluza, T. Zum Unitätsproblem der Physik; Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 1921; pp. 966–972. [Google Scholar]
- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik 1926, 37(12), 895–906. [Google Scholar] [CrossRef]
- Green, M. B.; Schwarz, J. H.; Witten, E. Superstring Theory; Cambridge University Press, 1987. [Google Scholar]
- Polchinski, J. String Theory; Cambridge University Press, 1998. [Google Scholar]
- Randall, L.; Sundrum, R. Large mass hierarchy from a small extra dimension. Physical Review Letters 1999, 83(17), 3370–3373. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. The hierarchy problem and new dimensions at a millimeter. Physics Letters B 1998, 429(3-4), 263–272. [Google Scholar] [CrossRef]
- Horava, P. Quantum gravity at a Lifshitz point. Physical Review D 2009, 79(8), 084008. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of spacetime: the Einstein equation of state. Physical Review Letters 1995, 75(7), 1260–1263. [Google Scholar] [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. Journal of High Energy Physics 2011, 2011(4), 29. [Google Scholar] [CrossRef]
- Padmanabhan, T. Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics 2010, 73(4), 046901. [Google Scholar] [CrossRef]
- Bekenstein, J. D. Black holes and entropy. Physical Review D 1973, 7(8), 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S. W. Particle creation by black holes. Communications in Mathematical Physics 1975, 43(3), 199–220. [Google Scholar] [CrossRef]
- Unruh, W. G. Notes on black-hole evaporation. Physical Review D 1976, 14(4), 870–892. [Google Scholar] [CrossRef]
- Davies, P. C. W. Scalar production in Schwarzschild and Rindler metrics. Journal of Physics A: Mathematical and General 1975, 8(4), 609–616. [Google Scholar] [CrossRef]
- Birrell, N. D.; Davies, P. C. W. Quantum Fields in Curved Space; Cambridge University Press, 1982. [Google Scholar]
- DeWitt, B. S. Quantum field theory in curved spacetime. Physics Reports 1975, 19(6), 295–357. [Google Scholar] [CrossRef]
- Fulling, S. A. Nonuniqueness of canonical field quantization in Riemannian space-time. Physical Review D 1973, 7(10), 2850–2862. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes, I. Physical Review 1969, 183(5), 1057–1068. [Google Scholar] [CrossRef]
- Kostelecký, V. A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Physical Review D 1989, 39(2), 683–685. [Google Scholar] [CrossRef] [PubMed]
- Mattingly, D. Modern tests of Lorentz invariance. Living Reviews in Relativity 2005, 8(1), 5. [Google Scholar] [CrossRef]
- Liberati, S. Tests of Lorentz invariance: a 2013 update. Classical and Quantum Gravity 2013, 30(13), 133001. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Quantum-spacetime phenomenology. Living Reviews in Relativity 2013, 16(1), 5. [Google Scholar] [CrossRef]
- Hooft, G. T. Dimensional reduction in quantum gravity. arXiv preprint gr-qc/9310026 1993. [Google Scholar]
- Susskind, L. The world as a hologram. Journal of Mathematical Physics 1995, 36(11), 6377–6396. [Google Scholar] [CrossRef]
- Maldacena, J. The large-N limit of superconformal field theories and supergravity. International Journal of Theoretical Physics 1999, 38(4), 1113–1133. [Google Scholar] [CrossRef]
- Witten, E. Anti de Sitter space and holography. Advances in Theoretical and Mathematical Physics 1998, 2(2), 253–291. [Google Scholar] [CrossRef]
- Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M. Gauge theory correlators from non-critical string theory. Physics Letters B 1998, 428(1-2), 105–114. [Google Scholar] [CrossRef]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from the anti–de Sitter space/conformal field theory correspondence. Physical Review Letters 2006, 96(18), 181602. [Google Scholar] [CrossRef]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. General Relativity and Gravitation 2010, 42(10), 2323–2329. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
