Submitted:
11 September 2025
Posted:
12 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Computational Studies
2.1.1. Quantum Theoretical Computations
2.1.2. Molecular Simulation Dynamics
2.1.3. NBO Analysis
3. Results and Discussion
3.1. TCC as an Efficient Inhibitor for Ti6Al4V Alloy
3.1.1. PPCs
3.1.2. Impedance Analysis
3.1.3. OCP Measurements
3.2. The Impact of Temperature and Thermodynamic Investigations
3.2.1. PPCs
3.2.2. Impedance Analysis
3.3. Adsorption Isotherm
3.4. Surface Morphology
3.5. Contact Angle (CA) Approach
3.6. Atomic Force Microscopy (AFM)
3.7. DFT Approach
3.7.1. Natural Bond Orbital (NBO) Analysis
3.7.2. Molecular Simulation Dynamics
5. Conclusions
- The TCC inhibitor’s activity increased with an elevation in its concentration (reaching 92.40% when 200 mg/l of TCC was used) and reduced with a temperature rise.
- The mitigation power of the TCC can be clarified by its physical adsorption onto the Ti6A14V surface, which follows the Langmuir adsorption model.
- When TCC is present at 200 mg/l, the polarization resistance (RP) rises from 7.85 kΩ cm2 for the blank solution to 78.88 kΩ cm2.
- The apparent activation energy of the corrosion is higher in the presence of TCC (35.79 kJ mol-1) than in its absence (146 kJ mol-1).
- Several techniques, such as AFM, CA, SEM, and UV-visible, were used to confirm the TCC adsorption and formation of a protective film on the Ti-alloy.
- The parameters derived from quantum chemical calculations (DFT), molecular dynamics simulations (MD), and NOB agreed well with the experimental data.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cvijović-Alagić, I.; Cvijović, Z.; Bajat, J.; Rakin, M. , Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corrosion Science 2014, 83, 245–254. [Google Scholar] [CrossRef]
- Su, C.; Yu, H.; Wang, Z.; Yang, J.; Zeng, X. , Controlling the tensile and fatigue properties of selective laser melted Ti–6Al–4V alloy by post treatment. Journal of Alloys and Compounds 2021, 857, 157552. [Google Scholar] [CrossRef]
- Okazaki, Y.; Tateishi, T.; Ito, Y. Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films. Materials Transactions, JIM 1997, 38 (1), 78-84. [CrossRef]
- Tsai, M.-T.; Chen, Y.-W.; Chao, C.-Y.; Jang, J. S.; Tsai, C.-C.; Su, Y.-L.; Kuo, C.-N. , Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion. Journal of Alloys and Compounds 2020, 816, 152615. [Google Scholar] [CrossRef]
- Choi, Y. R.; Sun, S. D.; Liu, Q.; Brandt, M.; Qian, M. , Influence of deposition strategy on the microstructure and fatigue properties of laser metal deposited Ti-6Al-4V powder on Ti-6Al-4V substrate. International Journal of Fatigue 2020, 130, 105236. [Google Scholar] [CrossRef]
- Zhou, X.; Leng, A.; Li, C.; Tang, T.; Xu, J.; Wei, B.; Liao, B.; Sun, C. , The role of oral microbiota in accelerating corrosion of Ti6Al4V: An electrochemical study. Materials Chemistry and Physics 2025, 340, 130836. [Google Scholar] [CrossRef]
- Torbati-Sarraf, H.; Ding, L.; Khakpour, I.; Daviran, G.; Poursaee, A. , Unraveling the corrosion of the Ti–6Al–4V orthopedic alloy in phosphate-buffered saline (PBS) solution: Influence of frequency and potential. Corrosion and Materials Degradation 2024, 5(2), 276–288. [Google Scholar] [CrossRef]
- Yu, F.; Addison, O.; Davenport, A. J. , A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta biomaterialia 2015, 26, 355–365. [Google Scholar] [CrossRef]
- Raghavendra, G. M.; Varaprasad, K.; Jayaramudu, T. , Biomaterials: design, development and biomedical applications. In Nanotechnology applications for tissue engineering, Elsevier: 2015; pp 21-44. [CrossRef]
- Boraei, N. F. E.; Ibrahim, M. A.; Rehim, S. S. A. E.; Elshamy, I. H. , Electrochemical corrosion behavior of β-Ti alloy in a physiological saline solution and the impact of H2O2 and albumin. Journal of Solid State Electrochemistry 2024, 28(7), 2243–2256. [Google Scholar] [CrossRef]
- Boraei, N. F. E.; Elshamy, I. H.; Ibrahim, M. A. A comparative study on the electrochemical corrosion behaviour of biomedical β-titanium alloy with TiAlV and titanium in hank’s physiological solution and the impact of reactive oxygen species and immersion time. Journal of Bio-and Tribo-Corrosion 2024, 10 (2), 38. [CrossRef]
- Shivaram, M.; Arya, S. B.; Nayak, J.; Panigrahi, B. B. , Electrochemical Corrosion and Impedance Studies of Porous Ti–x Nb–Ag Alloy in Physiological Solution. Transactions of the Indian Institute of Metals 2020, 73, 921–928. [Google Scholar] [CrossRef]
- El Boraei, N. F.; Ibrahim, M. A.; El Rehim, S. S. A.; Elshamy, I. H. The Effect of Annealing Temperature and Immersion Time on the Active–Passive Dissolution of Biomedical Ti70Zr20Nb7. 5Ta2. 5 Alloy in Ringer’s Solution. Journal of Bio-and Tribo-Corrosion 2023, 9 (3), 62. [CrossRef]
- Höhn, S.; Braem, A.; Neirinck, B.; Virtanen, S. , Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants. Materials Science and Engineering: C 2017, 73, 798–807. [Google Scholar] [CrossRef]
- González, J.; Mirza-Rosca, J. , Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry 1999, 471(2), 109–115. [Google Scholar] [CrossRef]
- Heakal, F. E.-T.; Ghoneim, A.; Mogoda, A.; Awad, K. , Electrochemical behaviour of Ti–6Al–4V alloy and Ti in azide and halide solutions. Corrosion science 2011, 53(9), 2728–2737. [Google Scholar] [CrossRef]
- Qu, Q.; Wang, L.; Chen, Y.; Li, L.; He, Y.; Ding, Z. , Corrosion behavior of titanium in artificial saliva by lactic acid. Materials 2014, 7(8), 5528–5542. [Google Scholar] [CrossRef]
- Mareci, D.; Ungureanu, G.; Aelenei, D.; Rosca, J. M. , Electrochemical characteristics of titanium based biomaterials in artificial saliva. Materials and Corrosion 2007, 58(11), 848–856. [Google Scholar] [CrossRef]
- Elshamy, I. H.; Ibrahim, M. A.; Abdel Rehim, S. S.; El Boraei, N. F. Electrochemical characteristics of a biomedical Ti70Zr20Nb7. 5Ta2. 5 refractory high entropy alloy in an artificial saliva solution. Journal of Bio-and Tribo-Corrosion 2023, 9 (1), 10. [CrossRef]
- Barril, S.; Mischler, S.; Landolt, D. Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution. Wear 2005, 259 (1-6), 282-291. [CrossRef]
- Cao, L.; Wan, Y.; Yang, S.; Pu, J. The tribocorrosion and corrosion properties of thermally oxidized Ti6Al4V alloy in 0.9 wt.% NaCl physiological saline. Coatings 2018, 8 (8), 285. [CrossRef]
- Hrir, H.; Ait Layachi, O.; Boudouma, A.; El Bouari, A.; Ait Sidimou, A.; El Marrakchi, M.; Khoumri, E. , Electrochemical corrosion behavior of α-titanium alloys in simulated biological environments (comparative study). RSC advances 2024, 14(51), 38110–38119. [Google Scholar] [CrossRef]
- Li, L.; Feng, Y.; Liu, Y.; Wei, B.; Guo, J.; Jiao, W.; Zhang, Z.; Zhang, Q. , Titanium dioxide nanoparticles modified by salicylic acid and arginine: Structure, surface properties and photocatalytic decomposition of p-nitrophenol. Applied Surface Science 2016, 363, 627–635. [Google Scholar] [CrossRef]
- Almashhadani, H. A.; Alshujery, M. K.; Khalil, M.; Kadhem, M. M.; Khadom, A. A. , Corrosion inhibition behavior of expired diclofenac Sodium drug for Al 6061 alloy in aqueous media: Electrochemical, morphological, and theoretical investigations. Journal of Molecular Liquids 2021, 343, 117656. [Google Scholar] [CrossRef]
- Hamza, M.; Abd El Rehim, S.; Ibrahim, M. A. , Inhibition effect of hexadecyl pyridinium bromide on the corrosion behavior of some austenitic stainless steels in H2SO4 solutions. Arabian Journal of Chemistry 2013, 6(4), 413–422. [Google Scholar] [CrossRef]
- Abd El Rehim, S.; Ibrahim, M. A.; Khalid, K. , The inhibition of 4-(2′-amino-5′-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. Materials Chemistry and Physics 2001, 70(3), 268–273. [Google Scholar] [CrossRef]
- Nathiya, R.; Perumal, S.; Murugesan, V.; Raj, V. Expired drugs: environmentally safe inhibitors for aluminium corrosion in 1 M H2SO4. Journal of Bio-and Tribo-Corrosion 2018, 4 (1), 4. [CrossRef]
- Schmitt, G. , Application of inhibitors for acid media: report prepared for the European federation of corrosion working party on inhibitors. British Corrosion Journal 1984, 19(4), 165–176. [Google Scholar] [CrossRef]
- Sastri, V. S. , Corrosion inhibitors: principles and applications. Wiley New York: 1998; Vol. 1. [CrossRef]
- Ibrahim, M. A.; Elshamy, I. H.; Elshamy, M. I.; Elaraby, A. An experimental and computational investigation on the performance of cefotaxime in mitigating Ti6Al4V alloy corrosion. Corrosion Engineering, Science and Technology 2025, 1478422X251348976. [CrossRef]
- Onyeachu, I. B.; Abdel-Azeim, S.; Chauhan, D. S.; Quraishi, M. A. , Electrochemical and computational insights on the application of expired Metformin drug as a novel inhibitor for the sweet corrosion of C1018 steel. ACS omega 2020, 6(1), 65–76. [Google Scholar] [CrossRef]
- Karthikeyan, S. , Drugs/antibiotics as potential corrosion inhibitors for metals—a review. International Journal of ChemTech Research 2016, 9(6), 251–259. [Google Scholar]
- Abdallah, M.; Alfakeer, M.; El Guesmi, N.; Felaly, R. N.; Al-Juaid, S. S.; Al-abdali, F. H.; Sobhi, M. , Appraisal of expired linezolid and piperacillin as potent and harmless inhibitors for mitigation of copper corrosion in 1.0 M HNO3. 0 M HNO3. Green Chemistry Letters and Reviews 2025, 18(1), 2474131. [Google Scholar] [CrossRef]
- Radovanović, M. B.; Tasić, Z. a. Z.; Simonović, A. T.; Petrović Mihajlović, M. B.; Antonijević, M. M. Corrosion behavior of titanium in simulated body solutions with the addition of biomolecules. ACS omega 2020, 5 (22), 12768-12776. http://pubs.acs.org/journal/acsodf?ref=pdf.
- Abdallah, M.; Al-Rashidi, A.; Al-Gorair, A. S.; Al-Juaid, S. S.; Soliman, K. A. Experimental and theoretical analysis of expired doxycycline and Klacid as aluminum corrosion inhibitors in HCl. Corrosion Engineering, Science and Technology 2024, 1478422X251351692. [CrossRef]
- Kotabagi, S. D.; Rajappa, S.; Minagalavar, R. L.; Rathod, M. R.; Suma, J.; Sajjan, A. M. , Expired Lircetam drug as a corrosion inhibitor for low-carbon steel in 1 M HCl: Experimental, theoretical, and quantum chemical insights. Results in Surfaces and Interfaces 2025, 18, 100459. [Google Scholar] [CrossRef]
- Gece, G. , Drugs: A review of promising novel corrosion inhibitors. Corrosion science 2011, 53(12), 3873–3898. [Google Scholar] [CrossRef]
- Bhamburkar, S.; Khandare, S.; Patharkar, S.; Thakare, S. , Thiocolchicoside: an updated review. 2022. [CrossRef]
- Soonawalla, D. F.; Joshi, N. , Efficacy of thiocolchicoside in Indian patients suffering from low back pain associated with muscle spasm. Journal of the Indian Medical Association 2008, 106(5), 331–335. [Google Scholar]
- Ketenci, A.; Ozcan, E.; Karamursel, S. , Assessment of efficacy and psychomotor performances of thiocolchicoside and tizanidine in patients with acute low back pain. International journal of clinical practice 2005, 59(7), 764–770. [Google Scholar] [CrossRef]
- El-Mokadem, T.; Hashem, A.; Abd El-Sattar, N. E.; Dawood, E.; Abdelshafi, N. , Green synthesis, electrochemical, DFT studies and MD simulation of novel synthesized thiourea derivatives on carbon steel corrosion inhibition in 1.0 M HCl. Journal of Molecular Structure 2023, 1274, 134567. [Google Scholar] [CrossRef]
- Abdelshafi, N.; Farag, A. A.; Heakal, F. E.-T.; Badran, A.-S.; Abdel-Azim, K.; El Sayed, A.-R. M.; Ibrahim, M. A. , In-depth experimental assessment of two new aminocoumarin derivatives as corrosion inhibitors for carbon steel in HCl media combined with AFM, SEM/EDX, contact angle, and DFT/MDs simulations. Journal of Molecular Structure 2024, 1304, 137638. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Purwoko, A. A.; Savalas, L. R. T.; Prasetyo, N.; Yuanita, E.; Hamdiani, S. , Quantum chemical and Monte Carlo simulation studies on inhibition performance of caffeine and its derivatives against corrosion of copper. Coatings 2020, 10(11), 1086. [Google Scholar] [CrossRef]
- Arrousse, N.; Salim, R.; Kaddouri, Y.; Zahri, D.; El Hajjaji, F.; Touzani, R.; Taleb, M.; Jodeh, S. , The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies. Arabian Journal of Chemistry 2020, 13(7), 5949–5965. [Google Scholar] [CrossRef]
- Cao, Z.; Tang, Y.; Cang, H.; Xu, J.; Lu, G.; Jing, W. , Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: Theoretical studies. Corrosion Science 2014, 83, 292–298. [Google Scholar] [CrossRef]
- Khaled, K.; Hamed, M. N.; Abdel-Azim, K.; Abdelshafi, N. Inhibition of copper corrosion in 3.5% NaCl solutions by a new pyrimidine derivative: electrochemical and computer simulation techniques. Journal of Solid State Electrochemistry 2011, 15 (4), 663-673. [CrossRef]
- Pinto, G. M.; Nayak, J.; Shetty, A. N. Corrosion inhibition of 6061 Al–15 vol. pct. SiC (p) composite and its base alloy in a mixture of sulphuric acid and hydrochloric acid by 4-(N, N-dimethyl amino) benzaldehyde thiosemicarbazone. Materials Chemistry and Physics 2011, 125 (3), 628-640. [CrossRef]
- Zhang, X.; Li, W.; Zuo, X.; Tan, B.; Xu, C.; Zhang, S. , Investigating the inhibitive effect of Davidia involucrata leaf extract as a biological eco-friendly inhibitor for copper in acidic medium. Journal of Molecular Liquids 2021, 325, 115214. [Google Scholar] [CrossRef]
- Chocholoušová, J.; Špirko, V.; Hobza, P. , First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H… O and improper blue-shifted C–H… O hydrogen bonds. Physical Chemistry Chemical Physics 2004, 6(1), 37–41. [Google Scholar] [CrossRef]
- Szafran, M.; Komasa, A.; Bartoszak-Adamska, E. Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). Journal of molecular structure 2007, 827 (1-3), 101-107. [CrossRef]
- Yadav, D. K.; Chauhan, D.; Ahamad, I.; Quraishi, M. , Electrochemical behavior of steel/acid interface: adsorption and inhibition effect of oligomeric aniline. RSC advances 2013, 3(2), 632–646. [Google Scholar] [CrossRef]
- Yadav, D. K.; Quraishi, M. Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Industrial & engineering chemistry research 2012, 51 (24), 8194-8210. [CrossRef]
- Becke, A. D. , Density-functional thermochemistry. III. The role of exact exchange. III. The role of exact exchange. The Journal of chemical physics 1993, 98(7), 5648–5652. [Google Scholar] [CrossRef]
- Dunning Jr, T. H. , Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. I. The atoms boron through neon and hydrogen. The Journal of chemical physics 1989, 90(2), 1007–1023. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.; González-Olvera, R.; Angeles-Beltrán, D.; Mendoza-Espinosa, D.; Negrón-Silva, G. , Electrochemical assessment of phenol and triazoles derived from phenol (BPT) on API 5L X52 steel immersed in 1 M HCl. RSC Advances 2016, 6(77), 72885–72896. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M. A.; Kluza, K.; Makowska-Janusik, M.; Olasunkanmi, L. O.; Ebenso, E. E. , Corrosion inhibition of mild steel in 1M HCl by D-glucose derivatives of dihydropyrido [2, 3-d: 6, 5-d′] dipyrimidine-2, 4, 6, 8 (1H, 3H, 5H, 7H)-tetraone. Scientific Reports 2017, 7(1), 44432. [Google Scholar] [CrossRef]
- Hrimla, M.; Bahsis, L.; Boutouil, A.; Laamari, M. R.; Julve, M.; Stiriba, S.-E. , Corrosion inhibition performance of a structurally well-defined 1, 2, 3-triazole derivative on mild steel-hydrochloric acid interface. Journal of Molecular Structure 2021, 1231, 129895. [Google Scholar] [CrossRef]
- Olasunkanmi, L. O.; Kabanda, M. M.; Ebenso, E. E. , Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies. Physica E: Low-dimensional Systems and Nanostructures 2016, 76, 109–126. [Google Scholar] [CrossRef]
- Rouifi, Z.; Rbaa, M.; Abousalem, A. S.; Benhiba, F.; Laabaissi, T.; Oudda, H.; Lakhrissi, B.; Guenbour, A.; Warad, I.; Zarrouk, A. , Synthesis, characterization and corrosion inhibition potential of newly benzimidazole derivatives: combining theoretical and experimental study. Surfaces and Interfaces 2020, 18, 100442. [Google Scholar] [CrossRef]
- Shalabi, K.; Abdel-Galil, E.; El-Askalany, A.; Abdallah, Y. , Adsorption, electrochemical behavior, and theoretical studies for copper corrosion inhibition in 1 M nitric acid medium using triazine derivatives. Journal of Molecular Liquids 2022, 348, 118420. [Google Scholar] [CrossRef]
- Abdel-Gaber, A.; Khamis, E.; Abo-Eldahab, H.; Adeel, S. , Novel package for inhibition of aluminium corrosion in alkaline solutions. Materials Chemistry and Physics 2010, 124(1), 773–779. [Google Scholar] [CrossRef]
- Aouine, Y.; Sfaira, M.; Touhami, M. E.; Alami, A.; Hammouti, B.; Elbakri, M.; El Hallaoui, A.; Touir, R. , Temperature and time investigations on the adsorption behavior of isoindoline, tetrazole and isoindoline-tetrazole on corrosion of mild steel in acidic medium. International Journal of Electrochemical Science 2012, 7(6), 5400–5419. [Google Scholar] [CrossRef]
- Amin, M. A.; Ibrahim, M. M. , Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative. Corrosion Science 2011, 53(3), 873–885. [Google Scholar] [CrossRef]
- Kokalj, A. , Corrosion inhibitors: physisorbed or chemisorbed? Corrosion Science 2022, 196, 109939. [Google Scholar] [CrossRef]
- Fawzy, A.; Abdallah, M.; Zaafarany, I.; Ahmed, S.; Althagafi, I. , Thermodynamic, kinetic and mechanistic approach to the corrosion inhibition of carbon steel by new synthesized amino acids-based surfactants as green inhibitors in neutral and alkaline aqueous media. Journal of Molecular Liquids 2018, 265, 276–291. [Google Scholar] [CrossRef]
- Hegazy, M. , Novel cationic surfactant based on triazole as a corrosion inhibitor for carbon steel in phosphoric acid produced by dihydrate wet process. Journal of Molecular Liquids 2015, 208, 227–236. [Google Scholar] [CrossRef]
- Machnikova, E.; Whitmire, K. H.; Hackerman, N. , Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives. Electrochimica Acta 2008, 53(20), 6024–6032. [Google Scholar] [CrossRef]
- Saliyan, V. R.; Adhikari, A. V. , Quinolin-5-ylmethylene-3-{[8-(trifluoromethyl) quinolin-4-yl] thio} propanohydrazide as an effective inhibitor of mild steel corrosion in HCl solution. Corrosion Science 2008, 50(1), 55–61. [Google Scholar] [CrossRef]
- Rouifi, Z.; Rbaa, M.; Benhiba, F.; Laabaissi, T.; Oudda, H.; Lakhrissi, B.; Guenbour, A.; Warad, I.; Zarrouk, A. , Preparation and anti-corrosion activity of novel 8-hydroxyquinoline derivative for carbon steel corrosion in HCl molar: computational and experimental analyses. Journal of Molecular Liquids 2020, 307, 112923. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J. S. , The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts 2002, 108(3), 134–142. [Google Scholar] [CrossRef]
- Abd El-Lateef, H. M.; Sayed, A. R.; Gomha, S. M.; Bakir, E. M.; Shalabi, K. , Synthesis and study of poly [(hydrazinylazo)] thiazoles as potent corrosion inhibitors for cast iron-carbon alloy in molar HCl: A collective computational and experiential methods. Journal of Molecular Liquids 2021, 337, 116555. [Google Scholar] [CrossRef]
- Fouda, A.; Ismail, M.; Abousalem, A. S.; Elewady, G. , Experimental and theoretical studies on corrosion inhibition of 4-amidinophenyl-2, 2′-bifuran and its analogues in acidic media. Rsc Advances 2017, 7(73), 46414–46430. [Google Scholar] [CrossRef]
- Mert, B. D.; Yüce, A. O.; Kardaş, G.; Yazıcı, B. , Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: experimental and theoretical investigation. Corrosion science 2014, 85, 287–295. [Google Scholar] [CrossRef]
- Guerrab, W.; Chung, I.-M.; Kansiz, S.; Mague, J. T.; Dege, N.; Taoufik, J.; Salghi, R.; Ali, I. H.; Khan, M. I.; Lgaz, H. , Synthesis, structural and molecular characterization of 2, 2-diphenyl-2H, 3H, 5H, 6H, 7H-imidazo [2, 1-b][1, 3] thiazin-3-one. Journal of Molecular Structure 2019, 1197, 369–376. [Google Scholar] [CrossRef]
- Guerrab, W.; Lgaz, H.; Kansiz, S.; Mague, J. T.; Dege, N.; Ansar, M.; Marzouki, R.; Taoufik, J.; Ali, I. H.; Chung, I.-M. , Synthesis of a novel phenytoin derivative: crystal structure, Hirshfeld surface analysis and DFT calculations. Journal of Molecular Structure 2020, 1205, 127630. [Google Scholar] [CrossRef]
- Abdallah, M.; Al Bahir, A.; Altass, H.; Fawzy, A.; El Guesmi, N.; Al-Gorair, A. S.; Benhiba, F.; Warad, I.; Zarrouk, A. , Anticorrosion and adsorption performance of expired antibacterial drugs on Sabic iron corrosion in HCl solution: Chemical, electrochemical and theoretical approach. Journal of Molecular Liquids 2021, 330, 115702. [Google Scholar] [CrossRef]
- Abdelshafi, N.; Ibrahim, M. A.; Badran, A.-S.; Halim, S. A. , Experimental and theoretical evaluation of a newly synthesized quinoline derivative as corrosion inhibitor for iron in 1.0 M hydrochloric acid solution. Journal of Molecular Structure 2022, 1250, 131750. [Google Scholar] [CrossRef]
- Jucai, W.; Ke, T.; Xiaodi, S.; Xin, H. , Theoretical calculations of pyridine adsorption on the surfaces of Ti, Zr, N doped graphene. Journal of Fuel Chemistry and Technology 2024, 52(8), 1162–1172. [Google Scholar] [CrossRef]
- Tshwane, D. M.; Modiba, R.; Govender, G.; Ngoepe, P.; Chauke, H. , The adsorption of halogen molecules on Ti (110) surface. Journal of Materials Research 2021, 36, 592–601. [Google Scholar] [CrossRef]
- Boda, A.; Chandorkar, N.; Ali, S. M. , Density functional theoretical assessment of titanium metal for adsorption of hydrogen, deuterium and tritium isotopes. Theoretical Chemistry Accounts 2023, 142(5), 46. [Google Scholar] [CrossRef]



| [TCC] mg/l |
ICorr A cm-2 |
-ECorr / V |
βa (V dec-1) |
βc (V dec-1) |
CR Mpy |
ղPol (%) | |
| 0.0 | 3.08 x10-6 | 0.297 | 0.210 | 0.294 | 0.396 | - | - |
| 40 | 1.46 x10-6 | 0.255 | 0.656 | 0.238 | 0.188 | 0.525 | 52.50 |
| 80 | 9.10 x10-7 | 0.226 | 0.128 | 0.108 | 0.117 | 0.704 | 70.40 |
| 120 | 5.51 x10-7 | 0.189 | 0.077 | 0.067 | 0.070 | 0.821 | 82.10 |
| 200 | 2.32 x10-7 | 0.170 | 0.035 | 0.050 | 0.029 | 0.924 | 92.40 |




| Temperature K |
ICorr A cm-2 |
-ECorr / V |
βa (V dec-1) |
βc (V dec-1) |
Corr Rate mpy |
Θ | ηpol% |
| 0.00 mg/l | |||||||
| 310 | 3.08x10-6 | 0.297 | 0.110 | 0.094 | 0.396 | - | - |
| 320 | 5.29x10-6 | 0.334 | 0.313 | 0.262 | 0.681 | - | - |
| 330 | 8.50x10-6 | 0.345 | 0.221 | 0.120 | 1.098 | - | - |
| 340 | 1.22x10-5 | 0.362 | 0.425 | 0.238 | 1.574 | - | - |
| 200 mg/l | |||||||
| 310 | 2.32 x10-7 | 0.170 | 0.035 | 0.050 | 0.029 | 0.924 | 92.4 |
| 320 | 1.00 x10-6 | 0.223 | 0.144 | 0.154 | 0.084 | 0.825 | 82.5 |
| 330 | 2.96x10-6 | 0.261 | 0.219 | 0.175 | 0.380 | 0.651 | 65.1 |
| 340 | 7.09x10-6 | 0.333 | 0.518 | 0.314 | 0.913 | 0.418 | 41.8 |

| Solution |
(kJ mol-1) |
(J mol-1 K-1) |
Ea (kJ mol-1) |
| Without TCC | 13.59 | -64.57 | 14.46 |
| With 200 mg/l TCC | 34.56 | -33.62 | 35.79 |
| Temperature K |
ICorr A cm-2 |
-ECorr / V |
βa (V dec-1) |
βc (V dec-1) |
Corr Rate mpy |
Θ | ηpol% |
| 0.00 mg/l | |||||||
| 310 | 3.08x10-6 | 0.297 | 0.110 | 0.094 | 0.396 | - | - |
| 320 | 5.29x10-6 | 0.334 | 0.313 | 0.262 | 0.681 | - | - |
| 330 | 8.50x10-6 | 0.345 | 0.221 | 0.120 | 1.098 | - | - |
| 340 | 1.22x10-5 | 0.362 | 0.425 | 0.238 | 1.574 | - | - |
| 200 mg/l | |||||||
| 310 | 2.32 x10-7 | 0.170 | 0.035 | 0.050 | 0.029 | 0.924 | 92.4 |
| 320 | 1.00 x10-6 | 0.223 | 0.144 | 0.154 | 0.084 | 0.825 | 82.5 |
| 330 | 2.96x10-6 | 0.261 | 0.219 | 0.175 | 0.380 | 0.651 | 65.1 |
| 340 | 7.09x10-6 | 0.333 | 0.518 | 0.314 | 0.913 | 0.418 | 41.8 |











| [TCC] mg/l |
ICorr A cm-2 |
-ECorr / V |
βa (V dec-1) |
βc (V dec-1) |
CR Mpy |
ղPol (%) | |
| 0.0 | 3.08 x10-6 | 0.297 | 0.210 | 0.294 | 0.396 | - | - |
| 40 | 1.46 x10-6 | 0.255 | 0.656 | 0.238 | 0.188 | 0.525 | 52.50 |
| 80 | 9.10 x10-7 | 0.226 | 0.128 | 0.108 | 0.117 | 0.704 | 70.40 |
| 120 | 5.51 x10-7 | 0.189 | 0.077 | 0.067 | 0.070 | 0.821 | 82.10 |
| 200 | 2.32 x10-7 | 0.170 | 0.035 | 0.050 | 0.029 | 0.924 | 92.40 |
| Concentration mg/l |
Rs (Ω cm2) |
Rct (kΩ cm2) |
Qdl (F cm2 HZ1-n1) |
Rf (KΩ cm2) |
Qf (F cm2 HZ1-n2) |
Rp (Rf + Rct) (kΩ cm2) |
χ2 x10-9 |
ղEIS (%) | ||
| 0.0 | 16.79 | 7.80 | 79.61x10-6 | 0.045 | 197.0x10-6 | 7.85 | 0.227 | - | - | |
| 40 | 18.30 | 21.77 | 59.02x10-6 | 0.067 | 182.9x10-6 | 21.83 | 0.552 | 0.641 | 64.1 | |
| 80 | 20.83 | 25.01 | 47.54x10-6 | 0.073 | 166.2x10-6 | 25.08 | 0.027 | 0.688 | 68.8 | |
| 120 | 33.25 | 47.12 | 33.29x10-6 | 0.088 | 140.3x10-6 | 47.20 | 0.732 | 0.834 | 83.4 | |
| 200 | 55.53 | 78.79 | 22.64x10-6 | 0.096 | 77.60x10-6 | 78.88 | 0.856 | 0.901 | 90.1 |
| Temperature K |
ICorr A cm-2 |
-ECorr / V |
βa (V dec-1) |
βc (V dec-1) |
Corr Rate mpy |
Θ | ηpol% |
| 0.00 mg/l | |||||||
| 310 | 3.08x10-6 | 0.297 | 0.110 | 0.094 | 0.396 | - | - |
| 320 | 5.29x10-6 | 0.334 | 0.313 | 0.262 | 0.681 | - | - |
| 330 | 8.50x10-6 | 0.345 | 0.221 | 0.120 | 1.098 | - | - |
| 340 | 1.22x10-5 | 0.362 | 0.425 | 0.238 | 1.574 | - | - |
| 200 mg/l | |||||||
| 310 | 2.32 x10-7 | 0.170 | 0.035 | 0.050 | 0.029 | 0.924 | 92.4 |
| 320 | 1.00 x10-6 | 0.223 | 0.144 | 0.154 | 0.084 | 0.825 | 82.5 |
| 330 | 2.96x10-6 | 0.261 | 0.219 | 0.175 | 0.380 | 0.651 | 65.1 |
| 340 | 7.09x10-6 | 0.333 | 0.518 | 0.314 | 0.913 | 0.418 | 41.8 |
| Solution |
(kJ mol-1) |
(J mol-1 K-1) |
Ea (kJ mol-1) |
| Without TCC | 13.59 | -64.57 | 14.46 |
| With 200 mg/l TCC | 34.56 | -33.62 | 35.79 |
| Temperature K |
Rs (Ω cm2) |
Rct (kΩ cm2) |
CPEdl (F cm2 HZ1-n1) |
n |
ղEIS (%) | |
| 0.00 mg/l | ||||||
| 310 | 16.79 | 7.80 | 79.61x10-6 | 0.843 | - | - |
| 320 | 22.36 | 6.12 | 123.80x10-6 | 0.829 | - | - |
| 330 | 44.19 | 5.43 | 235.11x10-6 | 0.788 | - | - |
| 340 | 76.15 | 4.49 | 310.74x10-6 | 0.769 | - | - |
| 200 mg/l | ||||||
| 310 | 55.53 | 78.79 | 22.64x10-6 | 0.855 | 0.901 | 90.10 |
| 320 | 23.14 | 32.15 | 57.20x10-6 | 0.812 | 0.809 | 80.90 |
| 330 | 75.04 | 15.90 | 75.42x10-6 | 0.755 | 0.658 | 65.80 |
| 340 | 14.06 | 7.57 | 94.12x10-6 | 0.787 | 0.406 | 40.60 |
| Alloy | Kads (L mol-1) | ΔGoads (kJ mol-1) | ||
| Polarization | Impedance | Polarization | Impedance | |
| Ti6Al4V | 10.87 x 104 | 11.50 x 104 | -49.02 | -49.20 |
| Descriptors | Equations | TCC | TCC H+ |
| Energy of highest occupied molecular orbital (EHOMO), (eV) | -4.291 | -3.981 | |
| Energy of lowest unoccupied molecular orbital (ELUMO), (eV) | -2.112 | -3.601 | |
| Energy Gap ΔE | (LUMO-HOMO) | 2.179 | 0.380 |
| Dipole moment, (µ), (Debye) | 1.983 | 19.758 | |
| Ionization energy (I) (ev) | 4.291 | 3.981 | |
| Electron affinity ( ) (ev) | 2.112 | 3.601 | |
| Electronegativity (φ ) | φ= | 3.201 | 3.791 |
| Global hardness ψ | ψ = | 1.089 | 0.190 |
| Global softness (S) | s = | 0.918 | 5.263 |
| Global electrophilicity (ω) | ω = φ2/2ψ | 4.705 | 37.820 |
| Global nucleophilicity (ε) | 0.212 | 0.026 | |
| Electroaccepting (ω+) power | 3.239 | 35.948 | |
| Electrodonating (ω−) power | 6.441 | 39.739 | |
| Net electrophilicity (Δω± = ω+ +ω−) | (Δω± = ω+ +ω−) | 9.680 | 75.687 |
| Fraction of transferred electrons (ΔN) | -0.087 | -0.108 | |
| Back-donation energy ΔE back-donation (ev) | -0.272 |
-0.047 | |
| Metal/inhibitor interaction energy ΔETi6Al4V/inhibitor (ev) |
0.593 |
216.352 |
| Atom | f(+) | f(-) | ∆fk | Mulliken atomic charges |
| C(1) | 0.008 | 0.010 | 0.002 | -0.091 |
| N(2) | 0.046 | 0.040 | 0.006 | -0.115 |
| C(3) | -0.019 | -0.021 | 0.002 | 0.013 |
| S(4) | 0.101 | 0.360 | 0.259 | -0.144 |
| C(5) | -0.020 | -0.022 | 0.002 | -0.091 |
| C(6) | 0.111 | -0.004 | 0.107 | -0.022 |
| N(7) | 0.129 | 0.032 | 0.097 | 0.275 |
| O(8) | 0.047 | -0.004 | 0.043 | -0.035 |
| C(9) | -0.036 | -0.012 | 0.024 | -0.338 |
| C(10) | 0.042 | 0.000 | 0.042 | 0.469 |
| O(11) | 0.081 | 0.001 | 0.080 | -0.355 |
| N(12) | 0.021 | 0.005 | 0.016 | 0.404 |
| N(13) | 0.009 | 0.003 | 0.006 | -0.136 |
| C(14) | -0.002 | -0.004 | 0.002 | -0.479 |
| S(15) | -0.008 | 0.023 | 0.015 | -0.373 |
| C(16) | -0.001 | -0.006 | 0.005 | 0.042 |
| C(17) | 0.008 | 0.020 | 0.012 | -0.203 |
| C(18) | -0.001 | -0.004 | 0.003 | -0.192 |
| C(19) | 0.005 | 0.002 | 0.003 | -0.075 |
| O(20) | 0.022 | 0.008 | 0.014 | -0.192 |
| C(21) | -0.018 | -0.005 | 0.013 | 0.309 |
| H(22) | 0.024 | 0.017 | 0.007 | -0.39 |
| C(23) | -0.004 | 0.009 | 0.005 | 0.308 |
| O(24) | 0.011 | 0.047 | 0.036 | -0.448 |
| O(25) | 0.009 | 0.043 | 0.034 | -0.448 |
| C(26) | 0.002 | 0.000 | 0.002 | -0.192 |
| O(27) | 0.001 | 0.002 | 0.001 | -0.075 |
| C(28) | 0.005 | 0.000 | 0.005 | -0.192 |
| O(29) | 0.009 | 0.002 | 0.007 | 0.309 |
| N(30) | 0.013 | 0.060 | 0.047 | -0.39 |
| Compound | Donor | Acceptor | E(2)a(kcal/mol) | Occupancy |
| TCC | πC12–O41 | π*C13–O40 | 22.52 | 1.67 |
| πC19–O15 | π*C11–C13 | 21.13 | 1.65 | |
| LP (1) N37 | π*S54–N37 | 13.19 | 1.87 | |
| LP (1) O23 | π*O14–C6 | 50.05 | 1.74 | |
| LP (1) O24 | π*O23–O15 | 16.74 | 1.75 | |
| LP (1) O25 | π*C13–O26 | 45.21 | 1.88 | |
| LP (1) O26 | π*C32–O15 | 36.58 | 1.69 | |
| LP (1) O27 | π*C10–O24 | 26.47 | 1.57 | |
| LP (3) S54 | π*O14–N37 | 31.04 | 1.35 | |
| LP (2) O14 | π*S54–H57 | 29.83 | 1.82 | |
| LP (2) O15 | π*C10–C7 | 18.81 | 1.94 | |
| LP (2) O16 | π*C13–C11 | 28.83 | 1.82 | |
| LP (2) O53 | π*C13–O16 | 19.81 | 1.94 | |
| LP (2) O41 | π*C10–O15 | 33.04 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
