Submitted:
06 September 2025
Posted:
11 September 2025
You are already at the latest version
Abstract
We introduce the notion of noncommutative spherical codes (in particular, noncommutative kissing number problem). We show that the one-line proof for a variant of the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein upper bound for spherical codes, derived by Pfender extends to Hilbert C*-modules.
Keywords:
MSC: 94B65; 52C17; 52C35; 46L08
1. Introduction
- (i)
- for all .
- (ii)
-
Coefficients in the Gegenbauer expansionsatisfy
- (i)
- (ii)
- for all .
2. Noncommutative Spherical Codes
- (i)
- for all .
- (ii)
- (i)
- .
- (ii)
- for all with .
- (i)
- .
- (ii)
- for all with .
- (i)
- .
- (ii)
- for all .
References
- Zong, C. Sphere packings; Universitext, Springer-Verlag, New York, 1999; pp. xiv+241.
- Anstreicher, K.M. The thirteen spheres: a new proof. Discrete Comput. Geom. 2004, 31, 613–625. [Google Scholar] [CrossRef]
- Pfender, F. Improved Delsarte bounds for spherical codes in small dimensions. J. Combin. Theory Ser. A 2007, 114, 1133–1147. [Google Scholar] [CrossRef]
- Casselman, B. The difficulties of kissing in three dimensions. Notices Amer. Math. Soc. 2004, 51, 884–885. [Google Scholar]
- Musin, O.R. The kissing problem in three dimensions. Discrete Comput. Geom. 2006, 35, 375–384. [Google Scholar] [CrossRef]
- Musin, O.R. The kissing number in four dimensions. Ann. of Math. (2) 2008, 168, 1–32. [Google Scholar] [CrossRef]
- Odlyzko, A.M.; Sloane, N.J.A. New bounds on the number of unit spheres that can touch a unit sphere in n dimensions. J. Combin. Theory Ser. A 1979, 26, 210–214. [Google Scholar] [CrossRef]
- Schütte, K.; van der Waerden, B.L. Das Problem der dreizehn Kugeln. Math. Ann. 1953, 125, 325–334. [Google Scholar] [CrossRef]
- Pfender, F.; Ziegler, G.M. Kissing numbers, sphere packings, and some unexpected proofs. Notices Amer. Math. Soc. 2004, 51, 873–883. [Google Scholar]
- Bachoc, C.; Vallentin, F. New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc. 2008, 21, 909–924. [Google Scholar] [CrossRef]
- Mittelmann, H.D.; Vallentin, F. High-accuracy semidefinite programming bounds for kissing numbers. Experiment. Math. 2010, 19, 175–179. [Google Scholar] [CrossRef]
- Boyvalenkov, P.; Dodunekov, S.; Musin, O. A survey on the kissing numbers. Serdica Math. J. 2012, 38, 507–522. [Google Scholar]
- Böröczky, K. The Newton-Gregory problem revisited. In Discrete geometry; Dekker, New York, 2003; Vol. 253, pp. 103–110. [CrossRef]
- Maehara, H. The problem of thirteen spheres—a proof for undergraduates. European J. Combin. 2007, 28, 1770–1778. [Google Scholar] [CrossRef]
- Glazyrin, A. A short solution of the kissing number problem in dimension three. Discrete Comput. Geom. 2023, 69, 931–935. [Google Scholar] [CrossRef]
- Liberti, L. Mathematical programming bounds for kissing numbers. In Optimization and decision science: methodologies and applications; Springer, Cham, 2017; Vol. 217, Springer Proc. Math. Stat., pp. 213–222. [CrossRef]
- Leech, J. The problem of the thirteen spheres. Math. Gaz. 1956, 40, 22–23. [Google Scholar] [CrossRef]
- Kallal, K.; Kan, T.; Wang, E. Improved lower bounds for kissing numbers in dimensions 25 through 31. SIAM J. Discrete Math. 2017, 31, 1895–1908. [Google Scholar] [CrossRef]
- Jenssen, M.; Joos, F.; Perkins, W. On kissing numbers and spherical codes in high dimensions. Adv. Math. 2018, 335, 307–321. [Google Scholar] [CrossRef]
- Machado, F.C.; de Oliveira Filho, F.M. Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Exp. Math. 2018, 27, 362–369. [Google Scholar] [CrossRef]
- Kuklin, N.A. Delsarte method in the problem on kissing numbers in high-dimensional spaces. Proc. Steklov Inst. Math. 2014, 284, S108–S123. [Google Scholar] [CrossRef]
- Delsarte, P.; Goethals, J.M.; Seidel, J.J. Spherical codes and designs. Geometriae Dedicata 1977, 6, 363–388. [Google Scholar] [CrossRef]
- Boyvalenkov, P.G.; Dragnev, P.D.; Hardin, D.P.; Saff, E.B.; Stoyanova, M.M. Bounds for spherical codes: the Levenshtein framework lifted. Math. Comp. 2021, 90, 1323–1356. [Google Scholar] [CrossRef]
- Barg, A.; Musin, O.R. Codes in spherical caps. Adv. Math. Commun. 2007, 1, 131–149. [Google Scholar] [CrossRef]
- Boyvalenkov, P.G.; Dragnev, P.D.; Hardin, D.P.; Saff, E.B.; Stoyanova, M.M. Universal lower bounds for potential energy of spherical codes. Constr. Approx. 2016, 44, 385–415. [Google Scholar] [CrossRef]
- Ericson, T.; Zinoviev, V. Codes on Euclidean spheres; Vol. 63, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 2001; pp. xiv+549.
- Sardari, N.T.; Zargar, M. New upper bounds for spherical codes and packings. Math. Ann. 2024, 389, 3653–3703. [Google Scholar] [CrossRef]
- Musin, O.R. Bounds for codes by semidefinite programming. Tr. Mat. Inst. Steklova 2008, 263, 143–158. [Google Scholar] [CrossRef]
- Bannai, E.; Sloane, N.J.A. Uniqueness of certain spherical codes. Canadian J. Math. 1981, 33, 437–449. [Google Scholar] [CrossRef]
- Bachoc, C.; Vallentin, F. Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps. European J. Combin. 2009, 30, 625–637. [Google Scholar] [CrossRef]
- Conway, J.H.; Sloane, N.J.A. Sphere packings, lattices and groups; Springer-Verlag, New York, 1999; pp. lxxiv+703. [CrossRef]
- Cohn, H.; Jiao, Y.; Kumar, A.; Torquato, S. Rigidity of spherical codes. Geom. Topol. 2011, 15, 2235–2273. [Google Scholar] [CrossRef]
- Samorodnitsky, A. On linear programming bounds for spherical codes and designs. Discrete Comput. Geom. 2004, 31, 385–394. [Google Scholar] [CrossRef]
- Boyvalenkov, P.; Danev, D. On maximal codes in polynomial metric spaces. In Applied algebra, algebraic algorithms and error-correcting codes; Springer, Berlin, 1997; Vol. 1255, Lecture Notes in Comput. Sci., pp. 29–38. [CrossRef]
- Boyvalenkov, P.; Danev, D.; Landgev, I. On maximal spherical codes. II. J. Combin. Des. 1999, 7, 316–326. [Google Scholar] [CrossRef]
- Sloane, N.J.A. Tables of sphere packings and spherical codes. IEEE Trans. Inform. Theory 1981, 27, 327–338. [Google Scholar] [CrossRef]
- Bannai, E.; Bannai, E. A survey on spherical designs and algebraic combinatorics on spheres. European J. Combin. 2009, 30, 1392–1425. [Google Scholar] [CrossRef]
- Böröczky, K.J.; Glazyrin, A. Stability of optimal spherical codes. Monatsh. Math. 2024, 205, 455–475. [Google Scholar] [CrossRef]
- Cohn, H.; Zhao, Y. Sphere packing bounds via spherical codes. Duke Math. J. 2014, 163, 1965–2002. [Google Scholar] [CrossRef]
- Wegge-Olsen, N.E. K-theory and C*-algebras: a friendly approach; Oxford: Oxford University Press, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).