Submitted:
10 September 2025
Posted:
11 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Challenge of Computationally Expensive RTMs in EO Applications
| Canopy RTMs | |||
|---|---|---|---|
| Model | Key Features | Outputs | Key refs. |
| PROSAIL | Leaf and canopy optics | Reflectance | [7,8,9,10] |
| SCOPE | Energy balance, photochemistry | Reflectance, SIF, fluxes | [11,12,31,32] |
| FLIGHT | 3D canopy architecture, detailed scattering | Reflectance, SIF | [33,34] |
| DART | 3D voxel, facet and ray tracing, heterogeneous scenes | Reflectance, radiance, LiDAR, SIF | [13,15,16,35] |
| LESS | 3D voxel, facet and ray tracing, heterogeneous scenes | Reflectance, SIF, LiDAR, fluxes | [14,29,36] |
| Atmosphere RTMs | |||
| 6S | Atmospheric correction, TOA reflectance | TOA radiance, transmittance | [17,37] |
| MODTRAN | Spectral transmission, path radiance | Radiative transfer profiles | [18,38] |
| libRadtran | Line-by-line, multiple scattering, trace gases | High spectral resolution radiance | [19,39] |
3. Emulation as a Surrogate Modeling Strategy
3.1. General Principles and Core Emulation Approaches
3.2. Proof-of-Concept Studies Demonstrating the Potential of Emulation in Approximating RTMs
3.3. Recent Progress in Emulation in Vegetation and Atmospheric RTMs
3.4. Trends in MLRAs for RTM Emulation Applications
Emulation Applications Beyond RTMs: LSMs, ESMs, and DGVMs
4. Trends and Advances in Emulation Methodologies
4.1. Empirical vs RTM-Based Emulation: The Role of Training Data Sampling
4.2. The Role of Spectral Dimensionality Reduction in Emulation of RTMs
4.3. Advanced Machine Learning for Emulation
5. Applications of Emulation
5.1. Emulation for Global Sensitivity Analysis of RTMs
5.2. RTM Emulation for Synthetic Scene Generation
5.3. Scene-to-Scene Emulation
5.4. Emulation-Based Retrieval of Vegetation and Atmospheric Products
6. Ongoing Challenges and Future Outlook
- Robust emulators: A persistent challenge in RTM emulation is maintaining high predictive accuracy when applied to conditions outside the training domain. Strategies to address this include: (1) Physically informed sampling or adaptive sampling [e.g., [147]], ensuring training LUTs span the relevant parameter space; (2) Domain adaptation and transfer learning [e.g., [148,149,150]] to adjust emulators for new sensors, locations, or observation conditions; (3) Physics-informed constraints that embed RTM equations or invariants into learning architectures [e.g., [132,151]]; (4) Regularization and uncertainty quantification to reduce overfitting and detect when predictions are extrapolations [e.g., [152,153,154]]; and (5) Cross-domain validation, testing on independent datasets with different distributions to evaluate robustness. Combining these strategies improves resilience to domain shifts and enhances emulator applicability in operational settings.
- Community Resources and Benchmarking: The growth of open-source libraries, pre-trained emulators, user-friendly toolboxes, and collaborative benchmarks is a critical enabler for the field. Already since 2015, ARTMO’s (automated radiative transfer models operator) Emulator Toolbox has been released, which continues to be expanded with MLRAs and application tools (e.g., emulation of RTMs, GSA, scene generation [26,61,76,121,136,144]. Emulator tools have also been prepared specifically for atmospheric RTMs within the ALG (Automated Lookup table Generator) toolbox [20,85,137,155]. Both GUI toolboxes are downloadable at https://artmotoolbox.com/. At the same time, initiatives such as the development of standardized Python packages (e.g., Surrogate Modeling Toolbox: SMT https://github.com/SMTorg/SMT [156,157]) or specific modules within larger machine learning libraries (e.g., PySMO: Python-based Surrogate Modeling Objects, as part of IDAES (https://idaes-pse.readthedocs.io/) lower the barrier to entry for researchers. Further, collaborative challenges (e.g., specific emulation challenges such as emulation hackathon (https://huggingface.co/datasets/isp-uv-es/rtm_emulation) foster innovation, promote fair comparisons, and accelerate the development of robust and generalizable emulators, ultimately leading to faster operational adoption. These shared resources are key in scaling up applications and expanding impact across the remote sensing community.
- Physics-Informed Neural Networks (PINNs): As discussed, PINNs are gaining traction as a paradigm shift [e.g., [158,159]]. By embedding known physical relationships (e.g., spectral absorption features, conservation laws) directly into the neural network’s loss function, PINNs can achieve higher accuracy with less training data, extrapolate more reliably, and offer greater physical consistency than purely data-driven NNs. This blend of machine learning with physical constraints or knowledge represents a powerful direction for creating more robust and scientifically grounded emulators.
- Explainable AI (XAI) for RTM Emulators: As emulators become more complex, especially deep learning-based ones, there is an increasing demand for explainable AI (XAI) techniques [e.g., [160,161]]. It can be expected that future work will focus on developing explainable methods to interpret how emulators make predictions, identify which input parameters are most influential for specific outputs, and understand the internal logic of the models. This will build trust in emulator-derived products and facilitate scientific discovery by elucidating complex RTM behaviors.
- Multimodal and Multitemporal Emulation: Future emulators may move beyond single TMs or single output types. Multimodal emulation involves models that jointly emulate multiple outputs or modalities (e.g., simultaneous prediction of reflectance, SIF, and thermal emissions from a single set of inputs), or fuse information across different sensor types (e.g., optical and thermal RTMs). This holistic approach supports integrated ecosystem monitoring and can help bridge gaps between diverse observations and process-based understanding. Progressing along, so far the temporal aspect has been ignored in RTM emulation. In this respect, multitemporal emulation can become promising and crucial for dynamic vegetation models, learning the evolution of parameters and signals over time, which is essential for understanding phenology, crop growth, or ecological succession.
7. Conclusions
References
- Goody, R.M.; Yung, Y.L. Atmospheric radiation: theoretical basis; Oxford university press, 1995.
- Liou, K.N. An introduction to atmospheric radiation; Vol. 84, Elsevier, 2002.
- Myneni, R.B.; Ross, J. Photon-vegetation interactions: applications in optical remote sensing and plant ecology; Springer Science & Business Media, 2012.
- Myneni, R.; Maggion, S.; Iaquinta, J.; Privette, J.; Gobron, N.; Pinty, B.; Kimes, D.; Verstraete, M.; Williams, D. Optical remote sensing of vegetation: modeling, caveats, and algorithms. Remote sensing of environment 1995, 51, 169–188.
- Lenoble, J.; et al. Radiative transfer in scattering and absorbing atmospheres: standard computational procedures; Vol. 300, A. Deepak Hampton, Va., 1985.
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review. ISPRS Journal of Photogrammetry and Remote Sensing 2015, 108, 273–290. [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote sensing of environment 1984, 16, 125–141.
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote sensing of environment 1990, 34, 75–91.
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote sensing of environment 2009, 113, S56–S66.
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sensing 2018, 10, 85.
- van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [CrossRef]
- van der Tol, C.; Vilfan, N.; Dauwe, D.; Cendrero-Mateo, M.P.; Yang, P. The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE. Remote sensing of environment 2019, 232, 111292.
- Gastellu-Etchegorry, J.; Martin, E.; Gascon, F. DART: a 3D model for simulating satellite images and studying surface radiation budget. International journal of remote sensing 2004, 25, 73–96.
- Qi, J.; Xie, D.; Yin, T.; Yan, G.; Gastellu-Etchegorry, J.P.; Li, L.; Zhang, W.; Mu, X.; Norford, L.K. LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sensing of Environment 2019, 221, 695–706.
- Gastellu-Etchegorry, J.P.; Yin, T.; Lauret, N.; Cajgfinger, T.; Gregoire, T.; Grau, E.; Feret, J.B.; Lopes, M.; Guilleux, J.; Dedieu, G.; et al. Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sensing 2015, 7, 1667–1701.
- Gastellu-Etchegorry, J.P.; Lauret, N.; Yin, T.; Landier, L.; Kallel, A.; Malenovskỳ, Z.; Al Bitar, A.; Aval, J.; Benhmida, S.; Qi, J.; et al. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2017, 10, 2640–2649.
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE transactions on geoscience and remote sensing 1997, 35, 675–686.
- Berk, A.; Bernstein, L.; Anderson, G.; Acharya, P.; Robertson, D.; Chetwynd, J.; Adler-Golden, S. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote sensing of Environment 1998, 65, 367–375.
- Mayer, B.; Kylling, A. The libRadtran software package for radiative transfer calculations-description and examples of use. Atmospheric Chemistry and Physics 2005, 5, 1855–1877.
- Vicent, J.; Verrelst, J.; Sabater, N.; Alonso, L.; Rivera-Caicedo, J.P.; Martino, L.; Muñoz Marí, J.; Moreno, J. Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0). Geoscientific Model Development 2020, 13, 1945–1957. [CrossRef]
- Verrelst, J.; Malenovskỳ, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.; Moreno, J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surveys in Geophysics 2019, 40, 589–629.
- Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2001, 63, 425–464.
- Forrester, A.; Sobester, A.; Keane, A. Engineering design via surrogate modelling: a practical guide; John Wiley & Sons, 2008.
- Castelletti, A.; Galelli, S.; Ratto, M.; Soncini-Sessa, R.; Young, P. A general framework for dynamic emulation modelling in environmental problems. Environmental Modelling & Software 2012, 34, 5–18.
- Castelletti, A.; Galelli, S.; Restelli, M.; Soncini-Sessa, R. Data-driven dynamic emulation modelling for the optimal management of environmental systems. Environmental Modelling & Software 2012, 34, 30–43.
- Rivera, J.P.; Verrelst, J.; Gómez-Dans, J.; Muñoz-Marí, J.; Moreno, J.; Camps-Valls, G. An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning. Remote Sensing 2015, 7, 9347–9370. [CrossRef]
- Gómez-Dans, J.L.; Lewis, P.E.; Disney, M. Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences. Remote Sensing 2016, 8. [CrossRef]
- Zhao, X.; Qi, J.; Yu, Z.; Yuan, L.; Huang, H. Fine-scale quantification of absorbed photosynthetically active radiation (APAR) in plantation forests with 3D radiative transfer modeling and LiDAR data. Plant Phenomics 2024, 6, 0166.
- Qi, J.; Xie, D.; Jiang, J.; Huang, H. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters. Remote Sensing of Environment 2022, 283, 113301.
- Qi, J.; Jiang, J.; Zhou, K.; Xie, D.; Huang, H. Fast and accurate simulation of canopy reflectance under wavelength-dependent optical properties using a semi-empirical 3D radiative transfer model. Journal of Remote Sensing 2023, 3, 0017.
- Yang, P.; Van der Tol, C.; Campbell, P.K.E.; Middleton, E.M. Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences 2021, 18, 441–465. [CrossRef]
- Pacheco-Labrador, J.; El-Madany, T.S.; van der Tol, C.; Martin, M.P.; Gonzalez-Cascon, R.; Perez-Priego, O.; Guan, J.; Moreno, G.; Carrara, A.; Reichstein, M.; et al. senSCOPE: Modeling mixed canopies combining green and brown senesced leaves. Evaluation in a Mediterranean Grassland. Remote Sensing of Environment 2021, 257, 112352. [CrossRef]
- North, P. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Transactions on Geoscience and Remote Sensing 1996, 34, 946–956.
- Hernández-Clemente, R.; North, P.; Hornero, A.; Zarco-Tejada, P. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. Remote Sensing of Environment 2017, 193, 165 – 179. [CrossRef]
- Yang, X.; Wang, Y.; Yin, T.; Wang, C.; Lauret, N.; Regaieg, O.; Xi, X.; Gastellu-Etchegorry, J.P. Comprehensive LiDAR simulation with efficient physically-based DART-Lux model (I): Theory, novelty, and consistency validation. Remote Sensing of Environment 2022, 272, 112952.
- Zhou, K.; Xie, D.; Qi, J.; Zhang, Z.; Bo, X.; Yan, G.; Mu, X. Explicitly reconstructing RAMI-V scenes for accurate 3-dimensional radiative transfer simulation using the LESS model. Journal of Remote Sensing 2023, 3, 0033.
- Kotchenova, S.Y.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Applied optics 2007, 46, 4455–4464.
- Berk, A.; Anderson, G.; Acharya, P.; Bernstein, L.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.; Chetwynd, J.; Hoke, M.; et al. MODTRANTM5: 2006 update. 2006, Vol. 6233 II. [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0. 1). Geoscientific Model Development 2016, 9, 1647–1672.
- Lin, Y.; O’Malley, D.; Vesselinov, V.V. A computationally efficient parallel L evenberg-M arquardt algorithm for highly parameterized inverse model analyses. Water Resources Research 2016, 52, 6948–6977.
- Kennedy, B.E.; King, D.J.; Duffe, J. Comparison of empirical and physical modelling for estimation of biochemical and biophysical vegetation properties: field scale analysis across an Arctic bioclimatic gradient. Remote Sensing 2020, 12, 3073.
- Vicent, J.; Verrelst, J.; Rivera-Caicedo, J.P.; Sabater, N.; Muñoz-Marí, J.; Camps-Valls, G.; Moreno, J. Emulation as an Accurate Alternative to Interpolation in Sampling Radiative Transfer Codes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2018, 11, 4918–4931. [CrossRef]
- Shapiro, A. Monte Carlo sampling methods. Handbooks in operations research and management science 2003, 10, 353–425.
- Petropoulos, G.; Wooster, M.; Carlson, T.; Kennedy, M.; Scholze, M. A global Bayesian sensitivity analysis of the 1D SimSphere soil vegetation atmospheric transfer (SVAT) model using Gaussian model emulation. Ecological Modelling 2009, 220, 2427 – 2440.
- Rohmer, J.; Foerster, E. Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling. Computers & Geosciences 2011, 37, 917 – 927.
- Carnevale, C.; Finzi, G.; Guariso, G.; Pisoni, E.; Volta, M. Surrogate models to compute optimal air quality planning policies at a regional scale. Environmental Modelling & Software 2012, 34, 44–50.
- Razavi, S.; Tolson, B.A.; Burn, D.H. Numerical assessment of metamodelling strategies in computationally intensive optimization. Environmental Modelling & Software 2012, 34, 67–86.
- Villa-Vialaneix, N.; Follador, M.; Ratto, M.; Leip, A. A comparison of eight metamodeling techniques for the simulation of N 2 O fluxes and N leaching from corn crops. Environmental Modelling & Software 2012, 34, 51–66.
- Lee, L.; Pringle, K.; Reddington, C.; Mann, G.; Stier, P.; Spracklen, D.; Pierce, J.; Carslaw, K. The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos. Chem. Phys 2013, 13, 8879–8914.
- Bounceur, N.; Crucifix, M.; Wilkinson, R.; et al. Global sensitivity analysis of the climate–vegetation system to astronomical forcing: an emulator-based approach. Earth System Dynamics Discussions 2014, 5, 901–943.
- Ireland, G.; Petropoulos, G.; Carlson, T.; Purdy, S. Addressing the ability of a land biosphere model to predict key biophysical vegetation characterisation parameters with Global Sensitivity Analysis. Environmental Modelling and Software 2015, 65, 94–107.
- Oakley, J.; O’hagan, A. Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika 2002, 89, 769–784.
- Bocquet, M. Surrogate modeling for the climate sciences dynamics with machine learning and data assimilation. Frontiers in Applied Mathematics and Statistics 2023, 9, 1133226.
- Bazargan, H.; Christie, M.; Elsheikh, A.H.; Ahmadi, M. Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion. Advances in Water Resources 2015, 86, 385–399.
- Kim, Y.J. Comparative study of surrogate models for uncertainty quantification of building energy model: Gaussian Process Emulator vs. Polynomial Chaos Expansion. Energy and Buildings 2016, 133, 46–58.
- Laloy, E.; Jacques, D. Emulation of CPU-demanding reactive transport models: a comparison of Gaussian processes, polynomial chaos expansion, and deep neural networks. Computational Geosciences 2019, 23, 1193–1215.
- Massoud, E.C. Emulation of environmental models using polynomial chaos expansion. Environmental Modelling & Software 2019, 111, 421–431.
- Rajabi, M.M. Review and comparison of two meta-model-based uncertainty propagation analysis methods in groundwater applications: polynomial chaos expansion and Gaussian process emulation. Stochastic environmental research and risk assessment 2019, 33, 607–631.
- Haykin, S. Neural Networks – A Comprehensive Foundation, 2nd ed.; Prentice Hall, 1999.
- Verrelst, J.; Sabater, N.; Rivera, J.; Muñoz-Marí, J.; Vicent, J.; Camps-Valls, G.; Moreno, J. Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis. Remote Sensing 2016, 8. [CrossRef]
- Verrelst, J.; Rivera Caicedo, J.P.; Muñoz-Marí, J.; Camps-Valls, G.; Moreno, J. SCOPE-Based Emulators for Fast Generation of Synthetic Canopy Reflectance and Sun-Induced Fluorescence Spectra. Remote Sensing 2017, 9. [CrossRef]
- Bue, B.D.; Thompson, D.R.; Deshpande, S.; Eastwood, M.; Green, R.O.; Natraj, V.; Mullen, T.; Parente, M. Neural network radiative transfer for imaging spectroscopy. Atmospheric Measurement Techniques 2019, 12, 2567–2578.
- Shi, H.; Xiao, Z.; Tian, X. Exploration of Machine Learning Techniques in Emulating a Coupled Soil-Canopy-Atmosphere Radiative Transfer Model for Multi-Parameter Estimation from Satellite Observations. IEEE Transactions on Geoscience and Remote Sensing 2019, 57, 8522 – 8533. [CrossRef]
- Brodrick, P.G.; Thompson, D.R.; Fahlen, J.E.; Eastwood, M.L.; Sarture, C.M.; Lundeen, S.R.; Olson-Duvall, W.; Carmon, N.; Green, R.O. Generalized radiative transfer emulation for imaging spectroscopy reflectance retrievals. Remote Sensing of Environment 2021, 261. [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436 – 444. Cited by: 40085, https://. [CrossRef]
- Basener, A.A.; Basener, B.B. Deep learning of radiative atmospheric transfer with an autoencoder. In Proceedings of the 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2022, pp. 1–7.
- Ukkonen, P. Exploring Pathways to More Accurate Machine Learning Emulation of Atmospheric Radiative Transfer. Journal of Advances in Modeling Earth Systems 2022, 14. [CrossRef]
- Ojaghi, S.; Bouroubi, Y.; Foucher, S.; Bergeron, M.; Seynat, C. Deep Learning-Based Emulation of Radiative Transfer Models for Top-of-Atmosphere BRDF Modelling Using Sentinel-3 OLCI. Remote Sensing 2023, 15. [CrossRef]
- Aghdami-Nia, M.; Shah-Hosseini, R.; Homayouni, S.; Rostami, A.; Ahmadian, N. Surrogate Modeling of MODTRAN Physical Radiative Transfer Code Using Deep-Learning Regression. Environmental Sciences Proceedings 2023, 29, 16.
- Jasso-Garduño, A.E.; Muñoz-Máximo, I.; Pinto, D.; Ramírez-Cortés, J.M. Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction of Satellite Images. Computacion y Sistemas 2024, 28, 2327 – 2341. [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press, 2005. [CrossRef]
- Ma, P.; Mondal, A.; Konomi, B.A.; Hobbs, J.; Song, J.J.; Kang, E.L. Computer Model Emulation with High-Dimensional Functional Output in Large-Scale Observing System Uncertainty Experiments. Technometrics 2022, 64, 65 – 79. [CrossRef]
- Vicent Servera, J.; Martino, L.; Verrelst, J.; Camps-Valls, G. Multifidelity Gaussian Process Emulation for Atmospheric Radiative Transfer Models. IEEE Transactions on Geoscience and Remote Sensing 2023, 61. [CrossRef]
- Vicent Servera, J.; Martino, L.; Verrelst, J.; Rivera-Caicedo, J.P.; Camps-Valls, G. Multioutput Feature Selection for Emulation and Sensitivity Analysis. IEEE Transactions on Geoscience and Remote Sensing 2024, 62, 1 – 11. [CrossRef]
- Breiman, L. Random forests. Machine Learning 2001, 45, 5–32. [CrossRef]
- Morata, M.; Siegmann, B.; Morcillo-Pallarés, P.; Rivera-Caicedo, J.; Verrelst, J. Emulation of Sun-Induced Fluorescence from Radiance Data Recorded by the HyPlant Airborne Imaging Spectrometer. Remote Sensing 2021, 13. [CrossRef]
- Suykens, J.; Vandewalle, J. Least squares support vector machine classifiers. Neural Processing Letters 1999, 9, 293–300.
- Verrelst, J.; Rivera-Caicedo, J.; Moreno, J. Progress in Emulation for Radiative Transfer Modeling and Mapping. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018, pp. 1688–1691.
- Vapnik, V.; Golowich, S.; Smola, A. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 1997, 9, 281–287.
- Xiu, D.; Karniadakis, G.E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM journal on scientific computing 2002, 24, 619–644.
- Kuusk, A. A two-layer canopy reflectance model. Journal of Quantitative Spectroscopy and Radiative Transfer 2001, 71, 1–9.
- Makhloufi, A.; Kallel, A. Inversion of a new designed ANN-based 3-D-RTM emulator by continuous MCMC technique to monitor crop biophysical properties using sentinel-2 images. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–14.
- Veerman, M.A.; Pincus, R.; Stoffer, R.; Van Leeuwen, C.M.; Podareanu, D.; Van Heerwaarden, C.C. Predicting atmospheric optical properties for radiative transfer computations using neural networks. Philosophical Transactions of the Royal Society A 2021, 379, 20200095.
- Belochitski, A.; Krasnopolsky, V. Stable emulation of an entire suite of model physics in a state-of-the-art gcm using a neural network. arXiv preprint arXiv:2103.07028 2021.
- Vicent Servera, J.; Martino, L.; Verrelst, J.; Camps-Valls, G. Multifidelity Gaussian Process Emulation for Atmospheric Radiative Transfer Models. IEEE Transactions on Geoscience and Remote Sensing 2023, 61.
- Zhong, X.; Ma, Z.; Yao, Y.; Xu, L.; Wu, Y.; Wang, Z. WRF–ML v1. 0: a bridge between WRF v4. 3 and machine learning parameterizations and its application to atmospheric radiative transfer. Geoscientific Model Development 2023, 16, 199–209.
- Gonzalez, J.; Dipu, S.; Sourdeval, O.; Simeon, A.; Camps-Valls, G.; Quaas, J. Emulation of Forward Modeled Top-of-Atmosphere MODIS-Based Spectral Channels Using Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2025, 18, 1896–1911.
- Lamminpää, O.; Susiluoto, J.; Hobbs, J.; McDuffie, J.; Braverman, A.; Owhadi, H. Forward model emulator for atmospheric radiative transfer using Gaussian processes and cross validation. Atmospheric Measurement Techniques 2025, 18, 673–694.
- Zucker, S.; Batenkov, D.; Rozenhaimer, M.S. Physics-informed neural networks for modeling atmospheric radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer 2025, 331, 109253.
- Geiss, A.; Ma, P.L.; Singh, B.; Hardin, J.C. Emulating aerosol optics with randomly generated neural networks. Geoscientific Model Development 2023, 16, 2355–2370.
- Howard, L.; Subramanian, A.C.; Thompson, G.; Johnson, B.; Auligne, T. Probabilistic Emulation of the Community Radiative Transfer Model Using Machine Learning. arXiv preprint arXiv:2504.16192 2025.
- Sgattoni, C.; Sgheri, L.; Chung, M. A data-driven approach for fast atmospheric radiative transfer inversion. Inverse Problems 2025.
- Lu, D.; Ricciuto, D. Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques. Geoscientific Model Development 2019, 12, 1791–1807.
- Duffy, K.; Vandal, T.; Wang, W.; Nemani, R.; Ganguly, A.R. Deep Learning Emulation of Multi-Angle Implementation of Atmospheric Correction (MAIAC). arXiv preprint arXiv:1910.13408 2019.
- Duffy, K.; Vandal, T.; Wang, W.; Nemani, R.; Ganguly, A. A Framework for Deep Learning Emulation of Numerical Models With a Case Study in Satellite Remote Sensing. IEEE Transactions on Neural Networks and Learning Systems 2023, 34, 3345–3356.
- Baker, E.; Harper, A.B.; Williamson, D.; Challenor, P. Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES. Geoscientific Model Development 2022, 15, 1913–1929.
- Xu, D.; Bisht, G.; Sargsyan, K.; Liao, C.; Leung, L.R. Using a surrogate-assisted Bayesian framework to calibrate the runoff-generation scheme in the Energy Exascale Earth System Model (E3SM) v1. Geoscientific Model Development 2022, 15, 5021–5043.
- Watson-Parris, D.; Williams, A.; Deaconu, L.; Stier, P. Model calibration using ESEm v1. 1.0–an open, scalable Earth system emulator. Geoscientific Model Development 2021, 14, 7659–7672.
- Zhu, Q.; Li, F.; Riley, W.J.; Xu, L.; Zhao, L.; Yuan, K.; Wu, H.; Gong, J.; Randerson, J. Building a machine learning surrogate model for wildfire activities within a global Earth system model. Geoscientific Model Development 2022, 15, 1899–1911.
- Li, L.; Fang, Y.; Zheng, Z.; Shi, M.; Longo, M.; Koven, C.D.; Holm, J.A.; Fisher, R.A.; McDowell, N.G.; Chambers, J.; et al. A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2. 0). Geoscientific Model Development 2023, 16, 4017–4040.
- Beusch, L.; Gudmundsson, L.; Seneviratne, S.I. Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land. Earth System Dynamics 2020, 11, 139–159.
- Beusch, L.; Gudmundsson, L.; Seneviratne, S.I. Crossbreeding CMIP6 earth system models with an emulator for regionally optimized land temperature projections. Geophysical Research Letters 2020, 47, e2019GL086812.
- Bouabid, S.; Sejdinovic, D.; Watson-Parris, D. FaIRGP: A Bayesian energy balance model for surface temperatures emulation. Journal of Advances in Modeling Earth Systems 2024, 16, e2023MS003926.
- Potter, K.; Martinez, C.; Pradhan, R.; Brozak, S.; Sleder, S.; Wheeler, L. Graph Convolutional Neural Networks as Surrogate Models for Climate Simulation. arXiv preprint arXiv:2409.12815 2024.
- Mckay, M.; Beckman, R.; Conover, W. A Comparison of Three Methods for Selecting Vales of Input Variables in the Analysis of Output From a Computer Code. Technometrics 1979, 21, 239–245. [CrossRef]
- Sobol’, I. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics 1967, 7, 86 – 112.
- Halton, J.H. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 1960, 2, 84–90.
- Berger, K.; Hank, T.; Halabuk, A.; Rivera-Caicedo, J.P.; Wocher, M.; Mojses, M.; Gerhátová, K.; Tagliabue, G.; Dolz, M.M.; Venteo, A.B.P.; et al. Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery. Remote Sensing 2021, 13. [CrossRef]
- Wang, J.L.; Chiou, J.M.; Müller, H.G. Functional data analysis. Annual Review of Statistics and its application 2016, 3, 257–295.
- Svendsen, D.H.; Martino, L.; Camps-Valls, G. Active emulation of computer codes with Gaussian processes–Application to remote sensing. Pattern Recognition 2020, 100, 107103.
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory 1968, 14, 55–63. [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics, Springer, 2002. [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix computations; JHU press, 2013.
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. science 2006, 313, 504–507.
- Shlens, J. A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100 2014.
- Ramsay, J.O.; Silverman, B.W. Functional data analysis; Springer, 2005.
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. Journal of machine learning research 2008, 9, 2579–2605.
- Tenenbaum, J.B.; Silva, V.d.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. science 2000, 290, 2319–2323.
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 2018.
- Schölkopf, B.; Smola, A.; Müller, K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural computation 1998, 10, 1299–1319.
- Morata, M.; Siegmann, B.; García-Soria, J.L.; Rivera-Caicedo, J.P.; Verrelst, J. On the potential of principal component analysis for the reconstruction of full-spectrum SIF emission and emulated airborne-to-satellite upscaling. Remote Sensing of Environment 2025, 328, 114865.
- Datta, A.; Banerjee, S.; Finley, A.O.; Gelfand, A.E. Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. Journal of the American Statistical Association 2016, 111, 800–812.
- Quinonero-Candela, J.; Rasmussen, C.E. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research 2005, 6, 1939–1959.
- Hensman, J.; Fusi, N.; Lawrence, N.D. Gaussian processes for big data. In Proceedings of the Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI), 2013, pp. 282–290.
- Damianou, A.; Lawrence, N.D. Deep gaussian processes. In Proceedings of the Artificial intelligence and statistics. PMLR, 2013, pp. 207–215.
- Chipman, H.A.; George, E.I.; McCulloch, R.E. BART: Bayesian additive regression trees 2010.
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2016; KDD ’16, p. 785–794. [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems 2017, 30.
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems 2018, 31.
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998, 86, 2278–2324.
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, .; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc., 2017, Vol. 30.
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 2019, 378, 686–707.
- Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight uncertainty in neural networks. In Proceedings of the Proceedings of the 32nd International Conference on Machine Learning (ICML). PMLR, 2015, pp. 1613–1622.
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), 2014, Vol. 27, pp. 2672–2680.
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global sensitivity analysis: the primer; John Wiley & Sons, 2008.
- Verrelst, J.; Rivera Caicedo, J.; Vicent, J.; Morcillo Pallarés, P.; Moreno, J. Approximating Empirical Surface Reflectance Data through Emulation: Opportunities for Synthetic Scene Generation. Remote Sensing 2019, 11. [CrossRef]
- Vicent Servera, J.; Martino, L.; Verrelst, J.; Rivera-Caicedo, J.; Camps-Valls, G. Multioutput Feature Selection for Emulation and Sensitivity Analysis. IEEE Transactions on Geoscience and Remote Sensing 2024, 62, 1–11.
- Zhou, Q.; Wang, S.; Liu, N.; Townsend, P.; Jiang, C.; Peng, B.; Verhoef, W.; Guan, K. Towards operational atmospheric correction of airborne hyperspectral imaging spectroscopy: Algorithm evaluation, key parameter analysis, and machine learning emulators. ISPRS Journal of Photogrammetry and Remote Sensing 2023, 196, 386–401.
- Vicent, J.; Sabater, N.; et al.. FLEX End-to-End Mission Performance Simulator. IEEE Transactions on Geoscience and Remote Sensing 2016, 54, 4215–4223. [CrossRef]
- Tenjo, C.; Rivera-Caicedo, J.P.; Sabater, N.; Vicent Servera, J.; Alonso, L.; Verrelst, J.; Moreno, J. Design of a Generic 3-D Scene Generator for Passive Optical Missions and Its Implementation for the ESA’s FLEX/Sentinel-3 Tandem Mission. IEEE Transactions on Geoscience and Remote Sensing 2018, 56, 1290–1307. [CrossRef]
- Coppo, P.; Taiti, A.; Pettinato, L.; Francois, M.; Taccola, M.; Drusch, M. Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission. Remote Sensing 2017, 9, 649.
- Celesti, M.; Rast, M.; Adams, J.; Boccia, V.; Gascon, F.; Isola, C.; Nieke, J. The Copernicus Hyperspectral Imaging Mission for the Environment (CHIME): Status and Planning. In Proceedings of the IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022, pp. 5011–5014. [CrossRef]
- Pato, M.; Buffat, J.; Alonso, K.; Auer, S.; Carmona, E.; Maier, S.; Müller, R.; Rademske, P.; Rascher, U.; Scharr, H. Physics-based Machine Learning Emulator of At-sensor Radiances for Solar-induced Fluorescence Retrieval in the O2-A Absorption Band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2024, pp. 1–10. [CrossRef]
- Morata, M.; Siegmann, B.; Pérez-Suay, A.; García-Soria, J.L.; Rivera-Caicedo, J.P.; Verrelst, J. Neural Network Emulation of Synthetic Hyperspectral Sentinel-2-Like Imagery With Uncertainty. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2023, 16, 762–772. [CrossRef]
- Barrou Dumont, Z.; Gascoin, S.; Inglada, J. Snow and Cloud Classification in Historical SPOT Images: An Image Emulation Approach for Training a Deep Learning Model Without Reference Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2024, 17, 5541 – 5552. [CrossRef]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.; Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sensing of Environment 1995, 52, 163–172.
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nature Reviews Physics 2021, 3, 422–440.
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Transactions on knowledge and data engineering 2009, 22, 1345–1359.
- Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Learning from imbalanced data sets; Vol. 10, Springer, 2018.
- Elshamli, A.; Taylor, G.W.; Areibi, S. Multisource domain adaptation for remote sensing using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing 2019, 58, 3328–3340.
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating physics-based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919 2020, 1, 1–34.
- Higdon, D.; Gattiker, J.; Williams, B.; Rightley, M. Computer model calibration using high-dimensional output. Journal of the American Statistical Association 2008, 103, 570–583.
- Murphy, K.P. Probabilistic machine learning: Advanced topics; MIT press, 2023.
- García-Soria, J.L.; Morata, M.; Berger, K.; Pascual-Venteo, A.B.; Rivera-Caicedo, J.P.; Verrelst, J. Evaluating epistemic uncertainty estimation strategies in vegetation trait retrieval using hybrid models and imaging spectroscopy data. Remote Sensing of Environment 2024, 310, 114228.
- Servera, J.; Rivera-Caicedo, J.; Verrelst, J.; Munoz-Mari, J.; Sabater, N.; Berthelot, B.; Camps-Valls, G.; Moreno, J. Systematic Assessment of MODTRAN Emulators for Atmospheric Correction. IEEE Transactions on Geoscience and Remote Sensing 2022, 60, 1–17. [CrossRef]
- Bouhlel, M.A.; Hwang, J.T.; Bartoli, N.; Lafage, R.; Morlier, J.; Martins, J.R.R.A. A Python surrogate modeling framework with derivatives. Advances in Engineering Software 2019, p. 102662. [CrossRef]
- Saves, P.; Lafage, R.; Bartoli, N.; Diouane, Y.; Bussemaker, J.; Lefebvre, T.; Hwang, J.T.; Morlier, J.; Martins, J.R.R.A. SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes. Advances in Engineering Sofware 2024, 188, 103571. [CrossRef]
- Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional physics-informed neural networks. SIAM Journal on Scientific Computing 2019, 41, A2603–A2626.
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 2022, 92, 88.
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion 2020, 58, 82–115.
- Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Omer, R.; Patel, P.; Qian, B.; Wen, Z.; Shah, T.; Morgan, G.; et al. Explainable AI (XAI): Core ideas, techniques, and solutions. ACM computing surveys 2023, 55, 1–33.






| Method | Description | Pros | Cons | Example Emulation Use |
|---|---|---|---|---|
| Neural Networks (NNs) [59] | Flexible models that learn non-linear mappings through interconnected layers. | High scalability, captures complex patterns, optimized inference speed. | Requires large datasets, limited interpretability, approximate UQ, sensitive to hyperparameters. | Emulating complex RTMs (e.g., coupled vegetation-atmosphere models), scene-to-scene inversion [e.g., [26,42,60,61,62,63,64]]. |
| Deep Learning NNs (DLNNs) [65] | Advanced NN architectures including Convolutional NNs, Recurrent NNs, autoencoders, transformers, and physics-informed NNs. Designed for high-dimensional, spatiotemporal, or structured data emulation. | Extremely flexible, handles high-dimensional inputs, learns spatial/temporal structure, enables end-to-end inversion, supports uncertainty via dropout or ensembles. | Computationally demanding to train, it requires large annotated datasets, has reduced interpretability, and carries an overfitting risk. | Scene-level RTM emulation, spatiotemporal flux retrievals, hybrid physical–DL models (e.g., MODTRAN emulation with CNNs) [e.g., [66,67,68,69,70]]. |
| Gaussian Process Regression (GPR) [71] | Kernel-based probabilistic model providing both mean and variance predictions; ideal for small datasets and inherent UQ. | High accuracy, strong UQ, robust with small data, interpretable. | Scales as , memory-intensive, less suited for large datasets. | Emulating PROSAIL, SCOPE, MODTRAN in applications where accuracy and UQ is critical [e.g.,[26,27,42,60,61,63,72,73,74]]. |
| Random Forests (RF) [75] | Ensemble of decision trees that aggregate outputs for robust prediction. Well-suited for tabular and structured data. | Robust, fast training, interpretable via feature importance, handles noise. | No inherent UQ but empirical variance. Slower prediction at scale due to multiple decision trees, and tends to reduce the impact of outliers due to its averaging nature. | Used as alternative RTM emulators in some benchmarking studies [e.g., [61,76]]. |
| Kernel Ridge Regression (KRR) [77] | Ridge regression in a kernel-transformed space; similar to GPR but deterministic. | Competitive accuracy, captures non-linearity, less sensitive to hyperparameters. | Scales as , no native UQ, less popular than GPR. | Alternative to GPR for mid-sized RTMs where UQ is not essential [e.g., [60,61,69,78]]. |
| Support Vector Regression (SVR) [79] | Finds a hyperplane with -insensitive loss; effective in high-dimensional spaces with kernel trick. | Accurate, robust to outliers, generalizes well with good kernel choice. | Scales as , sensitive to kernel and hyperparameters, lacks native UQ. | Used for spectral emulation tasks with moderate-sized datasets [e.g., [61,76]]. |
| Polynomial Chaos Expansion (PCE) [80] | Expands model output in orthogonal polynomials based on input distributions, allowing for analytical UQ and sensitivity analysis. | Provides analytical UQ, Sobol indices, interpretable, and efficient for low dimensions. | Suffers from curse of dimensionality, basis tied to distribution, struggles with strong non-linearity. | Used in global sensitivity and UQ analysis of deterministic models. Not applied to RTMs. |
| Method | Accuracy | UQ | Scalability | Interpretability | RTM studies |
|---|---|---|---|---|---|
| NNs | High | Approx. (MC dropout, ensembles) | High | Low | [26,42,60,61,62,63,64] |
| DLNNs | Very High | Approx. (MC dropout, deep ensembles) | Very High | Very Low | [66,67,68,69,70] |
| GPR | High | Yes (Bayesian predictive distribution) | Limited | Medium | [26,27,42,60,61,63,72,73,74] |
| RF | Moderate–High | Empirical (ensemble variance) | High | Medium | [61,63,69] |
| KRR | High | No | High | Medium | [26,42,60,61,78] |
| SVR | Moderate–High | No | Medium | Medium | [61,76] |
| PCE | Moderate | Yes (analytical) | Moderate | High | No RTM studies |
| Property | Latin Hypercube Sampling (LHS) [105] | Sobol Sequence [106] | Halton Sequence [107] |
|---|---|---|---|
| Type | Stratified random sampling | Quasi-random (low-discrepancy) sequence | Quasi-random (low-discrepancy) sequence |
| Space-filling Quality | Good in all dimensions (by construction) | Excellent for moderate to high dimensions | Good in low dimensions; deteriorates with higher dimensions |
| Uniformity | Random, but forced stratification ensures uniform marginal distributions | Highly uniform; minimizes gaps and clusters | Uniform in low dimensions; suffers from correlation in higher dimensions |
| Determinism | Stochastic (can vary by seed) | Deterministic | Deterministic |
| Scalability | Easily scalable to high dimensions and sample sizes | Efficient in high-dimensional settings; extensible | Less scalable; performance degrades beyond 10–20 dimensions |
| Implementation Simplicity | Simple and widely implemented | Slightly more complex; supported in numerical libraries | Relatively simple but less widely used |
| Suitability for Emulator Training | Common choice due to flexibility and randomness | Preferred for high-dimensional RTMs due to uniformity and extensibility | Suitable for low-dimensional problems, less ideal for complex RTMs |
| Reproducibility | Depends on random seed | Fully reproducible | Fully reproducible |
| Use | Widely used for training | Used for running emulators in global sensitivity analysis (see also Section 4.2) | No RTM emulation studies |
| Property | PCA [112] | SVD [113] | Autoencoder [114] |
|---|---|---|---|
| Type | Linear projection | Linear matrix factorization | Nonlinear encoder-decoder |
| Learning | Unsupervised (closed-form) | Unsupervised (closed-form) | Unsupervised (trained with backpropagation) |
| Nonlinearity | No | No | Yes |
| Interpretability | High (ordered by variance) | Moderate (singular vectors) | Low (latent variables) |
| Scalability | Fast, memory-limited at scale | Efficient, scalable SVD libs. exist | Scales well; training cost higher |
| Compression | Effective for linear variance | Good for general matrices | Strong for nonlinear manifolds |
| Reconstruction | Inverse projection from PCs | Matrix product of truncated SVD | Decoder reconstructs from latent space |
| Accuracy | Good for linear data | Similar to PCA | Better for nonlinear data |
| Complexity | Simple, widely used | Simple, widely available | Requires architecture and tuning |
| RTM Use | Common for LUT/input reduction | Rare, yet applicable (similar to PCA) | Increasing use for LUT compression |
| References | [e.g., [60,121]] | – | [e.g., [66,69]] |
| ML Method | Type | Strengths for Emulation | Refs |
|---|---|---|---|
| Scalable GPR; e.g., Sparse GPR, nearest neighbor GPR (NNGPR), stochastic variational (SVGP) | Probabilistic kernel regression | Uncertainty quantification; scalable to large datasets via approximation | [122,123,124] |
| Deep GPR | Deep kernel-based regression | Captures hierarchical structure; better handles complex non-stationarity | [125] |
| Bayesian Additive Regression Trees (BART) | Bayesian ensemble trees | Probabilistic output; interpretable; handles nonlinear relationships well | [126] |
| XGBoost | Gradient-boosted decision trees (GBDTs) | Fast and accurate; robust to overfitting; interpretable | [127] |
| LightGBM | GBDTs with histogram splits | Very fast; handles large-scale input efficiently | [128] |
| CatBoost | GBDTs with ordered boosting | Effective with categorical inputs; competitive accuracy | [129] |
| CNNs | Deep learning (spatial) | Strong at extracting local spectral/spatial patterns; good for hyperspectral data | [130] |
| Transformers | Deep learning (attention) | Captures long-range interactions; suited to structured inputs (e.g., spectra) | [131] |
| PINNs | Physics-informed NNs | Incorporates RTM physics in training (e.g., spectral absorption features, conservation laws); enables physically consistent emulation | [132] |
| Bayesian Neural Networks (BNNs) | Probabilistic deep learning | Uncertainty-aware emulation; flexible for complex nonlinearities | [133] |
| Generative Adversarial Networks (GANs) | Generative deep learning | Capable of high-fidelity synthetic spectral generation; potential for inversion/data augmentation | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
