Submitted:
05 September 2025
Posted:
08 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Participants
2.3. Study Design
2.4. Lifestyle Questionnaire
2.5. Blood Sample Measurements
2.6. Sperm Sample Measurement
2.7. Stimulation Protocols in cIVF
2.8. cIVF Procedure
2.9. Blastocyst Assessment
2.10. Embryo Transfer Procedure
2.11. Statistical Analyses
3. Results
3.1. Background Characteristics of the Study Participants
3.2. Background Sperm Parameters and cIVF Outcomes
3.3. Correlation of Metabolic, Lifestyle, and Sperm Factors with cIVF Outcomes
3.4. Correlation of Metabolic, Lifestyle, and Sperm Factors with Sperm DFI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fauser, B.C.J.M.; Adamson, G.D.; Boivin, J.; Chambers, G.M.; de Geyter, C.; Dyer, S.; Inhorn, M.C.; Schmidt, L.; Serour, G.I.; Tarlatzis, B.; et al. Declining global fertility rates and the implications for family planning and family building: an IFFS consensus document based on a narrative review of the literature. Hum Reprod Update. 2024, 30, 153–173. [Google Scholar] [CrossRef]
- Smeenk, J.; Wyns, C.; De Geyter, C.; Kupka, M.; Bergh, C.; Cuevas Saiz, I.; De Neubourg, D.; Rezabek, K.; Tandler-Schneider, A.; Rugescu, I.; et al. ART in Europe, 2019: results generated from European registries by ESHRE. Hum Reprod. 2023, 38, 2321–2338. [Google Scholar] [PubMed]
- Wang, S.F.; Seifer, D.B. Assessment of a Decade of Change in U.S. Assisted Reproductive Technology Cumulative Live-Birth Rates: 2004-2009 Compared With 2014-2020. Obstet Gynecol. 2024, 143, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, Y.; Jwa, S.C.; Kuwahara, A.; Iwasa, T.; Ono, M.; Kato, K.; Kishi, H.; Kuwabara, Y.; Harada, M.; Hamatani, T.; et al. Assisted reproductive technology in Japan: A summary report for 2020 by the Ethics Committee of the Japan Society of obstetrics and gynecology. Reprod Med Biol. 2023, 22, e12494. [Google Scholar] [CrossRef]
- Jain, M.; Singh, M. Assisted Reproductive Technology (ART) Techniques. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Updated 2023 Jun 7; cited 2025 Aug 19. Available from: https://www.ncbi.nlm.nih.gov/books/NBK576409/.
- Zou, H.; Kemper, J.M.; Hammond, E.R.; Xu, F.; Liu, G.; Xue, L.; Bai, X.; Liao, H.; Xue, S.; Zhao, S.; et al. Blastocyst quality and reproductive and perinatal outcomes: a multinational multicentre observational study. Hum Reprod. 2023, 38, 2391–2399. [Google Scholar] [CrossRef]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, Z.; Kong, Y.; Jin, M.; Ma, L. Global, regional and national burden of male infertility in 204 countries and territories between 1990 and 2019: an analysis of global burden of disease study. BMC Public Health. 2023, 23, 2195. [Google Scholar] [CrossRef]
- Chen, L.; Mori, Y.; Nishii, S.; Sakamoto, M.; Ohara, M.; Yamagishi, S.I.; Sekizawa, A. Impact of Oxidative Stress on Sperm Quality in Oligozoospermia and Normozoospermia Males Without Obvious Causes of Infertility. J. Clin. Med. 2024, 13, 7158. [Google Scholar] [CrossRef]
- Isami, F.; West, B.J.; Nakajima, S.; Yamagishi, S.I. Association of advanced glycation end products, evaluated by skin autofluorescence, with lifestyle habits in a general Japanese population. J Int Med Res. 2018, 46, 1043–1051. [Google Scholar] [CrossRef]
- Ohara, M.; Nagaike, H.; Fujikawa, T.; Kohata, Y.; Ogawa, M.; Omachi, T.; Sasajima, R.; Chiba, H.; Ara, T.; Sugawara, A.; et al. Effects of omarigliptin on glucose variability and oxidative stress in type 2 diabetes patients: A prospective study. Diabetes Res Clin Pract. 2021, 179, 108999. [Google Scholar] [CrossRef]
- Takeuchi, M.; Takino, J.; Furuno, S.; Shirai, H.; Kawakami, M.; Muramatsu, M.; Kobayashi, Y.; Yamagishi, S. Assessment of the concentrations of various advanced glycation end-products in beverages and foods that are commonly consumed in Japan. PLoS One. 2015, 10, e0118652. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO laboratory manual for the examination and processing of human semen, 6th ed; World Health Organization: Geneva, Switzerland, 2021; pp. 9–64. [Google Scholar]
- Agarwal, A.; Panner, Selvam. M.K.; Arafa, M.; Okada, H.; Homa, S.; Killeen, A.; Balaban, B.; Saleh, R.; Armagan, A.; Roychoudhury, S.; et al. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J Androl. 2019, 21, 565–569. [CrossRef]
- Cicek, O.S.Y.; Kaya, G.; Alyuruk, B.; Doger, E.; Girisen, T.; Filiz, S. The association of seminal oxidation reduction potential with sperm parameters in patients with unexplained and male factor infertility. Int Braz J Urol. 2021, 47, 112–119. [Google Scholar] [CrossRef]
- Al Omrani, B.; Al Eisa, N.; Javed, M.; Al Ghedan, M.; Al Matrafi, H.; Al Sufyan, H. Associations of sperm DNA fragmentation with lifestyle factors and semen parameters of Saudi men and its impact on ICSI outcome. Reprod Biol Endocrinol. 2018, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Tuo, Y. Correlation of DNA fragments with routine semen parameters and lifestyle and their impact on assisted reproductive outcomes. Rev Int Androl. 2023, 21, 100337. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K.; Schoolcraft, W.B. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999, 11, 307–311. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Singh, R.; Palani, A. Sperm DNA Fragmentation in Reproductive Medicine: A Review. J Hum Reprod Sci. 2022, 15, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Q.; Wang, Y.; Li, Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014, 102, 998–1005.e8. [Google Scholar] [CrossRef]
- Kort, H.I.; Massey, J.B.; Elsner, C.W.; Mitchell-Leef, D.; Shapiro, D.B.; Witt, M.A.; Roudebush, W.E. Impact of body mass index values on sperm quantity and quality. J Androl. 2006, 27, 450–452. [Google Scholar] [CrossRef]
- Rybar, R.; Kopecka, V.; Prinosilova, P.; Markova, P.; Rubes, J. Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia. 2011, 43, 286–291. [Google Scholar] [CrossRef]
- Nicopoullos, J.D.; Gilling-Smith, C.; Almeida, P.A.; Homa, S.; Norman-Taylor, J.Q.; Ramsay, J.W. Sperm DNA fragmentation in subfertile men: the effect on the outcome of intracytoplasmic sperm injection and correlation with sperm variables. BJU Int. 2008, 101, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Albitar, O.; D'Souza, C.M.; Adeghate, E.A. Effects of Lipoproteins on Metabolic Health. Nutrients. 2024, 16, 2156. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Chou, Y.C.; Lin, S.H.; Wu, S.T.; Cha, T.L.; Chen, H.I.; Tsao, C.W. Serum lipid profiles are associated with semen quality. Asian J Androl. 2017, 19, 633–638. [Google Scholar] [PubMed]
- Lu, J.C.; Jing, J.; Yao, Q.; Fan, K.; Wang, G.H.; Feng, R.X.; Liang, Y.J.; Chen, L.; Ge, Y.F.; Yao, B. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men. PLoS One. 2016, 11, e0146304. [Google Scholar] [CrossRef]
- Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of oxidative stress on male reproduction. World J Mens Health. 2014, 32, 1–17. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Nixon, B. Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants (Basel). 2020, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.; Matsui, T. Pathologic role of dietary advanced glycation end products in cardiometabolic disorders, and therapeutic intervention. Nutrition. 2016, 32, 157–165. [Google Scholar] [CrossRef]
- Yamagishi, S.I.; Matsui, T. Therapeutic Potential of DNA-aptamers Raised Against AGE-RAGE Axis in Diabetes-related Complications. Curr Pharm Des. 2018, 24, 2802–2809. [Google Scholar] [CrossRef]
- Yamagishi, S.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced Glycation End Products: A Molecular Target for Vascular Complications in Diabetes. Mol Med. 2015, 21, S32–40. [Google Scholar] [CrossRef]
- Guz, J.; Gackowski, D.; Foksinski, M.; Rozalski, R.; Zarakowska, E.; Siomek, A.; Szpila, A.; Kotzbach, M.; Kotzbach, R.; Olinski, R. Comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. PLoS One. 2013, 8, e68490. [Google Scholar] [CrossRef]
- Mori, Y.; Terasaki, M.; Osaka, N.; Fujikawa, T.; Yashima, H.; Saito, T.; Kataoka, Y.; Ohara, M.; Higashimoto, Y.; Matsui, T.; et al. DNA Aptamer Raised against Advanced Glycation End Products Improves Sperm Concentration, Motility, and Viability by Suppressing Receptors for Advanced Glycation End Product-Induced Oxidative Stress and Inflammation in the Testes of Diabetic Mice. Int J Mol Sci. 2024, 25, 5947. [Google Scholar] [CrossRef] [PubMed]
- Furtado, T.P.; Osadchiy, V.; Furtado, M.H. Semen static oxidation-reduction potential is not helpful in evaluating male fertility. Andrology. 2024 Oct 10. doi: 10.1111/andr.13759. Epub ahead of print. [CrossRef]
- Simon, L.; Emery, B.R.; Carrell, D.T. Review: Diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017, 44, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Sabanegh, E.; Mahfouz, R.; Gupta, S.; Thiyagarajan, A.; Agarwal, A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010, 76, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
| Participants (men) | Partners (women) | ||
| Number | 21 | Number | 21 |
| Age (years old) | 38.9 ± 6.0 | Age (years old) | 36.3 ± 5.1 |
| Comorbidities | Comorbidities | ||
| Hyperuricemia (n) | 1 [4.8%] | Polycystic ovary syndrome (n) | 6 [28.6%] |
| Hypercholesterolemia (n) | 1 [4.8%] | Uterine fibroids (n) | 3 [14.3%] |
| Hypertension (n) | 1 [4.8%] | Endometriosis (n) | 2 [9.5%] |
| Sexual dysfunction (n) | 1 [4.8%] |
| Height (cm) | 171.5 ± 5.7 |
| Body weight (kg) | 69.0 ± 11.5 |
| BMI (kg/m2) | 23.4 ± 3.2 |
| Wasit circumstance (cm) | 83 [78–91] |
| SAF (AU) | 1.7 [1.6–1.9] |
| Serum AGEs (µg/mL) | 0.24 [0.20–0.34] |
| Serum d-ROMs (U.CARR) | 309 ± 55 |
| Serum glucose (mg/dL) | 103 [99–117] |
| Serum LDL-C (mg/dL) | 113 ± 30 |
| Serum HDL-C (mg/dL) | 53 ± 16 |
| Serum TG (mg/dL) | 168 ± 89 |
| Serum Zn (ug/dL) | 77 [69–89] |
| Serum free testosterone (pg/mL) | 11.8 ± 3.4 |
| A. How often do you engage in physical activity such as a 30-minute walk or equivalent exercise | ||||
| 1. Not at all | 2. No exercise, but walk around at home or office | 3. Once a week | 4. 2–3 times a week | 5. More than 4 times a week |
| 3 [14.3%] | 8 [38.1%] | 3 [14.3%] | 4 [19.0%] | 3 [14.3%] |
| B. How long have you been smoking? | ||||
| 1. Daily smoking for ≥10 years | 2. Daily smoking for <10 years | 3. Quit smoking within 1 year | 4. Quit smoking more than 1 year ago | 5. Never smoked |
| 6 [28.6%] | 1 [4.8%] | 2 [9.5%] | 1 [4.8%] | 11 [52.4%] |
| C. How frequently do you consume alcoholic beverages? | ||||
| 1. More than 4 times a week | 2. 2–3 times a week | 3. Once a week | 4. Sometimes | 5. Never |
| 6 [28.6%] | 2 [9.5%] | 3 [14.3%] | 6 [28.6%] | 4 [19.0%] |
| D. How many hours do you sleep each day? | ||||
| 1. Less than 4 hours | 2. 4–5 hours | 3. 5–7 hours | 4. 7–8 hours | 5. More than 8 hours |
| 3 [14.3%] | 8 [38.1%] | 0 [0%] | 9 [42.9%] | 1 [4.8%] |
| E. Do you feel mentally stressed? | ||||
| 1. Strongly agree | 2. Agree | 3. Neutral | 4. Disagree | 5. Strongly disagree |
| 1 [4.8%] | 7 [33.3%] | 0 [0%] | 11 [52.4%] | 2 [9.5%] |
| F. Do you eat plenty of vegetables? | ||||
| 1. Strongly disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly agree |
| 2 [9.5%] | 3 [14.3%] | 0 [0%] | 6 [28.6%] | 10 [47.6%] |
| G. Do you eat breakfast daily? | ||||
| 1. Strongly disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly agree |
| 6 [28.6%] | 3 [14.3%] | 1 [4.8%] | 4 [19.0%] | 7 [33.3%] |
| H. Do you try to avoid overeating beyond about 80% fullness? | ||||
| 1. Strongly disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly agree |
| 3 [14.3%] | 4 [19.0%] | 2 [9.5%] | 10 [47.6%] | 2 [9.5%] |
| I. Do you try to avoid consuming greasy foods? | ||||
| 1. Strongly disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly agree |
| 6 [28.6%] | 6 [28.6%] | 6 [28.6%] | 2 [9.5%] | 1 [4.8%] |
| J. Do you try to avoid consuming processed foods? | ||||
| 1. Strongly disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly agree |
| 5 [23.8%] | 5 [23.8%] | 4 [19.0%] | 5 [23.8%] | 2 [9.5%] |
| K. Do you try to avoid consuming sugary foods, such as cakes and candies? | ||||
| 1. Strongly disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly agree |
| 6 [28.6%] | 7 [33.3%] | 0 [0%] | 2 [9.5%] | 6 [28.6%] |
| L. Do you eat vegetables first during your meals? | ||||
| 1. Strongly disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly agree |
| 2 [9.5%] | 3 [14.3%] | 4 [19.0%] | 7 [33.3%] | 5 [23.8%] |
| Sperm volume (mL) | 3.3 ± 1.1 |
| Sperm concentration (106/mL) | 130 [101–201] |
| Total sperm count (×106 per ejaculate) | 432 [261–666] |
| Sperm total motility (%) | 64 ± 15 |
| Sperm progressive motility (%) | 55 ± 16 |
| Sperm ORP (mV/106 sperm/mL) | 0.22 [0.17–0.41] |
| Sperm DFI (%) | 6.5 [3.0–15.4] |
| Blastocyst formation rate (%) | 29.6 [16.7–39.2] |
| Blastocyst development stage | 2.6 ± 1.4 |
| Blastocyst quality grade | 1.3 ± 0.9 |
| Implantation success after transfer (%) | 52 [0–100] |
| Blastocyst formation rate | Blastocyst development stage | Blastocyst quality grade | ||||
| Variables | r | p | r | p | r | p |
| Male age (years old) | 0.98 | 0.26 | −0.44 | 0.04 | ||
| Female age (years old) | 0.37 | 0.20 | 0.07 | |||
| Body weight (kg) | 0.55 | 0.96 | 0.94 | |||
| BMI (kg/m2) | 0.78 | 0.66 | 0.62 | |||
| Wasit circumstance (cm) | 0.90 | 0.80 | 0.90 | |||
| SAF (AU) | 0.76 | 0.19 | 0.08 | |||
| Serum AGEs (µg/mL) | 0.96 | 0.90 | 0.86 | |||
| Serum d-ROMs (U.CARR) | 0.80 | 0.52 | 0.40 | |||
| Serum glucose (mg/dL) | 0.80 | 0.61 | 0.49 | |||
| Serum LDL-C (mg/dL) | 0.66 | 0.55 | 0.48 | |||
| Serum HDL-C (mg/dL) | 0.23 | 0.17 | 0.35 | |||
| Serum TG (mg/dL) | 0.35 | 0.83 | 0.70 | |||
| Serum Zn (ug/dL) | 0.51 | 0.29 | 0.30 | |||
| Serum free testosterone (pg/mL) | 0.70 | 0.93 | 0.88 | |||
| Exercise-related lifestyle habits | 0.11 | 0.61 | 0.39 | |||
| Smoking-related lifestyle habits | 0.14 | 0.09 | 0.19 | |||
| Alcohol-related lifestyle habits | 0.66 | 0.60 | 0.86 | |||
| Mental stress–related lifestyle habits | 0.81 | 0.80 | 0.57 | |||
| Diet-related lifestyle habits | 0.46 | 0.87 | 0.75 | |||
| Sperm volume (mL) | 0.59 | 0.46 | 0.44 | |||
| Sperm concentration (106/mL) | 0.30 | 0.32 | 0.65 | |||
| Total sperm count (×106 per ejaculate) | 0.56 | 0.55 | 0.99 | |||
| Sperm total motility (%) | 0.89 | 0.21 | 0.47 | |||
| Sperm progressive motility (%) | 1.00 | 0.14 | 0.44 | |||
| Sperm ORP (mV/106 sperm/mL) | 0.50 | 0.61 | 0.81 | |||
| Sperm DFI (%) | −0.50 | 0.03 | −0.45 | 0.04 | −0.45 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
