Submitted:
01 September 2025
Posted:
04 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Metodology
3. Case Study
4. Computational Framework
4.1. Numerical Domain and Mesh Configuration
4.2. Boundary Conditions
4.3. Governing Equations
4.4. Turbulence Models
- and so on.
4.5. Spatial and Temporal Discretization Strategy
4.6. Mesh Independence and Validation Against Observed Flow Patterns
5. Results and Discussion
5.1. Mean Velocity
5.2. Turbulent Viscosity
5.3. Strain Rate

5.4. Swirl Intensity
5.5. Shear Stress
5.6. Shear Velocity
5.7. Q Criterion
- SST is the model that predicts the most intense vortices and the development of structures from the bottom toward the surface, making it the most prone to simulating internal waves and flow breaking due to vorticity accumulation.
- GEKO is the most stable and configurable, useful when seeking to control the shape and persistence of structures without saturating the solution.
- BSL–EARSM offers more realistic structures in terms of orientation and shape, making it ideal for physical flow analysis, especially in complex channels.
- RNG produces broad deformation zones with distinct but somewhat more dispersed or irregular vortices, useful under transient flow conditions and hydraulic jumps.
6. Conclusions
- BSL–EARSM exhibits outstanding capabilities in physically describing coherent and three-dimensional flow structures. Its representation of the Q-criterion, the helical organization of streamlines, and the distribution of turbulent dissipation more realistically reflect bed-surface interactions, the development of lateral vortices, and recirculation zones. Its swirling intensity and shear velocity are physically consistent with flows dominated by separation, mixing, and secondary pulsation. This model proves to be the most suitable and optimal for representing fluvial flows with complex and anisotropy structures making it the most physically accurate closure for simulating complex flow structures in natural rivers, more realistic predictions of turbulent viscosity and strain-rate distributions, and with no higher computational cost.
- GEKO closely follows BLS–EARSM in performance proving to be a flexible alternative delivering robust predictions even without site-specific calibration and offering promise for applications where empirical data for tuning are unavailable. However, it tends to be slightly more conservative regarding extreme values of shear velocity and swirling intensity, it provides high spatial coherence in regions of strong flow deformation. It is particularly useful when a balance between accuracy and computational robustness is required, and in scenarios involving smooth transitions between laminar and turbulent regimes or controlled flow conditions.
- SST model is balanced-accuracy and computational efficiency, effectively resolving key features like shear layers and separation zones, but exhibited a tendency to overestimate turbulent viscosity in certain high-shear regions. It produces intense but more diffuse structures in its predictions. It is ideal for identifying separation and reattachment zones, although it may overestimate turbulent kinetic energy in certain cases.
- RNG produces less organized structures with greater spatial dispersion, which may be useful for representing highly fluctuating turbulence but is less suitable for structured flow analyses. Nevertheless, showed limitations in representing low-velocity and recirculation zones, and tended to diffuse key turbulent structures, which are essential aspects for riverine modeling.
- RLZ serves as a minimal reference; its low complexity ensures fast computations but renders it insufficient for capturing the complex details of riverine flows.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
| Buoyancy-induced turbulence production. | |
| Boussinesq approximation turbulence kinetic energy production term. | |
| empirical constant. | dimensionless |
| . empirical constant. | dimensionless |
| empirical constant. | dimensionless |
| empirical constant. | dimensionless |
| and turbulent Prandtl numbers. | dimensionless |
| and are the reciprocals of the effective turbulent Prandtl numbers. | dimensionless |
| Buoyancy-induced turbulence generation. | |
| . compressibility effects | |
| curvature/rotation term. | |
| Specific dissipation rate. | |
| and source terms. | |
| magnitude of the mean rate-of-strain tensor. | ] |
| Eddy viscosity coefficient. | dimensionless |
| Thermal expansion coefficient. | ] |
| gravity component. | |
| Turbulent Prandtl number. | dimensionless |
| and Specific effective diffusivities. | |
| and turbulent Prandtl numbers. | dimensionless |
| and source terms. | |
| and turbulent dissipation contributions. | |
| cross-diffusion interaction. | |
| empirical constant. | dimensionless |
| empirical constant. | dimensionless |
| empirical constant. | dimensionless |
| empirical constant. | dimensionless |
| empirical constant. | dimensionless |
| Mixing function. | dimensionless |
| ,,Calibration functions tunable coefficients. | dimensionless |
| Cross-diffusion term. | |
| turbulent kinetic energy production. | |
| production of turbulence frequency of kinetic energy. | |
| , Cross-diffusion term. | |
| is a blending function. | dimensionless |
References
- Beg, M.N.A.; Rubinato, M.; Carvalho, R.F.; Shucksmith, J.D. CFD modelling of the transport of soluble pollutants from sewer networks to surface flows during urban flood events. Water 2020, 12, 2514. [Google Scholar] [CrossRef]
- Rowiński, P. Experimental and computational solutions of hydraulic problems. vol. 11. 2013. [CrossRef]
- Leupi, C.; Miglio, E.; Altinakar, M.; Quarteroni, A.; Deville, M.O. A 3D finite element model for free-surface flows. Comput Fluids 2009, 38, 1903–1916. [Google Scholar] [CrossRef]
- Saleem, M.W.; Rashid, M.; Haider, S.; Khalid, M.; Elfeki, A. Simulation of urban flooding using 3D computational fluid dynamics with turbulence model. Results Eng 2025, 25, 103609. [Google Scholar] [CrossRef]
- Munoz, D.H.; Constantinescu, G. Application of a 3-D CFD model to investigate flood-related engineering problems. E3S Web Conf 2018, 40, 1–7. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Ma, Q.; Zhang, J.; Hu, Q.; Zhan, Y. Dam-Break Hazard Assessment with CFD Computational Fluid Dynamics Modeling: The Tianchi Dam Case Study. Water 2025, 17, 108. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Hicks, D.M. Numerical Modelling of Braided River Morphodynamics: Review and Future Challenges. Geogr Compass 2016, 10, 102–127. [Google Scholar] [CrossRef]
- Jaafar, Q.N.; Sayl, K.N.; Kamel, A.H. Numerical Modelling of River Training Work: A review. IOP Conf Ser Earth Environ Sci 2023, 1222. [Google Scholar] [CrossRef]
- Mechanisms, B.R. A Review of Numerical Modelling of Morphodynamics in 2023.
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; et al. Iber: herramienta de simulación numérica del flujo en ríos. Rev Int Metod Numer Para Calc y Disen En Ing 2014, 30, 1–10. [Google Scholar] [CrossRef]
- US Army Corps of Engineers, Davis, CA U. Hydrologic Engineering Center HEC-RAS, River Analysis System. (Accessed 25 Sept 2024) 2025.
- Dumont, G.B.; Petry, A.P. Anisotropic turbulence modeling of the atmospheric surface layer: Validation of novel model settings and comparison with traditional two-equation models in flows over complex terrain. J Wind Eng Ind Aerodyn 2024, 247, 105696. [Google Scholar] [CrossRef]
- Mulder, T.; Alexander, J. Abrupt change in slope causes variation in the deposit thickness of concentrated particle-driven density currents. Mar Geol 2001, 175, 221–235. [Google Scholar] [CrossRef]
- Cheng, Z.; Koken, M.; Constantinescu, G. Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour. Adv Water Resour 2018, 120, 65–82. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X. Theoretical, experimental, and numerical studies of flow field characteristics and incipient scouring erosion for slope with rigid vegetations. J Hydrol 2023, 622, 129638. [Google Scholar] [CrossRef]
- Paudel, S.; Singh, U.; Crosato, A.; Franca, M.J. Effects of initial and boundary conditions on gravel-bed river morphology. Adv Water Resour 2022, 166, 104256. [Google Scholar] [CrossRef]
- Dey, S.; Saksena, S.; Winter, D.; Merwade, V.; McMillan, S. Incorporating Network Scale River Bathymetry to Improve Characterization of Fluvial Processes in Flood Modeling. Water Resour Res 2022, 58. [Google Scholar] [CrossRef]
- Lague, D.; Feldmann, B. Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis, 2020, p. 25–54. [CrossRef]
- Christodoulou GC, Stamou AI, editors. Environmental Hydraulics, Two Volume Set. CRC Press; 2010. [CrossRef]
- Kang, S.; Lightbody, A.; Hill, C.; Sotiropoulos, F. High-resolution numerical simulation of turbulence in natural waterways. Adv Water Resour 2011, 34, 98–113. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Wen, X.; Wang, J.; Liu, C.; Wan, D. CFD simulation of multiphase flow at different scales. 3rd Int Symp Cavitation Multiph Flow, Shanghai, China, April 20 19:19–22.
- Liang Xu, L.X.; Tiegang Liu, T.L. Ghost-Fluid-Based Sharp Interface Methods for Multi-Material Dynamics: A Review. Commun Comput Phys 2023, 34, 563–612. [Google Scholar] [CrossRef]
- Chatzimarkou, E.; Michailides, C.; Onoufriou, T. Performance of a coupled level-set and volume-of-fluid method combined with free surface turbulence damping boundary condition for simulating wave breaking in OpenFOAM. Ocean Eng 2022, 265, 112572. [Google Scholar] [CrossRef]
- Castillo, L.G.; García, J.T.; Carrillo, J.M.; Vigueras-Rodríguez, A. Comparison of PIV measurements and CFD simulations of the velocity field over bottom racks. Sustain Hydraul Era Glob Chang - Proc 4th Eur Congr Int Assoc Hydroenvironment Eng Res IAHR 2016 2016:145–50. [CrossRef]
- Moramarco, T.; Dingman, S.L. On the theoretical velocity distribution and flow resistance in natural channels. J Hydrol 2017, 555, 777–785. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yang, H.C.; Liao, Y.J.; Chen, Y.T. Modelling and Numerical Simulation Approaches to the Stage–Discharge Relationships of the Lansheng Bridge. Water 2023, 15, 2179. [Google Scholar] [CrossRef]
- Conway, P.; O’Sullivan, J.J.; Lambert, M.F. Stage-discharge prediction in straight compound channels using 3D numerical models. Proc Inst Civ Eng Water Manag 2013, 166, 3–15. [Google Scholar] [CrossRef]
- Mailhot, A.; Talbot, G.; Bolduc, S.; Fortier, C. Assessment of uncertainties on stage-discharge rating curves: A large scale application to Québec hydrometric network. EGUsphere 2024, 2024, 1–23. [Google Scholar] [CrossRef]
- Kurdistani, S.M.; Perrone, G.C. Diffusion of a Surface Marine Sewage Effluent. CFD Lett 2023, 15, 135–153. [Google Scholar] [CrossRef]
- Unsworth, C.A.; Nicholas, A.P.; Ashworth, P.J.; Best, J.L.; Lane, S.N.; Parsons, D.R.; et al. Influence of Dunes on Channel-Scale Flow and Sediment Transport in a Sand Bed Braided River. J Geophys Res Earth Surf 2020, 125. [Google Scholar] [CrossRef]
- Jongbloed, H.; Vermeulen, B.; Hoitink, A.J.F. Physics-Informed Estimation of Tidal and Subtidal Flow Fields From ADCP Repeat Transect Data. Water Resour Res 2025, 61. [Google Scholar] [CrossRef]
- Banjavcic, S.D.; Schmidt, A.R. Spatial Uncertainty in Depth Averaged Velocity Determined from Stationary, Transect, and Longitudinal ADCP Measurements. J Hydraul Eng 2018, 144. [Google Scholar] [CrossRef]
- Keylock, C.J.; Hardy, R.J.; Parsons, D.R.; Ferguson, R.I.; Lane, S.N.; Richards, K.S. The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth-Science Rev 2005, 71, 271–304. [Google Scholar] [CrossRef]
- Kim, J.S.; Seo, I.W.; Baek, D.; Kang, P.K. Recirculating flow-induced anomalous transport in meandering open-channel flows. Adv Water Resour 2020, 141, 103603. [Google Scholar] [CrossRef]
- Ma, L.; Ashworth, P.J.; Best, J.L.; Elliott, L.; Ingham, D.B.; Whitcombe, L.J. Computational fluid dynamics and the physical modelling of an upland urban river. Geomorphology 2002, 44, 375–391. [Google Scholar] [CrossRef]
- Seminara, G.; Lanzoni, S.; Tambroni, N. Theoretical Morphodynamics: River Meandering. 2023. [CrossRef]
- Han, X.; Sagaut, P.; Lucor, D. On sensitivity of RANS simulations to uncertain turbulent inflow conditions. Comput Fluids 2012, 61, 2–5. [Google Scholar] [CrossRef]
- Ishihara, T.; Chen, X. Unsteady Reynolds-Averaged Navier-Stokes simulation of turbulent flow fields around a line of trees and a steep hill using a new turbulent inflow generation method. Int J Heat Fluid Flow 2025, 112, 109705. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Japan 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Valero, D.; Bung, D.B.; Erpicum, S.; Peltier, Y.; Dewals, B. Unsteady shallow meandering flows in rectangular reservoirs: A modal analysis of URANS modelling. J Hydro-Environment Res 2022, 42, 12–20. [Google Scholar] [CrossRef]
- Rey, L.F.C.; Hinz, D.F.; Abkar, M. Reynolds stress perturbation for epistemic uncertainty quantification of RANS models implemented in OpenFOAM. Fluids 2019, 4, 113. [Google Scholar] [CrossRef]
- Lenci, G.; Feng, J.; Baglietto, E. A generally applicable hybrid unsteady Reynolds-averaged Navier-Stokes closure scaled by turbulent structures. Phys Fluids 2021, 33. [Google Scholar] [CrossRef]
- Miori, S.; Hardy, R.J.; Lane, S.N. Topographic forcing of flow partition and flow structures at river bifurcations. Earth Surf Process Landforms 2012, 37, 666–679. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- Torres, C. Numerical Modelling of Hydraulic Free Surface Flows and Scale Effects Associated with Physical Modelling. The University of Leeds, 2018.
- Magdalena, I.; Jonathan, G. Water waves resonance and its interaction with submerged breakwater. Results Eng 2022, 13, 100343. [Google Scholar] [CrossRef]
- Qi, M.; Li, J.; Chen, Q.; Zhang, Q. Roughness effects on near-wall turbulence modelling for open-channel flows. J Hydraul Res 2018, 56, 648–661. [Google Scholar] [CrossRef]
- Transport, S.; Taylor, P. Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. vol. 52. 2014. [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1986, 1, 3–51. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Menter, F.; Lechner, R.; Germany GmbHMatyushenko, A.A.; Petersburg, S. Best Practice: Generalized k-omega (GEKO) Two-Equation Turbulence Modeling in Ansys CFD 2021, 1–32.
- Menter, F.R.; Garbaruk, A.V.; Egorov, Y. Explicit algebraic reynolds stress models for anisotropic wall-bounded flows 2012:89–104. [CrossRef]
- Hellsten, A. New two-equations turbulence model for aerodynimic flows. 2004.
- Wallin, S. Engineering turbulence modelling for CFD with a focus on explicit algebraic Reynolds stress models by. Ph D Thesis R Inst Technol Stock, 2000; 244. [Google Scholar]
- Pham, H.; Nguyen, T.D. The Explicit Algebraic Reynolds Stress Models for Turbulent Flows. Mech Eng Res 2012, 2. [Google Scholar] [CrossRef]
- Rhoads, B.L. River Dynamics: Geomorphology to Support Management. 2020. [CrossRef]
- Resilience, D.; Growth, G. River Dynamics and Flood Hazards Studies on Risk and Mitigation. 2023.
- ANSYS Fluent. ANSYS, Inc Release 2024 R1 Southpointe, 275 Technol Drive, Canonsburg, PA 15317 Novemb 2024.
- OpenFOAM Foundation. OpenFOAM Open Source CFD Toolbox, Version 11 2024.
- COMSOLAB COMSOL Multiphysics® User’s Guide Version 6.2. [Online] 2024.
- Martínez-Aranda, S.; Murillo, J.; García-Navarro, P. A 1D numerical model for the simulation of unsteady and highly erosive flows in rivers. Comput Fluids 2019, 181, 8–34. [Google Scholar] [CrossRef]
- Bharadwaj, M.R.; Gupta, L.K.; Pandey, M. Reduction of local scour around a circular bridge pier using the collars and sacrificial piles in non-uniform sediment. Geomorphology 2024, 465, 109378. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Franza, A.; Liu, H. Numerical evaluation of scour effects on lateral behavior of pile groups in clay. Comput Geotech 2022, 150, 104913. [Google Scholar] [CrossRef]
- Shaheed, R.; Mohammadian, A.; Yan, X. Numerical Simulation of Turbulent Flow in Bends and Confluences Considering Free Surface Changes Using the Volume of Fluid Method. Water 2022, 14, 1307. [Google Scholar] [CrossRef]
- Li, C.W.; Zhang, M.L. 3D modelling of hydrodynamics and mixing in a vegetation field under waves. Comput Fluids 2010, 39, 604–614. [Google Scholar] [CrossRef]
- De la Cruz-Ávila, M.; Castillo-Guerrero, F.J.; Barrios-Pina, H.; Bonasia, R. Numerical three-dimensional forecasting of a river section under abnormal discharge conditions due to a tropical storm: A case study on Santa Catarina River, México. Results Eng 2025, 26, 105067. [Google Scholar] [CrossRef]
- Benoumessad, K.; Fourar, F.Z.; Fourar, A.; Massouh, F. Modeling Turbulent Flow Velocity Profiles in Irregularly shaped Open Channels: A 3D Approach. Eng Technol Appl Sci Res 2025, 15, 22203–22208. [Google Scholar] [CrossRef]
- Aghamolaei, Z.; Hessami Kermani, M.R. Re-constructing the river bed using the streamline-generation method. MethodsX 2024, 12, 102539. [Google Scholar] [CrossRef]
- Ziliani, L.; Surian, N.; Botter, G.; Mao, L. Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model. Hydrol Earth Syst Sci 2020, 24, 3229–3250. [Google Scholar] [CrossRef]
- Cassan, L.; Pujol, L.; Lonca, P.; Guibert, R.; Roux, H.; Mercier, O.; et al. ANDROMEDE — A software platform for optical surface velocity measurements. Environ Model Softw 2024, 171, 105883. [Google Scholar] [CrossRef]
- Prerna, R.; Pandey, D.K.; Mahender, K. Longitudinal profiling and elevation-relief analysis of the Indus. Arab J Geosci 2018, 11. [Google Scholar] [CrossRef]
- Sapkale, J.B.; Kadam, Y.U.; Jadhav, I.A.; Kamble, S.S. River in Planform and Variation in Sinuosity Index : A Study of Dhamni River, Kolhapur (Maharashtra), India. Int J Sci Eng Res 2016, 7, 863–867. [Google Scholar]
- Datt Tiwari, N.; Panday, A. A Hydrogeomorphic Analysis of Sinuosity Index of River Amran in the Vindhyan Region, India 2021, 18, 1316–1325.
- Seveno, E. Towards an adaptive advancing front method. 6th Int. Meshing Roundtable, 1997, p. 349–62.
- Freiziger, J.H.; Períc, M.; Street, R. Computational methods for fluid flow. Fourth. Cham: Springer Nature; [CrossRef]
- COMISIÓN NACIONAL DEL AGUA (Mexico). BANCO NACIONAL DE DATOS DE AGUAS SUPERFICIALES. Sistema de Información Hidrológica (SIH). 2024:Access: October 12.
- Chow, V.T.; Vijay, S. Chow ’ s Handbook of Applied Hydrology. Second Edi. New York, US: Mc Graw Hill Education; 1964.
- Speziale, C.G.; Abid, R.; Durbin, P.A. On the realizability of reynolds stress turbulence closures. J Sci Comput 1994, 9, 369–403. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the ultimate conservative difference scheme. J Comput Phys 1997, 135, 229–248. [Google Scholar] [CrossRef]
- Muzaferija, S.; Peric, M.; Sames, P.; Schellin, T. A two-fluid Navier-Stokes solver to simulate water entry. Proc. 22nd Symp. Nav. Hydrodyn., Washington, DC: The National Academies Press; 1998, p. 638–51.
- Waclawczyk, T.; Koronowicz, T. Comparison of cicsam and hric high-resolution schemes for interface capturing. J Theor Appl Mech 2008, 46, 325–345. [Google Scholar]
- Patankar, S.V. Numerical heat transfer and fluid flow. New York, US: Hemisphere Publishing Corporation; 1980. [CrossRef]
- Li, S.; Qiao, H. Development of a fast fluid dynamics model based on piso algorithm for simulating indoor airflow. Proc ASME 2021 Heat Transf Summer Conf HT 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Xie, B.; Xiao, F. Accurate and robust PISO algorithm on hybrid unstructured grids using the multimoment finite volume method. Numer Heat Transf Part B Fundam 2017, 71, 146–172. [Google Scholar] [CrossRef]
- Gopala, V.R.; van Wachem, B.G.M. Volume of fluid methods for immiscible-fluid and free-surface flows. Chem Eng J 2008, 141, 204–221. [Google Scholar] [CrossRef]
- Matsuda, K.; Komori, S.; Takagaki, N.; Onishi, R. Effects of surface tension reduction on wind-wave growth and air-water scalar transfer. J Fluid Mech 2023, 960, 1–31. [Google Scholar] [CrossRef]
- Nakayama, A.; Ikenaga, K. URANS calculation of open-channel flow with unsteady hydraulic jump. J Appl Mech 2008, 11, 859–867. [Google Scholar] [CrossRef]
- Azteca-Noticias, Azteca Noticias. Lluvias que trajo la tormenta tropical “Alberto” llenan el Río Santa Catarina. 2024:November 2024. https://www.youtube.com/watch?v=M6KVGsicDYM&ab_channel=AztecaNoticias (accessed September 25, 2024).
- NMas. Río Santa Catarina de Monterrey, al 70% de su capacidad por lluvias de “Alberto” - Las Noticias. 2024:November 2024. https://www.youtube.com/watch?v=FheTDVCmpzQ&ab_channel=NMás (accessed September 25, 2024).
- NMas. ¿Dónde desemboca toda el agua del río Santa Catarina de Monterrey? - Las Noticias. 2024:November 2024. https://www.youtube.com/watch?v=hFlSMWgiToY&ab_channel=NMás (accessed September 25, 2024).
- Ramírez-Serrato, N.L.; Nieto-Butrón, J.J.; Barco-Coyote, S.; Yépez-Rincon, F.D.; Paz, M.P.J. Understanding the Influence of Vegetation on Urban Open-Channel Flow: A Numerical Modeling Approach in Monterrey, Mexico. Int Arch Photogramm Remote Sens Spat Inf Sci - ISPRS Arch 2024, 48, 453–458. [Google Scholar] [CrossRef]
- Loeven, G.J.A.; Biji, H. Probabilistic collocation used in a Two-Step approach for efficient uncertainty quantification in computational fluid dynamics. C - Comput Model Eng Sci 2008, 36, 193–212. [Google Scholar] [CrossRef]
- Chu, M. Uncertainty Quantification in Computational Fluid Dynamics : Physics and Machine Learning Based n.d.
- Loeven, G.J.A.; Witteveen, J.A.S.; Bijl, H. Efficient uncertainty quantification in computational fluid-structure interactions. Collect Tech Pap - AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf 2006, 1, 379–396. [Google Scholar] [CrossRef]
- Bijl, H.; Lucor, D.; Mishra, S. Uncertainty Quantifi cation in Computational Fluid Dynamics, 1st ed.; New York, US: 2013.
- Adolph, R. Computational Fluid Dynamics 2008. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. [CrossRef]
- Imad Rajaa, A.; Ammar Hatem, K. Comparison among the Turbulence Models to Simulate Flow Pattern over ogee Spillway Case Study (Mandali dam in Iraq). Iraqi J Civ Eng 2022, 14, 7–15. [Google Scholar] [CrossRef]
- Shaheed, R.; Mohammadian, A.; Shaheed, A.M. Numerical Simulation of Turbulent Flow in River Bends and Confluences Using the k-ω SST Turbulence Model and Comparison with Standard and Realizable k-ε Models. Hydrology 2025, 12, 145. [Google Scholar] [CrossRef]
- De la Cruz-Ávila, M.; Martínez-Espinosa, E.; Polupan, G.; Vicente, W. Numerical study of the effect of jet velocity on methane-oxygen confined inverse diffusion flame in a 4 Lug-Bolt array. Energy 2017, 141, 1629–1649. [Google Scholar] [CrossRef]
- De León-Ruiz, J.E.; Carvajal-Mariscal, I.; De la Cruz-Ávila, M.; Guzman, J.E.V. Image convolution-based Experimental Technique for Height Estimation of Flame Front: A Case Study on Laminar-to-Transition Jet Diffusion Flames (Accepted). Appl Sci 2022. [Google Scholar]
- De la Cruz-Ávila, M.; De León-Ruiz, J.E.; Carvajal-Mariscal, I.; Klapp, J. CFD Turbulence Models Assessment for the Cavitation Phenomenon in a Rectangular Profile Venturi Tube. Fluids 2024, 9, 71. [Google Scholar] [CrossRef]
- Peña-polo, F.; Carvajal-mariscal, I.; Vargas, C.A.; Sigalotti, L.D.G. Statistical analysis of observed Faraday wave patterns 2023. [CrossRef]















| Models | ||
|---|---|---|
| RNG [49] | ||
| SST [51] | ||
| GEKO [52] | ||
| BLS-EARSM [53,54,55,56] |
| Model | Eddy viscosity | Turbulence production and source terms |
|---|---|---|
| RNG | [50,79] |
|
| SST | [51] | |
| GEKO | [52] |
|
| BLS-EARSM | [53,54,55,56] |
|
| Mesh no. | Polihedral Cells | Average computing time |
[m/s] |
[m/s] |
% error |
% error |
Overall % error |
| 1 | 188947 | 2.5 hours | 10.26 | 4.92 | 18.44 | 11.06 | 17.40 |
| 2 | 352008 | 7 hours | 9.54 | 4.66 | 10.18 | 5.2 | 10.16 |
| 3 | 591379 | 12 hours | 8.7 | 4.39 | 0.46 | 0.9 | 2.11 |
| 4 | 982617 | 28 hours | 8.6 | 4.23 | 0.69 | 4.51 | 0.82 |
| 5 | 2500743 | 47 hours | 8.6 | 3.81 | 0.69 | 10.99 | 5.25 |
| 6 | 4228458 | 90 hours | 8.95 | 3.8 | 3.55 | 14.47 | 3.34 |
| Observation | -- | -- | ≈8.66 | ≈4.43 | -- | -- | -- |
| Turbulence Model | Mean Calculation Time* |
| k–ε RNG | 12.5 h |
| k–ω SST | 12 h |
| k–ω GEKO | 11.5 h |
| k–ω BSL–EARSM | 16 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).