Submitted:
01 September 2025
Posted:
02 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Problem Statement and Research Questions
3. Literature Review
4. Theoretical Framework
4.1. Embodied Cognition Theory - RQ1 (Integration of Facial + Biometrics for Embodied Awareness)
4.2. Polyvagal Theory & Psychophysiology of Emotion - RQ1 & RQ2 (Interpretation of HR/HRV; Detection Accuracy Gains)
4.3. Emotional Intelligence (EI) in Coaching & Behavior Change - RQ3 (Perceived Empathy, Trust, Effectiveness)
4.4. Affective Computing & Multimodal Social Signals - RQ2 & RQ3 (Adaptive Feedback Loops; Multimodal Advantage)
5. Methodology
6. Expected Contribution
- Scientific Contribution – It demonstrates how integrating embodied signals improves the accuracy of affect detection and enhances rapport-building in human–AI interaction (Blümel et al., 2023).
- Applied Contribution – It extends affective computing research into coaching and therapeutic contexts, domains where empathetic responsiveness is central to effectiveness (Raamkumar & Yang, 2022).
- Empirical Evidence – It provides systematic evidence on embodied AI’s influence on trust, empathy, and perceived effectiveness, offering comparative insights against traditional disembodied systems (Niebuhr & Valls-Ratés, 2024).
- Ethical Guidelines – It generates practical design and governance guidelines for the responsible collection and use of biometric and facial data in mentorship and coaching systems (Afroogh et al., 2024; Terblanche et al., 2022).
7. Limitations and Future Research
Sample and Generalizability
Technical Constraints
Ethical Considerations
Future Research Directions
References
- Afroogh, S., Akbari, A., Malone, E., Kargar, M., & Alambeigi, H. (2024). Trust in AI: Progress, challenges, and future directions. Humanities and Social Sciences Communications, 11(1), 1–12. [CrossRef]
- Alam, M. A. (2024). HR analytics for strategic decisions: Resolving conflicts from a psychological perspective. Research Square. [CrossRef]
- Alhejaili, R., & Alomainy, A. (2023). The use of wearable technology in providing assistive solutions for mental well-being. Sensors, 23(17), 7378. [CrossRef]
- Bagai, R., & Mane, V. (2023). Designing an AI-powered mentorship platform for professional development: Opportunities and challenges. International Journal of Computer Trends and Technology, 71(4), 108–114. [CrossRef]
- Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. [CrossRef]
- Beatton, T., Chan, H. F., Dulleck, U., Ristl, A., Schaffner, M., & Torgler, B. (2024). Positive affect and heart rate variability: A dynamic analysis. Scientific Reports, 14(1), 1–12. [CrossRef]
- Blümel, J. H., Zaki, M., & Bohné, T. (2023). Personal touch in digital customer service: A conceptual framework of relational personalization for conversational AI. Journal of Service Theory and Practice, 34(1), 33–52. [CrossRef]
- Boyatzis, R. E. (2006). An overview of intentional change from a complexity perspective. Journal of Management Development, 25(7), 607–623. [CrossRef]
- Bridgeman, J., & Hayes, A. G. (2023). Using artificial intelligence-enhanced video feedback for reflective practice in coach development: Benefits and potential drawbacks. Coaching: An International Journal of Theory, Research and Practice, 17(1), 32–46. [CrossRef]
- Bryant, D. (2019). Towards emotional intelligence in social robots designed for children. Proceedings of the 18th ACM International Conference on Interaction Design and Children (pp. 547–553). [CrossRef]
- Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (2007). Handbook of psychophysiology (3rd ed.). Cambridge University Press. [CrossRef]
- Cherniss, C. (2010). Emotional intelligence: Toward clarification of a concept. Industrial and Organizational Psychology, 3(2), 110–126. [CrossRef]
- Costello, E., Brunton, J., Otrel-Cass, K., Lyngdorf, N. E. R., & Brown, M. (2024). Hacking happier futures: An AI-augmented student hackathon to address affective and ethical digital learning challenges. Research Portal Denmark. https://local.forskningsportal.dk/local/dki-cgi/ws/cris-link?src=aau&id=aau-40fe5df2-680d-4e0a-8285-69066ff15b33.
- Curry, J. (2025). Building digital consciousness: A unified architecture for emotion, memory, and self-reflection in AI. SSRN. [CrossRef]
- D’Mello, S., & Kory, J. (2015). A review and meta-analysis of multimodal affect detection systems. ACM Computing Surveys, 47(3), 1–36. [CrossRef]
- Ekman, P., & Friesen, W. V. (1978). Facial Action Coding System: A technique for the measurement of facial movement. Consulting Psychologists Press.
- Fang, L., Xing, S. P., Long, Y., Lee, K.-P., & Wang, S. J. (2023). EmoSense: Revealing true emotions through microgestures. Advanced Intelligent Systems, 5(9), 1–14. [CrossRef]
- Frey, J. (2014). Heart rate monitoring as an easy way to increase engagement in human-agent interaction. arXiv. [CrossRef]
- Goleman, D. (1995). Emotional intelligence: Why it can matter more than IQ. Bantam Books.
- Goleman, D., Boyatzis, R., & McKee, A. (2002). Primal leadership: Realizing the power of emotional intelligence. Harvard Business School Press.
- Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271–299. [CrossRef]
- Guntz, T. (2020). Estimating expertise from eye gaze and emotions. HAL. https://theses.hal.science/tel-03026375.
- Gur, T., & Maaravi, Y. (2025). The algorithm of friendship: Literature review and integrative model of relationships between humans and artificial intelligence (AI). Behaviour & Information Technology, 1–14. [CrossRef]
- Harris, A. M., Larson, L., Lauharatanahirun, N., DeChurch, L. A., & Contractor, N. (2023). Social perception in human-AI teams: Warmth and competence predict receptivity to AI teammates. Computers in Human Behavior, 145, 107765. [CrossRef]
- Hauke, G., Lohr-Berger, C., & Shafir, T. (2024). Emotional activation in a cognitive behavioral setting: Extending the tradition with embodiment. Frontiers in Psychology, 15, 1409373. [CrossRef]
- Hegde, K., & Jayalath, H. (2025). Emotions in the loop: A survey of affective computing for emotional support. arXiv. [CrossRef]
- Irfan, B., Kuoppamäki, S., & Skantze, G. (2024). Recommendations for designing conversational companion robots with older adults through foundation models. Frontiers in Robotics and AI, 11, 1–13. [CrossRef]
- Islam, R., & Bae, S. W. (2024). Revolutionizing mental health support: An innovative affective mobile framework for dynamic, proactive, and context-adaptive conversational agents. arXiv. [CrossRef]
- Janhonen, J. (2023). Socialisation approach to AI value acquisition: Enabling flexible ethical navigation with built-in receptiveness to social influence. AI and Ethics, 3(1), 1–13. [CrossRef]
- Kamali, M. E., Angelini, L., Lalanne, D., Khaled, O. A., & Mugellini, E. (2023). Older adults’ perspectives on multimodal interaction with a conversational virtual coach. Frontiers in Computer Science, 5, 112589. [CrossRef]
- Klippel, A., Sajjadi, P., Zhao, J., Wallgrün, J. O., Huang, J., & Bagher, M. M. (2021). Embodied digital twins for environmental applications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(4), 193–200. [CrossRef]
- Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. Basic Books.
- Lee, G., Park, S., & Whang, M. (2023). The evaluation of emotional intelligence by the analysis of heart rate variability. Sensors, 23(5), 2839. [CrossRef]
- Lim, S., Schmälzle, R., & Bente, G. (2024). Artificial social influence via human-embodied AI agent interaction in immersive virtual reality (VR). arXiv. [CrossRef]
- Mayer, J. D., & Salovey, P. (1997). What is emotional intelligence? In P. Salovey & D. Sluyter (Eds.), Emotional development and emotional intelligence: Educational implications (pp. 3–31). Basic Books.
- Mehrabian, A. (1971). Silent messages. Wadsworth.
- Meinlschmidt, G., Koc, S., Boerner, E., Tegethoff, M., Simacek, T., Schirmer, L., & Schneider, M. (2025). Enhancing professional communication training in higher education through artificial intelligence (AI)-integrated exercises. BMC Medical Education, 25(1), 1–10. [CrossRef]
- Niebuhr, O., & Valls-Ratés, Ï. (2024). Hey, OK, Play! A rough guide for multimodal, nonverbal communication signals in embodied voice assistants. Research Portal Denmark. https://local.forskningsportal.dk/local/dki-cgi/ws/cris-link?src=sdu&id=sdu-3706f491-ad2c-4da6-9f2d-2a780e024d77.
- Picard, R. W. (1997). Affective computing. MIT Press. [CrossRef]
- Porges, S. W. (2011). The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation. W. W. Norton & Company.
- Puglisi, N., Tissot, H., Rattaz, V., Epiney, M., Razurel, C., & Favez, N. (2023). Father-infant synchrony and vagal tone as an index of emotion regulation. Early Child Development and Care, 193(12), 1714–1726. [CrossRef]
- Raamkumar, A. S., & Yang, Y. (2022). Empathetic conversational systems: A review of current advances, gaps, and opportunities. IEEE Transactions on Affective Computing, 14(4), 2722–2736. [CrossRef]
- Robb, D. A., Lopes, J., Ahmad, M., McKenna, P. E., Liu, X., Lohan, K. S., & Hastie, H. (2023). Seeing eye to eye: Trustworthy embodiment for task-based conversational agents. Frontiers in Robotics and AI, 10, 123476. [CrossRef]
- Schröder, M., & Cowie, R. (2005). Issues in emotion-oriented computing. In R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. F. Papageorgiou, S. Kollias, & S. O. O’Donnell (Eds.), Emotion-Oriented Systems (pp. 3–18). Springer. [CrossRef]
- Shore, D. M., Robertson, O., Lafit, G., & Parkinson, B. (2023). Facial regulation during dyadic interaction: Interpersonal effects on cooperation. Affective Science, 4(3), 506–520. [CrossRef]
- Siegel, D. J. (1999). The developing mind: How relationships and the brain interact to shape who we are. Guilford Press.
- Spitale, M., Winkle, K., Barakova, E., & Güneş, H. (2024). Guest editorial: Special issue on embodied agents for wellbeing. International Journal of Social Robotics, 16(5), 833–838. [CrossRef]
- Terblanche, N. (2020). A design framework to create artificial intelligence coaches. International Journal of Evidence Based Coaching and Mentoring, 18(2), 152–166. [CrossRef]
- Terblanche, N., Molyn, J., de Haan, E., & Nilsson, V. (2022). Comparing artificial intelligence and human coaching goal attainment efficacy. PLOS ONE, 17(6), e0270255. [CrossRef]
- Vicci, H. (2024). Emotional intelligence in artificial intelligence: A review and evaluation study. SSRN Electronic Journal. [CrossRef]
- Vistorte, A. O. R., Deroncele-Acosta, Á., Ayala, J. L. M., Barrasa, Á., López-Granero, C., & Martí-González, M. (2024). Integrating artificial intelligence to assess emotions in learning environments: A systematic literature review. Frontiers in Psychology, 15, 1387089. [CrossRef]
- Weiß, T., Eilks, A. E., & Pfeiffer, J. (2024). Interference timing of GenAI sales agents in virtual reality. Research Square. [CrossRef]
- Zhang, J., Oh, Y. J., Lange, P., Yu, Z., & Fukuoka, Y. (2020). Artificial intelligence chatbot behavior change model for designing AI chatbots to promote physical activity and a healthy diet. Journal of Medical Internet Research, 22(9), e22845. [CrossRef]
- Zhang, Z., & Wang, J. (2024). Can AI replace psychotherapists? Exploring the future of mental health care. Frontiers in Psychiatry, 15, 1444382. [CrossRef]
- Zhao, J., Wu, M., Zhou, L., Wang, X., & Jia, J. (2022). Cognitive psychology-based artificial intelligence review. Frontiers in Neuroscience, 16, 1024316. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
