Submitted:
29 August 2025
Posted:
01 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Dataset and Methods
2.1. Dataset
2.2. Preprocessing
2.3. Methods
2.3.1. EMS Algorithm
2.3.2. SSA Algorithm
2.3.3. Feature Extraction Process Based on SSA-EMS Algorithm
2.3.4. Cross-Subject Data Processing in Seed Emotional EEG
3. Results
3.1. Cross-Subject Sample Combination Classification

3.2. Classification Results of “Subject-Independent” Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Muthunayagom, Prince and A. C. Subhajini. Deciphering Feelings: Exploring EEG Data for Human Emotion Recognition. 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (2024): 1181-1187.
- Chang, Jiang, Zelin Wang and Jieru Jia. Enhancing Emotion Recognition in EEG Signals using Fractional Fourier Transform. 2024 IEEE 17th International Conference on Signal Processing (ICSP) (2024): 110-115.
- Gkintoni, Evgenia, Anthimos Aroutzidis, Hera Antonopoulou and Constantinos Halkiopoulos. From Neural Networks to Emotional Networks: A Systematic Review of EEG-Based Emotion Recognition in Cognitive Neuroscience and Real-World Applications. Brain Sciences 15 (2025): n. pag.
- Rahman, Md. Musta-E-Nur, Ajay Krishno Sarkar, Md. Amzad Hossain, Md. Selim Hossain, Md. Rabiul Islam, Md. Biplob Hossain, Julian M. W. Quinn and Mohammad Ali Moni. Recognition of human emotions using EEG signals: A review. Computers in biology and medicine 2021, 136, 104696. [Google Scholar]
- Gkintoni, Evgenia, Anthimos Aroutzidis, Hera Antonopoulou and Constantinos Halkiopoulos. From Neural Networks to Emotional Networks: A Systematic Review of EEG-Based Emotion Recognition in Cognitive Neuroscience and Real-World Applications. Brain Sciences 15 (2025): n. pag.
- Hbibi, Bechir, Cyrine Khiari, Karlton Wirsing, Lamine Mili, Kamel Baccar and Abdelkader Mami. Identifying and Removing Interference and Artifacts in Multifractal Signals With Application to EEG Signals. IEEE Access 2023, 11, 119090–119105. [Google Scholar] [CrossRef]
- Sadiya, Sari, Tuka Alhanai and Mohammad M. Ghassemi. Artifact Detection and Correction in EEG data: A Review. 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) (2021): 495-498.
- Lu, Wei, Xiaobo Zhang, Lingnan Xia, Hua Ma and Tien Ping Tan. Domain adaptation spatial feature perception neural network for cross-subject EEG emotion recognition. Frontiers in Human Neuroscience 18 (2024): n. pag.
- Liu, Shuaiqi, Zeyao Wang, Yanling An, Bing Li, Xinrui Wang and Yudong Zhang. DA-CapsNet: A multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition. Knowl. Based Syst. 2023, 283, 111137. [Google Scholar]
- Wang, Wenxu, Jia Yang, Shengjia Li, Bin Wang, Kun Yang, Shengbo Sang, Qiang Zhang and Boyuan Liu. A Random Forest Weights and 4-Dimensional Convolutional Recurrent Neural Network for EEG Based Emotion Recognition. IEEE Access 2024, 12, 39549–39563. [Google Scholar] [CrossRef]
- Jafari, Mahboobeh, Afshin Shoeibi, Marjane Khodatars, Sara Bagherzadeh, Ahmad Shalbaf, David López-García, Juan Manuel Górriz and U. Rajendra Acharya. Emotion recognition in EEG signals using deep learning methods: A review. Computers in biology and medicine 2023, 165, 107450. [Google Scholar]
- Chen, Bianna, C. L. Philip Chen and Tong Zhang. GDDN: Graph Domain Disentanglement Network for Generalizable EEG Emotion Recognition. IEEE Transactions on Affective Computing 2024, 15, 1739–1753. [Google Scholar] [CrossRef]
- Wang, Y. , Zhang, B., & Tang, Y. (2024). DMMR: Cross-Subject Domain Generalization for EEG-Based Emotion Recognition via Denoising Mixed Mutual Reconstruction. Proceedings of the AAAI Conference on Artificial Intelligence, 38(1), 628-636. [CrossRef]
- Li, Ping, Ao Li, Xinhui Li and Zhao Lv. Cross-Subject Emotion Recognition with CT-ELCAN: Leveraging Cross-Modal Transformer and Enhanced Learning-Classify Adversarial Network. Bioengineering 12 (2025): n. pag.
- Liang, Shuang, Linzhe Li, Wei Zu, Wei Feng and Wenlong Hang. Adaptive deep feature representation learning for cross-subject EEG decoding. BMC Bioinformatics 25 (2024): n. pag.
- Anuragi, A.; Sisodia, D.S.; Pachori, R.B. EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method. Inf. Sci. 2022, 610, 508–524. [Google Scholar] [CrossRef]
- Guo, Wenhui, Yaxuan Li, Mengxue Liu, Rui Ma and Yanjiang Wang. Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition. Knowl. Based Syst. 2024, 283, 111199. [Google Scholar] [CrossRef]
- Peng, Yong, Honggang Liu, Wanzeng Kong, Feiping Nie, Bao-Liang Lu and Andrzej Cichocki. Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition. IEEE Transactions on Industrial Informatics 2023, 19, 8104–8115. [Google Scholar] [CrossRef]
- Aaron Schurger, Sebastien Marti, and Stanislas Dehaene. Reducing multi-sensor data to a single time course that reveals experimental effects. BMC Neuroscience, 2013. [CrossRef]
- Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks", Wei-Long Zheng, and Bao-Liang Lu, IEEE Transactions on Autonomous Mental Development (IEEE TAMD), 2015.
- Duan, R.N.; Zhu, J.Y.; Lu, B.L. Differential Entropy Feature for EEG-based Emotion Classification. In Proceedings of the 6th International IEEE EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 81–84. [Google Scholar]
- Hassani, Hossein. Singular Spectrum Analysis: Methodology and Comparison. Journal of Data Science (2021): n. pag.
- Rodrigues, Paulo Canas, Pétala G. da S. E. Tuy and Rahim Mahmoudvand. Randomized singular spectrum analysis for long time series. Journal of Statistical Computation and Simulation 2018, 88, 1921–1935. [Google Scholar] [CrossRef]
- Kume, Kenji and Naoko Nose-Togawa. An Adaptive Orthogonal SSA Decomposition Algorithm for a Time Series. Adv. Data Sci. Adapt. Anal. 10 (2018): 1850002:1-1850002:15.
- Alomar, Abdullah, Munther A. Dahleh, Sean Mann and Devavrat Shah. SAMoSSA: Multivariate Singular Spectrum Analysis with Stochastic Autoregressive Noise. ArXiv abs/2305.16491 (2023): n. pag.
- Sanseverino, Claudio M. Rocco. Singular spectrum analysis and forecasting of failure time series. Reliab. Eng. Syst. Saf. 2013, 114, 126–136. [Google Scholar] [CrossRef]
- Gulyaev, A.V. and Svetlana V. Pivneva. Application of wavelet transformation and singular spectral analysis in time series decomposition. Highly available systems (2024): n. pag.
- Golyandina, Nina and Anatoly A. Zhigljavsky. SSA for Forecasting, Interpolation, Filtering and Estimation. Singular Spectrum Analysis for Time Series (2020): n. pag.
- Ghanbarzadeh, Mitra and Mina Aminghafari. “A New Hybrid-Multiscale SSA Prediction of Non-Stationary Time Series.” Fluctuation and Noise Letters 2016, 15, 1650005.
- Harmouche, Jinane, Dominique Fourer, François Auger, Pierre Borgnat and Patrick Flandrin. The Sliding Singular Spectrum Analysis: A Data-Driven Nonstationary Signal Decomposition Tool. IEEE Transactions on Signal Processing 2018, 66, 251–263. [Google Scholar] [CrossRef]
- Leles, Michel Carlo Rodrigues, João Pedro Hallack Sansão, Leonardo Amaral Mozelli and Homero Nogueira Guimarães. Improving reconstruction of time-series based in Singular Spectrum Analysis: A segmentation approach. Digit. Signal Process. 2017, 77, 63–76. [Google Scholar]
- Bonenberger, Christopher M. A., Wolfgang Ertel, Friedhelm Schwenker and Markus Schneider. Singular Spectrum Analysis and Circulant Maximum Variance Frames. Adv. Data Sci. Adapt. Anal. 14 (2022): 2250008:1-2250008:27.
- Mahmoudvand, Rahim, Nader Najari and Mohammad Zokaei. On the Optimal Parameters for Reconstruction and Forecasting in Singular Spectrum Analysis. Communications in Statistics - Simulation and Computation 42 (2013): 860 - 870.
- Golyandina, Nina, Vladimir Nekrutkin and Anatoly A. Zhigljavsky. Analysis of Time Series Structure - SSA and Related Techniques. Monographs on statistics and applied probability (2001).
- Jiang, Jian and Hong-Bo Xie. Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy. Chinese Physics Letters 2016, 33, 100501–100501. [Google Scholar] [CrossRef]
- Bonizzi, Pietro, Joël M. H. Karel, Olivier Meste and Ralf L. M. Peeters. Singular Spectrum Decomposition: a New Method for Time Series Decomposition. Adv. Data Sci. Adapt. Anal. 6 (2014): n. pag.
- Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri Parkkonen, and Matti S. Hämäläinen. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13, 2013. [CrossRef]
- Hwang, Sunhee, Minsong Ki, Kibeom Hong and Hyeran Byun. Subject-Independent EEG-based Emotion Recognition using Adversarial Learning. 2020 8th International Winter Conference on Brain-Computer Interface (BCI) (2020): 1-4.
- Hamel, Lutz. Model Assessment with ROC Curves. Encyclopedia of Data Warehousing and Mining (2009).
- Fahmy Amin, Mahmoud. Confusion Matrix in Binary Classification Problems: A Step-by-Step Tutorial. Journal of Engineering Research 6.5 (2022): 0–0. Journal of Engineering Research. Web.
- Quan, Jie, Y. Li, Lingyue Wang, Renjie He, Shuo Yang and Lei Guo. EEG-based cross-subject emotion recognition using multi-source domain transfer learning. Biomed. Signal Process. Control. 84 (2023): 104741.
- Dong, Yihang et al. Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition.” ArXiv abs/2405.19373 (2024): n. pag.
- Jin, L.; Kim, E.Y. Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features. Sensors 2020, 20, 6719. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
