Submitted:
15 August 2025
Posted:
18 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Model
2.1. The Rationale of the Model, the New Molecular Descriptors and the Key Equations
2.2. Determination of the New Molecular Descriptors and the Solvent-Specific Parameters
3. Results and Discussion
4. Conclusions
Supplementary Materials
References
- McQuarrie, D., Simon, J.D. 1999, Molecular Thermodynamics, University Science Books, Herndon VA, USA.
- Prausnitz, J. M., Lichtenthaler, R. N., and Gomes de Azevedo, E. 1999. Molecular Thermodynamics of Fluid Phase Equilibria, 3rd ed. Upper Saddle River, NJ: Prentice Hall.
- Kontogeorgis, G.M, Folas, G.K. 2010. Thermodynamic Models for Industrial Applications. From Classical and Advanced Mixing Rules to Association Theories. Chichester, U.K., John Wiley and Sons, Ltd.
- M. J. Tillotson, N. I. Diamantonis, C. Buda, L. W. Bolton, E.A. Mu¨ller 2023, Molecular modelling of the thermophysical properties of fluids: expectations, limitations, gaps and opportunities. Phys. Chem. Chem. Phys., 25, 12607. [CrossRef]
- Vera, J.H., Wiltzek – Vera, G., Oliveira Fuentes, C., Panayiotou, C. 2024. Classical and Molecular Thermodynamics of Fluid Systems, Boca Raton, CRC Press. [CrossRef]
- Tomasi, J.; Persico, M. 1994, Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev., 94, 2027–2094. [CrossRef]
- Ben-Naim, A. 1987, Solvation Thermodynamics, 1st ed.; Plenum Press: New York, NY, USA. [CrossRef]
- van Gunsteren,W.F.; Luque, F.J.; Timms, D.; Torda, A.E. 1994, Molecular mechanics in biology: From structure to function, taking account of solvation. Annu. Rev. Biophys. Biomol. Struct., 23, 847–863. [CrossRef]
- Timasheff, S.N. 1993, The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct., 22, 67–97. [CrossRef]
- Makarov, V.; Pettitt, B.M.; Feig, M. 2002, Solvation and hydration of proteins and nucleic acids: A Theoretical View of Simulation and Experiment. Acc. Chem. Res., 35, 376–384. [CrossRef]
- Philp, D.; Stoddart, J.F 1996. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35, 1154–1196. [CrossRef]
- Abraham MH, Ibrahim A, Zissimos AM. 2004 The determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A.;1037, :29–47. [CrossRef]
- Abraham MH, Smith RE, Luchtefeld R, et al.2010, Prediction of solubility of drugs and other compounds inorganic solvents. J Pharm Sci. 99:1500–1515. [CrossRef]
- Goss, K.-U., 2005. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER). Fluid Phase Equilibr., 233, 19–22. [CrossRef]
- Stephanopoulos, Gr, Aristidou, A,, Nielsen, J. 1998. Metabolic Engineering. Principles and Methodologies. Academic Press. New York.
- Panayiotou, C., Mastrogeorgopoulos, S., Ataman, M., Hadadi, N., Hatzimanikatis, V. Molecular thermodynamics of metabolism: Hydration quantities and the equation-of-state Approach. Phys. Chem.Chem. Phys. 2016, 18, 32570−32592. [CrossRef]
- Marcus, Y. 1998. The Properties of Solvents; Wiley: Chichester, 1998.
- Moine, E., Privat, R., Sirjean, B., Jaubert, J.N. Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the Comprehensive CompSol Databank for Pure and Mixed Solutes. J. Phys. Chem. Ref. Data 2017, 46, 033102. [CrossRef]
- Panayiotou, C., Voutsas, E., Hatzimanikatis, V. Solvation Gibbs Energy: The Equation of State Approach. In Gibbs Energy and Helmholtz Energy: Liquids, Solutions and Vapors; Wilhelm, E., Letcher, T.M., Eds.; The Royal Society of Chemistry: London, UK, 2022. [CrossRef]
- C. Mintz, T. Ladlie, K. Burton, M. Clark, W.E. Acree Jr., M.H. Abraham, 2008, Enthalpy of solvation correlations for gaseous solutes dissolved in alcohol solvents based on the Abraham model, QSAR Comb. Sci. 27, 627–635. [CrossRef]
- Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree Jr., W.E., Abraham, M.H. (2016) Development of Abraham model expressions for predicting the enthalpies of solvation of solutes dissolved in acetic acid, Physics and Chemistry of Liquids, 54:2, 141-154. [CrossRef]
- Acree, W.E., Panayiotou, C. 2025. On dispersion and polar interactions and solvation and cohesion energies. A first round. Fluid Phase Equilibria. Submitted. [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Taft, R.W. An Examination of Linear Solvation Energy Relationships. Proc. Phys. Org. Chem. 1981, 13, 485–630. [CrossRef]
- Kamlet, M.J.; Doherty, R.M.; Abboud, J.-L.; Abraham, M.H.; Taft, R.W. Solubility: A new look. Chemtech 1986, 16, 566–576.
- Abraham, M.H.; Doherty, R.M.; Kamlet, M.J.; Taft, R.W. A new look at acids and bases. Chemical. Brit. 1986, 22, 551–554.
- Abraham, M. H., McGowan, J. C. 1987. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography, Chromatographia, 23: 243-246. [CrossRef]
- Abraham, M. H. 1993. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes, Chem. Soc. Rev., 22, 73-83. [CrossRef]
- Sinha, S., Yang, Ch., Wu, E., Acree, W.E. 2022. Abraham Solvation Parameter Model: Examination of Possible Intramolecular Hydrogen-Bonding using calculated solute descriptors, Liquids, 2, 131 – 146. [CrossRef]
- Platts, J.A.; Abraham, M.H.; Butina, D.; Hersey, A. Estimation of molecular linear free energy relationship descriptors by a group contribution approach. 2. Prediction of partition coefficients. J. Chem. Inf. Comp. Sci. 2000, 40, 71–80. [CrossRef]
- A. M. Zissimos, M. H. Abraham, A. Klamt, F. Eckert, and J. Wood 2002. A Comparison between the Two General Sets of Linear Free Energy Descriptors of Abraham and Klamt. J. Chem. Inf. Comput. Sci. 42, 1320-1331. [CrossRef]
- Chung, Y.; Vermeire, F.H.; Wu, H.; Walker, P.J.; Abraham, M.H.; Green, W.H. 2022. Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. J. Chem. Inf. Model. 62, 433–446. [CrossRef]
- Ulrich, N.; Ebert, A. 2022. Can deep learning algorithms enhance the prediction of solute descriptors for linear solvation energy relationship approaches? Fluid Phase Equilib. 555, 113349/1–113349/7. [CrossRef]
- Conn, J.G.M., Ahmad, A., Palmer, D.S. 2024. A Machine Learning Free Energy Functional for the 1D Reference Interaction Site Model: Towards Prediction of Solvation Free Energy for All Solvent Systems. Liquids 2024, 4, 710–731. [CrossRef]
- Panayiotou, C., Zuburtikudis, I., Abu Khalifeh, H. 2023. Linear Free-Energy Relationships (LFER) and Solvation Thermodynamics: The Thermodynamic Basis of LFER Linearity. Ind. Eng. Chem. Res. 62 (6), 2989-3000. [CrossRef]
- Panayiotou, C., Zuburtikudis, I., Abu Khalifeh, H. 2023. Linear Solvation Energy Relationships (LSER) and Equation-of-State Thermodynamics: On the Extraction of Thermodynamic Information from LSER Database. Liquids 3, 66-89. [CrossRef]
- Panayiotou, C., Acree, W. E., Zuburtikudis, I., 2023. COSMO-RS and LSER models of solution thermodynamics: Towards a COSMO-LSER equation of state model of fluids. J. Mol. Liquids 390, 122992. [CrossRef]
- Panayiotou, C. 2024. Quantum Chemical (QC) Calculations and Linear Solvation Energy Relationships (LSER): Hydrogen-Bonding Calculations with New QC-LSER Molecular Descriptors. Liquids, 3125552. [CrossRef]
- Zuburtikudis, I., Acree, W. E., Panayiotou, C. 2025. Prediction of hydrogen-bonding interaction energies with new COSMO-based molecular descriptors. J. Mol. Liquids, 422, 126907. [CrossRef]
- Acree, W. E., Panayiotou, C. 2025. Prediction of hydrogen-bonding interaction free-energies with two new molecular descriptors. Liquids, 422, 126907. [CrossRef]
- Klamt, A.; Schüürmann, J.1993. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 2, 0, 799–805. [CrossRef]
- Klamt, A. 1995. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 99 (7): 2224-2235. [CrossRef]
- Klamt, A. 2005. COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design; Amsterdam: Elsevier.
- Lin, S. T. and Sandler, S. I. 2002. A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 41: 899−913. [CrossRef]
- Grensemann, H., Gmehling, J. 2005. Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods. Ind. Eng. Chem. Res.44: 1610−1624. [CrossRef]
- Pye, C. C.; Ziegler, T.; van Lenthe, E. and Louwen, J. N. 2009. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package, Part II. COSMO for real solvents. Can. J. Chem. 87, 790−797. [CrossRef]
- Klamt, A., Eckert, F. and Arlt, W. 2010. COSMO-RS: An alternative to simulation for calculating thermodynamic properties of liquid mixtures, Annual Review of Chemical and Biomolecular Engineering, 1:101–122. [CrossRef]
- COSMObase, ver. 2019, COSMOlogic GmbH &CoKG (now, BIOVIA Dassault Systemes).
- Bell, I. A., Mickoleit, E., Hsieh, C-M., Lin, S-T., Vrabec, J., Breitkopf, C., Jager, A., 2020. A Benchmark Open-Source Implementation of COSMO-SAC, J. Chem. Theory Comput. 16, 2635−2646. [CrossRef]
- Katritzky, D., Fara, E., Yang, H., Tamm, K., Tamm, T., Karelson, M. 2004. Quantitative Measures of Solvent Polarity, Chem. Rev. 104: 175-198. [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G 2009. Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. J. Phys. Chem. B, 113, 4538–4543. [CrossRef]
- Laurence, C., J.-F. Gal, J.-F. 2010. Lewis Basicity and Affinity Scales: Data and Measurements, Wiley, New York.
- G. Duarte Ramos Matos, D. Y. Kyu, H. H. Loeffler, J. D. Chodera, M. R. Shirts, D. L. Mobley 2017. Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. J. Chem. Eng. Data 62, 5, 1559–1569. [CrossRef]
- Cramer, C.J.; Truhlar, D.G. 2008. A Universal Approach to Solvation Modeling. Acc. Chem. Res., 41, 760–768. [CrossRef]
- Jorgensen,W.L.; Briggs, J.M.; Contreras, M.L 1990,. Relative partition coefficients for organic solutes from fluid simulations. J. Phys. Chem., 94, 1683–1686. [CrossRef]
- Nicholls, A.; Mobley, D.L.; Guthrie, J.P.; Chodera, J.D.; Bayly, C.I.; Cooper, M.D.; Pande, V.S.2008. Predicting small-molecule solvation free energies: An informal blind test for computational chemistry. J. Med. Chem., 51, 769–779. [CrossRef]
- Endo, S., Watanabe, N., Ulrich, N.., G. Bronner, K-U. Goss, UFZ-LSER database v 2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ, 2015. [last accessed on 4.7.2025], available from https://www.ufz.de/index.php?en=31698&contentonly=1&m =0&lserd_data[mvc]=Public/start.
- TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- https://www.3ds.com/products/biovia/materials-studio.
- https://www.scm.com/product/cosmo-rs/.
- NIST Chemistry Webbook. https://webbook.nist.gov/cgi/cbook.cgi.
- T.E. Daubert, R.P. Danner, Physical and Thermodynamic Properties of Pure com- pounds: Data Compilation, Hemisphere, New York, 2001 (Available Online at: https://www.aiche.org/dippr/events-products/801-database).
- Abbott, S., Yamamoto, H., Hansen, C.M. 2010. Hansen Solubility Parameters in Practice, Complete with software, data and examples, third ed.-version 3.1.20. Book and Software published by Hansen-Solubility.com.
- Stefanis, E., Panayiotou, C., 2008. Prediction of Hansen solubility parameters with a New Group-Contribution Method. Int. J. Thermophys. 29, 568–585. [CrossRef]
- Panayiotou, C. Redefining solubility parameters: the partial solvation parameters. 2012. Phys. Chem. Chem. Phys. 14, 3882−3908. [CrossRef]
- Stefanis, E., Panayiotou, C. 2012. A new expanded solubility parameter approach Int. J. Pharm. 426, 29−43. [CrossRef]
- Panayiotou, C., Hatzimanikatis, V. 2021. The solubility parameters of carbon dioxide and ionic liquids: Are they an enigma? Fluid Phase Equilibria 527. 112828. [CrossRef]
- Hansen, C. 2007. Hansen Solubility Parameters - A User’s Handbook, 2nd Ed., CRC Press, Inc., Boca Raton FL. [CrossRef]
- Thomas, E. R. Eckert, Ch. A 1984. Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC". IEC Process Design and Development. 23 (2): 194–209. [CrossRef]
- Lazzaroni, M. J., Bush, D., Eckert, Ch. A., Frank, T. C; Gupta, S., Olson, J. D. 2005. Revision of MOSCED Parameters and Extension to Solid Solubility Calculations. IEC Research. 44 (11): 4075–83. [CrossRef]
- Dhakal, P., Paluch, A. S. 2018. Assessment and Revision of the MOSCED Parameters for Water: Application to Limiting Activity Coefficients and Binary Liquid-Liquid Equilibrium. IEC Research. 57 (5): 1689–1695. [CrossRef]
- M.A. Varfolomeev, Il. T. Rakipov, A. A. Khachatrian, W. E. Acree Jr., M. Brumfield, M. H. Abraham, 2015. Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlations. Thermochimica Acta 617, 8–20. [CrossRef]
- A. Schmidt, M. Zad, W. E. Acree, Jr, M. H. Abraham, 2015. Development of Abraham model correlations for predicting enthalpies of solvation of nonionic solutes dissolved in formamide. Physics and Chemistry of Liquids, 54:3, 313-324. [CrossRef]
- M. A. Stolov, K. V. Zaitseva, M. A. Varfolomeev, W. E. Acree, 2017. Enthalpies of solution and enthalpies of solvation of organic solutes in ethylene glycol at 298.15 K: Prediction and analysis of intermolecular interaction contributions. Thermochimica Acta 648, 91–99. [CrossRef]
- M. A. Varfolomeev, M. A. Stolov, R. N. Nagrimanov, I.T. Rakipov, W. E. Acree Jr, M. H. Abraham, 2018. Analysis of solute-pyridine intermolecular interactions based on experimental enthalpies of solution and enthalpies of solvation of solutes dissolved in pyridine. Thermochimica Acta 660, 11–17. [CrossRef]
- J. Z. Lu, W. E. Acree Jr., M. H. Abraham (2020). Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N,N-Dimethylacetamide, 2-butanone and tetrahydrofuran (UPDATED) at 298.15 K, Physics and Chemistry of Liquids, 58:5, 675-692. [CrossRef]
- T. I. Magsumov, I. A. Sedov, W. E. Acree Jr. 2021. Development of Abraham model correlations for enthalpies of solvation of solutes dissolved in N-methylformamide, 2-pyrrolidone and N-methylpyrrolidone. J. Mol. Liquids 323, 114609. [CrossRef]
- J. Huang, S. Eddula, P. Tirumala, T. Casillas, W. E. Acree Jr., M. H. Abraham (2021) Updated Abraham model correlations to describe enthalpies of solvation of solutes dissolved in heptane, cyclohexane and N,N-dimethylformamide, Physics and Chemistry of Liquids, 59:3, 442-453. [CrossRef]
| SOLVENT | fl | 2RP | RH | AADdp | AADtot |
|---|---|---|---|---|---|
| n-HEXANE | 1.03 | 1.00 | 0.55 | 0.55 | |
| n-HEPTANE | 1.03 | 1.00 | 0.48 | 0.48 | |
| n-OCTANE | 1.02 | 1.00 | 0.46 | 0.46 | |
| n-NONANE | 1.02 | 1.00 | 0.43 | 0.43 | |
| n-DECANE | 1.01 | 1.00 | 0.34 | 0.34 | |
| n-UNDECANE | 1.01 | 1.00 | 0.29 | 0.29 | |
| n-DODECANE | 1.00 | 1.00 | 0.19 | 0.19 | |
| n-HEXADECANE | 1.00 | 1.00 | 0.00 | 0.00 | |
| CYCLOHEXANE | 1.03 | 1.00 | 0.37 | 0.37 | |
| METHYLCYCLOHEXANE | 1.04 | 1.00 | 0.60 | 0.60 | |
| BENZENE | 1.06 | 1.00 | 0.83 | 0.31 | 0.40 |
| TOLUENE | 1.03 | 1.00 | 1.00 | 0.30 | 0.36 |
| ETHYLBENZENE | 1.05 | 1.00 | 1.00 | 0.31 | 0.45 |
| o-XYLENE | 1.05 | 1.00 | 1.00 | 0.29 | 0.44 |
| m-XYLENE | 1.06 | 1.00 | 1.00 | 0.43 | 0.40 |
| p-XYLENE | 1.03 | 1.00 | 1.00 | 0.33 | 0.44 |
| CHLOROBENZENE | 1.02 | 1.00 | 1.00 | 0.35 | 0.40 |
| 1,4-DIOXANE | 0.90 | 1.00 | 1.00 | 0.38 | 0.61 |
| TETRAHYDROFURAN | 1.04 | 1.00 | 1.00 | 0.49 | 0.87 |
| DIETHYL ETHER | 0.97 | 1.00 | 2.12 | 0.20 | 0.54 |
| DIISOPROPYL ETHER | 1.05 | 1.00 | 1.43 | 0.40 | 0.91 |
| DI-n-BUTYL ETHER | 1.05 | 1.00 | 1.00 | 0.48 | 1.03 |
| METHYL ACETATE | 0.92 | 1.00 | 1.00 | 0.48 | 0.71 |
| ETHYL ACETATE | 0.95 | 1.00 | 1.00 | 0.46 | 0.70 |
| n-PROPYL ACETATE | 0.94 | 1.00 | 1.00 | 0.64 | 0.80 |
| ISOPROPYL ACETATE | 0.97 | 1.00 | 1.00 | 0.53 | 0.74 |
| n-BUTYL ACETATE | 0.98 | 1.00 | 1.00 | 0.40 | 0.62 |
| DIETHYL CARBONATE | 0.96 | 1.00 | 1.00 | 0.45 | 0.62 |
| DIMETHYL CARBONATE | 0.89 | 1.17 | 1.00 | 0.39 | 0.56 |
| TRIBUTYL PHOSPHATE | 0.89 | 0.70 | 0.91 | 0.29 | 0.63 |
| ACETONE | 0.89 | 1.00 | 1.00 | 0.42 | 0.64 |
| METHYL ETHYL KETONE | 0.94 | 1.00 | 1.08 | 0.42 | 0.66 |
| CYCLOPENTANONE | 0.94 | 0.86 | 1.00 | 0.38 | 0.61 |
| ACETOPHENONE | 0.85 | 1.00 | 1.00 | 0.50 | 0.54 |
| N,N-DIMETHYLFORMAMIDE | 1.01 | 0.59 | 1.00 | 0.71 | 1.12 |
| METHANOL | 0.80 | 1.00 | 1.00 | 0.44 | 0.61 |
| ETHANOL | 0.85 | 1.00 | 1.00 | 0.19 | 0.45 |
| 1-PROPANOL | 0.84 | 1.00 | 0.97 | 0.33 | 0.56 |
| 1-BUTANOL | 0.87 | 1.00 | 0.88 | 0.28 | 0.63 |
| 1-PENTANOL | 0.90 | 0.73 | 0.89 | 0.23 | 0.57 |
| 1-HEXANOL | 0.89 | 0.76 | 0.87 | 0.29 | 0.57 |
| 1-HEPTANOL | 0.91 | 0.71 | 0.81 | 0.22 | 0.61 |
| 1-OCTANOL | 0.92 | 0.57 | 0.79 | 0.27 | 0.61 |
| 1-DECANOL | 0.92 | 0.58 | 0.78 | 0.39 | 0.82 |
| 2-METHYL-1-PROPANOL | 0.89 | 0.78 | 1.00 | 0.21 | 0.43 |
| 2-METHYL-1-BUTANOL | 0.89 | 0.75 | 0.93 | 0.24 | 0.60 |
| 3-METHYL-1-BUTANOL | 0.91 | 0.66 | 0.87 | 0.22 | 0.53 |
| 2-ETHYL-1-HEXANOL | 0.92 | 0.60 | 0.75 | 0.28 | 0.72 |
| ISOPROPANOL | 0.86 | 1.00 | 1.00 | 0.21 | 0.51 |
| 2-METHYL-2-PROPANOL | 0.89 | 0.83 | 1.00 | 0.21 | 0.55 |
| 2-BUTANOL | 0.88 | 1.00 | 1.00 | 0.25 | 0.47 |
| 2-PENTANOL | 0.92 | 0.58 | 1.00 | 0.17 | 0.56 |
| 2-METHYL-2-BUTANOL | 0.92 | 0.83 | 1.00 | 0.24 | 0.61 |
| 4-METHYL-2-PENTANOL | 0.99 | 0.89 | 0.79 | 0.34 | 0.94 |
| CYCLOPENTANOL | 0.92 | 0.52 | 0.88 | 0.28 | 0.57 |
| BENZYL ALCOHOL | 0.82 | 0.71 | 0.75 | 0.51 | 0.62 |
| 2-METHOXYETHANOL c0 | 0.76 | 1.50 | 0.75 | 0.44 | 0.47 |
| 2-ETHOXYETHANOL c0 | 0.85 | 1.30 | 0.78 | 0.75 | 0.94 |
| 2-BUTOXYETHANOL | 0.89 | 0.92 | 0.72 | 0.27 | 0.41 |
| ETHYLENE GLYCOL c0 | 0.58 | 1.00 | 0.81 | 0.78 | 1.08 |
| 1,2-PROPYLENE GLYCOL | 0.77 | 0.55 | 0.74 | 0.79 | 0.93 |
| DIETHYLENE GLYCOL | 0.65 | 1.00 | 0.56 | 0.78 | 0.78 |
| TRIETHYLENE GLYCOL | 0.68 | 0.67 | 0.46 | 0.93 | 0.81 |
| ACETIC ACID | 0.79 | 0.88 | 0.71 | 0.32 | 0.88 |
| ANILINE | 0.91 | 0.90 | 0.90 | 0.76 | 1.10 |
| 2-PYRROLIDONE | 0.80 | 0.69 | 1.00 | 0.71 | 1.28 |
| NITROMETHANE | 0.80 | 1.32 | 1.65 | 1.34 | 1.81 |
| NITROBENZENE | 0.96 | 0.70 | 2.38 | 0.82 | 0.66 |
| ACETONITRILE | 0.74 | 1.08 | 1.63 | 0.45 | 0.56 |
| PROPIONITRILE | 0.82 | 0.96 | 2.32 | 0.41 | 0.80 |
| BUTYRONITRILE | 0.85 | 0.96 | 1.89 | 0.55 | 0.74 |
| BENZONITRILE | 0.87 | 0.73 | 2.50 | 0.42 | 0.40 |
| PYRIDINE | 0.96 | 1.00 | 1.94 | 0.45 | 0.90 |
| DIMETHYL SULFOXIDE | 0.77 | 0.66 | 1.46 | 0.76 | 0.88 |
| FORMAMIDE | 0.46 | 0.75 | 0.82 | 1.26 | 1.29 |
| PROPYLENE CARBONATE | 0.72 | 0.88 | 1.00 | 0.58 | 0.76 |
| WATER | -0.21 | 2.73 | 1.03 | 0.91 | 1.61 |
| Overall average absolute deviation | 0.43 | 0.66 | |||
| SOLVENT | ΔGS | ||
|---|---|---|---|
| Pred | LSER | Exper | |
| n-HEXANE | 15.62 | 16.38 | 16.97 |
| n-HEPTANE | 18.56 | 18.82 | 18.65 |
| n-OCTANE | 21.44 | 21.43 | 23.34 |
| n-NONANE | 24.40 | 24.17 | 25.03 |
| n-DECANE | 26.23 | 26.93 | 27.85 |
| n-UNDECANE | 29.65 | 29.43 | 30.51 |
| n-DODECANE | 32.52 | 32.26 | 33.49 |
| n-HEXADECANE | 43.20 | 43.20 | 44.55 |
| CYCLOHEXANE | 17.20 | 17.86 | 18.54 |
| METHYLCYCLOHEXANE | 19.68 | 20.72 | 19.96 |
| BENZENE | 18.88 | 18.99 | 19.07 |
| TOLUENE | 21.80 | 21.60 | 21.63 |
| ETHYLBENZENE | 23.77 | 23.88 | 24.00 |
| o-XYLENE | 24.66 | 24.93 | 24.92 |
| m-XYLENE | 24.24 | 24.32 | 25.06 |
| p-XYLENE | 24.09 | 24.21 | 24.17 |
| CHLOROBENZENE | 23.45 | 24.17 | 23.88 |
| 1,4-DIOXANE | 21.16 | 21.30 | 21.54 |
| TETRAHYDROFURAN | 18.16 | 18.82 | 17.70 |
| DIETHYL ETHER | 14.10 | 13.90 | 14.41 |
| DIISOPROPYL ETHER | 15.70 | 16.11 | 16.37 |
| DI-n-BUTYL ETHER | 24.39 | 22.78 | 23.99 |
| METHYL ACETATE | 16.17 | 16.36 | 17.31 |
| ETHYL ACETATE | 17.71 | 17.63 | 18.81 |
| n-PROPYL ACETATE | 20.74 | 20.17 | 21.06 |
| ISOPROPYL ACETATE | 18.87 | 19.01 | 19.52 |
| n-BUTYL ACETATE | 22.66 | 18.04 | 23.21 |
| DIETHYL CARBONATE | 23.55 | 23.85 | 23.89 |
| DIMETHYL CARBONATE | 17.78 | 17.33 | 24.59 |
| TRIBUTYL PHOSPHATE | 44.70 | 44.27 | |
| ACETONE | 16.02 | 16.40 | 17.33 |
| METHYL ETHYL KETONE | 18.06 | 18.66 | 19.19 |
| CYCLOPENTANONE | 23.87 | 24.30 | 24.59 |
| ACETOPHENONE | 30.02 | 31.66 | 32.63 |
| N,N-DIMETHYLFORMAMIDE | 29.17 | 29.83 | 27.48 |
| METHANOL | 20.01 | 19.94 | 20.29 |
| ETHANOL | 20.60 | 20.55 | 21.30 |
| 1-PROPANOL | 22.88 | 22.58 | 23.31 |
| ISOPROPANOL | 20.58 | 20.23 | 21.39 |
| 1-BUTANOL | 24.94 | 24.88 | 25.64 |
| 2-BUTANOL | 22.78 | 23.43 | 23.17 |
| 1-PENTANOL | 27.54 | 27.63 | 27.20 |
| 2-PENTANOL | 26.42 | 25.96 | 25.35 |
| 1-HEXANOL | 29.98 | 30.01 | 29.94 |
| 1-HEPTANOL | 32.05 | 32.43 | 32.14 |
| 1-OCTANOL | 34.12 | 34.48 | 34.14 |
| 1-DECANOL | 39.59 | 40.10 | 38.30 |
| 2-METHYL-1-PROPANOL | 23.82 | 23.77 | 24.22 |
| 2-METHYL-1-BUTANOL | 26.34 | 26.71 | 26.74 |
| 3-METHYL-1-BUTANOL | 26.89 | 26.94 | 26.87 |
| 2-ETHYL-1-HEXANOL | 33.05 | 33.57 | 32.96 |
| 2-METHYL-2-PROPANOL | 20.80 | 20.88 | 20.92 |
| 2-METHYL-2-BUTANOL | 24.87 | 24.87 | 23.10 |
| 4-METHYL-2-PENTANOL | 27.26 | 27.39 | 25.51 |
| CYCLOPENTANOL | 27.80 | 27.60 | 26.45 |
| BENZYL ALCOHOL | 35.43 | 35.43 | 36.25 |
| 2-METHOXYETHANOL c0 | 23.31 | 24.36 | 24.77 |
| 2-ETHOXYETHANOL c0 | 27.63 | 27.18 | 26.21 |
| 2-BUTOXYETHANOL | 30.13 | 30.76 | 29.76 |
| ETHYLENE GLYCOL c0 | 37.15 | 36.96 | 39.21 |
| 1,2-PROPYLENE GLYCOL | 35.21 | 35.36 | 37.07 |
| DIETHYLENE GLYCOL | 38.98 | 38.30 | 45.60 |
| TRIETHYLENE GLYCOL | 49.87 | 50.03 | |
| ACETIC ACID | 28.26 | 27.72 | 24.73 |
| ANILINE | 28.84 | 31.98 | 31.58 |
| 2-PYRROLIDONE | 42.70 | 41.64 | 42.70 |
| NITROMETHANE | 21.16 | 22.73 | 22.88 |
| NITROBENZENE | 32.53 | 33.96 | 33.65 |
| ACETONITRILE | 20.29 | 20.36 | 20.60 |
| PROPIONITRILE | 19.90 | 20.85 | 21.46 |
| BUTYRONITRILE | 21.86 | 21.98 | 23.07 |
| BENZONITRILE | 29.61 | 30.19 | 31.60 |
| PYRIDINE | 23.35 | 22.90 | 23.07 |
| DIMETHYL SULFOXIDE | 38.32 | 38.81 | 32.71 |
| FORMAMIDE | 42.55 | 40.97 | |
| PROPYLENE CARBONATE | 31.18 | 31.69 | 44.14 |
| WATER | 27.97 | 27.29 | 26.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
