Submitted:
13 August 2025
Posted:
13 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Research Background
1.2. Research Motivation and Objectives
2. Related Work
2.1. Symbol Definitions
2.2. Fragile Watermarking
2.3. Block-Pixel Wised Image Authentication (BP Wised) and Singular Value Decomposition (SVD Based) Image Authentication
2.4. Rezaei’s Method [20]
3. Proposed Method
3.1. Watermark Generation and Embedding
3.1.1. Encoder and Bottleneck
3.1.2. Multiple Copies
3.1.3. Number Sequence and Scrambling
3.2. Tampering Localization and Self-Recovery
3.2.1. Watermarking Extraction, Number Sequence and Descrambling
3.2.2. Tamper Block Detection (Vote), Scrambling and Morphology
3.2.3. Decoder and Image Self-Reocvery
4. Experimental Results
4.1. Experiment Environment and Dataset
4.2. Evaluation Metrics
4.3. Comparison of Convolutional Autoencoders with Different Parameters
4.3.1. Need for Fully Connected Layer Design
4.3.2. Adjustment of Network Scale
4.3.3. Whether to Use Batch Normalization
4.3.4. Effect of Dropout
4.3.5. Loss Function Weight
4.3.6. Variation in the Number of Bottlenecks
4.4. Tampering Recovery Results under Different Scenarios
4.4.1. Watermarked Image Quality
4.4.2. Tampering Methods in Different Scenarios
4.4.3. Analysis of Different Tampering Levels
4.5. Comparison of Our Method with Other Researchers’ Methods
5. Conclusions and Future Work
5.1. Conclusions
5.2. Future Work
Acknowledgments
References
- Capasso, P.; Cattaneo, G.; De Marsico, M. A Comprehensive Survey on Methods for Image Integrity. ACM Trans. Multimedia Comput. Commun. Appl. 2024, 20, 1–34. [Google Scholar] [CrossRef]
- Lee, W.-B.; Chen, T.-H. A public verifiable copy protection technique for still images. J. Syst. Softw. 2002, 62, 195–204. [Google Scholar] [CrossRef]
- Li, X.; Guo, M.; Wang, Z.; Li, J.; Qin, C. Robust Image Hashing in Encrypted Domain. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 8, 670–683. [Google Scholar] [CrossRef]
- Cox, I.; Honsinger, C.; Miller, M.; Bloom, J. Digital Watermarking. J. Electron. Imaging 2002, 11, 414–414. [Google Scholar] [CrossRef]
- Ferrara, P.; Bianchi, T.; De Rosa, A.; Piva, A. Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1566–1577. [Google Scholar] [CrossRef]
- Jegou, H.; Douze, M.; Schmid, C. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search. In Computer Vision – ECCV 2008; Forsyth, D., Torr, P., Zisserman, A., Eds.; Proceedings of the 10th European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Forsyth, D., Torr, P., Zisserman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5302, pp. 304–317. [Google Scholar]
- Li, L.; Li, S.; Zhu, H.; Chu, S.-C.; Roddick, J.F.; Pan, J.-S. An Efficient Scheme for Detecting Copy-move Forged Images by Local Binary Patterns. J. Inf. Hiding Multim. Signal Process. 2013, 4, 46–56. [Google Scholar]
- Mushtaq, S.; Mir, A.H. Digital Image Forgeries and Passive Image Authentication Techniques: A Survey. Int. J. Adv. Sci. Technol. 2014, 73, 15–32. [Google Scholar] [CrossRef]
- Yang, C.-W.; Shen, J.-J. Recover the tampered image based on VQ indexing. Signal Process. 2010, 90, 331–343. [Google Scholar] [CrossRef]
- Di, Y.; Lee, C.; Wang, Z.; Chang, C.; Li, J. A Robust and Removable Watermarking Scheme Using Singular Value Decomposition. KSII Trans. Internet Inf. Syst. 2016, 10, 5831–5848. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K. Effective self-embedding watermarking scheme for image tampered detection and localization with recovery capability. J. Vis. Commun. Image Represent. 2016, 38, 775–789. [Google Scholar] [CrossRef]
- Qin, C.; Ji, P.; Zhang, X.; Dong, J.; Wang, J. Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Process. 2017, 138, 280–293. [Google Scholar] [CrossRef]
- Lee, C.-F.; Shen, J.-J.; Chen, Z.-R.; Agrawal, S. Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery. Sensors 2019, 19, 2267. [Google Scholar] [CrossRef]
- Lee, C.-F.; Shen, J.-J.; Hsu, F.-W. A Survey of Semi-Fragile Watermarking Authentication. In Recent Advances in Intelligent Information Hiding and Multimedia Signal Processing; Pan, J.-S., Ito, A., Tsai, P.-W., Jain, L., Smart Innovation, Systems and Technologies, Eds.; Springer: Cham, Switzerland, 2019; Volume 109. [Google Scholar] [CrossRef]
- Rakhmawati, L.; Wirawan, W.; Suwadi, S. A recent survey of self-embedding fragile watermarking scheme for image authentication with recovery capability. EURASIP J. Image Video Process. 2019, 2019, 61. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Theis, L.; Shi, W.; Cunningham, A.; Huszár, F. Lossy Image Compression with Compressive Autoencoders. arXiv 2017. [CrossRef]
- Li, P.; Pei, Y.; Li, J. A comprehensive survey on design and application of autoencoder in deep learning. Appl. Soft Comput. 2023, 138. [Google Scholar] [CrossRef]
- Shen, J.-J.; Lee, C.-F.; Hsu, F.-W.; Agrawal, S. A self-embedding fragile image authentication based on singular value decomposition. Multimedia Tools Appl. 2020, 79, 25969–25988. [Google Scholar] [CrossRef]
- Rezaei, M.; Taheri, H. Digital image self-recovery using CNN networks. Optik 2022, 264. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S. Fragile Watermarking With Error-Free Restoration Capability. IEEE Trans. Multimedia 2008, 10, 1490–1499. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Ma, B.; Zhang, Z. A novel self-recovery fragile watermarking scheme based on dual-redundant-ring structure. Comput. Electr. Eng. 2011, 37, 927–940. [Google Scholar] [CrossRef]
- Chow, Y.-W.; Susilo, W.; Tonien, J.; Zong, W. A QR Code Watermarking Approach Based on the DWT-DCT Technique. In Information Security and Privacy – ACISP 2017; Lai, J., Ed.; Proceedings of the 22nd Australasian Conference on Information Security and Privacy, Auckland, New Zealand, 3–5 July 2017; Lai, J., Ed.; Springer: Cham, Switzerland, 2017; Volume 10343, pp. 314–331. [Google Scholar]
- Jiang, F.; Tao, W.; Liu, S.; Ren, J.; Guo, X.; Zhao, D. An End-to-End Compression Framework Based on Convolutional Neural Networks. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 3007–3018. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar]
- OpenCV Team. Color Conversions. OpenCV Documentation. Available online: https://docs.opencv.org/4.x/de/d25/imgproc_color_conversions.html (accessed on 17 May 2025).
- Sarreshtedari, S.; Akhaee, M.A. A Source-Channel Coding Approach to Digital Image Protection and Self-Recovery. IEEE Trans. Image Process. 2015, 24, 2266–2277. [Google Scholar] [CrossRef]
- Yuan, X.; Li, X.; Liu, T. Gauss–Jordan elimination-based image tampering detection and self-recovery. Signal Process. Image Commun. 2021, 90. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]























| No. | Notation | Description |
| (1) | the original image | |
| (2) | W | the weight of the original image |
| (3) | H | the height of the original image |
| (4) | every block in the original image | |
| (5) | the size of a block | |
| (6) | the total number of blocks in an image | |
| (7) | SK | the secret key (Generate block-mapping sequence) |
| (8) | V | bottleneck |
| (9) | the bottleneck length is represented in bytes | |
| (10) | reshape the bottleneck into a 2D format | |
| (11) | take the square root of the length of the bottleneck (to convert it into the side length of a 2D shape) i.e., | |
| (12) | the mapping block | |
| (13) | recovery code of each block | |
| (14) | the mapping block recovery data | |
| (15) | the authentication code of each block | |
| (16) | the watermarked image | |
| (17) | the tampered image | |
| (18) | the authentication message (receiver) | |
| (19) | the recovered image | |
| (20) | t | hyperparameter for designing the number of neurons |
| (21) | T | Number of arnold transform iterations |
| Model Architecture | PSNR | SSIM |
| (a) | 28.417 | 0.803 |
| (b) | 28.581 | 0.849 |
| (c) | 28.583 | 0.850 |
| (d) | 28.328 | 0.796 |
| Model Architecture | PSNR | SSIM |
| (a) | 28.583 | 0.850 |
| (b) | 29.160 | 0.906 |
| Model Architecture | PSNR | SSIM |
| (a) FC-16 | 28.664 | 0.857 |
| (b) FC-32 | 28.846 | 0.879 |
| (c) FC-64 | 29.297 | 0.921 |
| (d) FC-128 | 29.299 | 0.927 |
| (e) FC-256 | 29.351 | 0.939 |
| PSNR | SSIM | |
| (a) | 43.654 | 0.999 |
| Tampering Level | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 75% |
| PSNR (dB) | 43.654 | 37.964 | 35.742 | 34.282 | 33.162 | 32.238 | 31.383 | 30.787 | 30.518 |
| SSIM | 0.999 | 0.991 | 0.984 | 0.977 | 0.971 | 0.963 | 0.953 | 0.946 | 0.943 |
| Tampering Level | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 75% |
| PSNR (dB) | 43.654 | 29.462 | 29.432 | 29.468 | 29.492 | 29.390 | 29.311 | 29.324 | 29.322 |
| SSIM | 0.999 | 0.812 | 0.872 | 0.908 | 0.922 | 0.921 | 0.920 | 0.924 | 0.924 |
| Tampering Level | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 75% |
| Recall | - | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
| Precision | - | 0.941 | 0.984 | 0.989 | 0.984 | 1 | 0.989 | 0.995 | 1 |
| F1-Score | - | 0.969 | 0.992 | 0.994 | 0.992 | 0.999 | 0.994 | 0.997 | 0.999 |
| 竄改程度 | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 75% |
| PSNR (dB) | 43.654 | 37.964 | 35.742 | 34.282 | 33.140 | 32.218 | 31.364 | 30.771 | 30.502 |
| SSIM | 0.999 | 0.991 | 0.984 | 0.977 | 0.958 | 0.950 | 0.938 | 0.932 | 0.929 |
| 竄改程度 | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 75% |
| PSNR (dB) | 43.654 | 29.397 | 29.402 | 29.425 | 29.466 | 29.368 | 29.29 | 29.307 | 29.306 |
| SSIM | 0.999 | 0.664 | 0.79 | 0.844 | 0.887 | 0.894 | 0.896 | 0.904 | 0.906 |
| 竄改程度 | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 75% |
| Recall | - | 0.965 | 0.982 | 0.978 | 0.985 | 0.988 | 0.987 | 0.989 | 0.99 |
| Precision | - | 0.965 | 0.984 | 0.99 | 0.984 | 1 | 0.99 | 0.995 | 1 |
| F1-Score | - | 0.965 | 0.983 | 0.984 | 0.985 | 0.994 | 0.989 | 0.992 | 0.995 |
| Method | PSNR | SSIM |
| BP-wised (2019) | 44.163 | 0.999 |
| SVD-based (2020) | 44.013 | 0.999 |
| Rezaei et al. (2022) | 44.2 | - |
| Proposed Method | 43.654 | 0.999 |
| Schemes | Tamper Rate | 10% | 20% | 40% |
|
Sarreshtedari et al. [29] (2015) |
Recall | 1 | 1 | 1 |
| Precision | 1 | 1 | 1 | |
| F1-Score | 1 | 1 | 1 | |
| BP-wised (2019) |
Recall | 0.999 | 0.999 | 1 |
| Precision | 0.839 | 0.914 | 0.984 | |
| F1-Score | 0.912 | 0.955 | 0.992 | |
| SVD-based (2020) |
Recall | 0.999 | 0.999 | 0.999 |
| Precision | 0.939 | 0.943 | 0.984 | |
| F1-Score | 0.968 | 0.971 | 0.992 | |
| Yuan et al. [30] (2021) |
Recall | 0.988 | 0.964 | 0.899 |
| Precision | 0.956 | 0.935 | 0.817 | |
| F1-Score | 0.971 | 0.949 | 0.856 | |
| Rezaei et al. [20] (2022) |
Recall | 0.995 | 0.991 | 0.978 |
| Precision | 1 | 1 | 1 | |
| F1-Score | 0.997 | 0.995 | 0.988 | |
| Proposed | Recall | 0.999 | 0.999 | 0.999 |
| Precision | 0.941 | 0.984 | 0.984 | |
| F1-Score | 0.969 | 0.992 | 0.992 |
| Schemes | Tamper Rate | 10% | 20% | 40% |
|
Sarreshtedari et al. [29] (2015) |
Recall | 0.403 | 0.237 | 0.112 |
| Precision | 1 | 1 | 1 | |
| F1-Score | 0.574 | 0.383 | 0.201 | |
| BP-wised (2019) |
Recall | 0.062 | 0.062 | 0.047 |
| Precision | 0.245 | 0.398 | 0.752 | |
| F1-Score | 0.099 | 0.107 | 0.089 | |
| SVD-based (2020) |
Recall | 0.062 | 0.015 | 0.015 |
| Precision | 0.490 | 0.231 | 0.504 | |
| F1-Score | 0.110 | 0.029 | 0.030 | |
| Yuan et al. [30] (2021) |
Recall | 0.982 | 0.969 | 0.897 |
| Precision | 0.956 | 0.931 | 0.812 | |
| F1-Score | 0.968 | 0.949 | 0.852 | |
| Rezaei et al. [20] (2022) |
Recall | 0.996 | 0.991 | 0.977 |
| Precision | 1 | 1 | 1 | |
| F1-Score | 0.997 | 0.995 | 0.988 | |
| Proposed | Recall | 0.965 | 0.982 | 0.985 |
| Precision | 0.965 | 0.984 | 0.984 | |
| F1-Score | 0.965 | 0.983 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
