Submitted:
13 August 2025
Posted:
14 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Qualitative Analysis and Critical Synthesis
3. Results and Discussion
3.1. Profile of Articles Selected for Analysis
3.2. LCA Methodological Approach
3.3. Analysis of the Main Results of the Studies
- Additionally, some studies have concentrated on developing decision-support tools and methodological approaches to guide the selection of water sources or reuse strategies tailored to different geographical and climatic contexts (Studies 4 and 7).
- Finally, one study stands out for its broader approach, conducting an integrated analysis of water reuse across multiple municipal services, including energy production, green area irrigation, and urban cleaning (Study 9).
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Livestock and environment statistics: manure and GHG emissions. Global, regional and country trends 1990–2018 2020. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/f0cebfdd-725e-4d7a-8e14-3ba8fb1486a7/content (accessed on 30 July 2025).
- Pokhrel, Y.; et al. Global terrestrial water storage and drought severity under climate change. Nature Climate Change 2021, 11, 226–233. [CrossRef]
- Christou, A.; et al. Sustainable wastewater reuse for agriculture. Nature Reviews Earth & Environment 2024, 5, 504–521. [CrossRef]
- de Sá, P.L.S.; Lousada, S.A.N.; Teixeira, H.L.S. Tratamento de Águas Residuais: Uma Visão Geral da Pesquisa Através da Análise Bibliométrica. Journal of Lifestyle and SDGs Review 2025, 5, e03641–e03641.
- Rebelo, A.; Amaro, A.B.; Quadrado, F. Water Reuse: A Risk Assessment Model for Water Resources. KnE Materials Science 2022, 193–203. [CrossRef]
- Brandao, J.M.; Simoes, L.M.; Callapez, P.; Magalhaes, V. Água em Viseu: desafios de um percurso centenário. In La gestion del agua en la península Ibérica (siglos XIX y XX); Sílex Ediciones: Madrid, Spain, 2022; pp. 451–470. Available online: https://hdl.handle.net/10174/36040 (accessed on 22 June 2025).
- United Nations. The United Nations World Water Development Report 2017: Wastewater — The Untapped Resource. UNESCO – United Nations Educational, Scientific and Cultural Organization 2017. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247552_por (accessed on 5 June 2025).
- Águas do Tejo Atlântico. Fábrica de Água. Águas do Tejo Atlântico 2019. Available online: https://www.aguasdotejoatlantico.adp.pt/content/fabrica-de-agua (accessed on 24 June 2024).
- ISO 14040. Environmental management – Life cycle assessment – Principles and framework. 2006.
- ISO 14044. Environmental management – Life cycle assessment – Requirements and guidelines. 2006.
- Santos, L.; Brás, I.; Ferreira, M.; Domingos, I.; Ferreira, J. Life Cycle Assessment of Green Space Irrigation Using Treated Wastewater: A Case Study. Sustainability 2024, 16, 5696. [CrossRef]
- Azeb, L.; Hartani, T.; Aitmouheb, N.; Pradeleix, L.; Hajjaji, N.; Aribi, S. Life cycle assessment of cucumber irrigation: Unplanned water reuse versus groundwater resources in Tipaza (Algeria). Journal of Water Reuse and Desalination 2020, 10, 227–238. [CrossRef]
- Foglia, A.; et al. Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation: A case study in Italy. Journal of Cleaner Production 2021, 293, 126201. [CrossRef]
- Kalboussi, N.; Biard, Y.; Pradeleix, L.; Rapaport, A.; Sinfort, C.; Ait-Mouheb, N. Life cycle assessment as decision support tool for water reuse in agriculture irrigation. Science of the Total Environment 2022, 836, 155486. [CrossRef]
- Negi, R.; Chandel, M.K. Life cycle assessment of wastewater reuse alternatives in urban water system. Resources, Conservation and Recycling 2024, 204, 107469. [CrossRef]
- Rodríguez, C.; Sánchez, R.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Life cycle assessment of greywater treatment systems for water-reuse management in rural areas. Science of the Total Environment 2021, 795, 148687. [CrossRef]
- Maeseele, C.; Roux, P. An LCA framework to assess environmental efficiency of water reuse: Application to contrasted locations for wastewater reuse in agriculture. Journal of Cleaner Production 2021, 316, 128151. [CrossRef]
- Canaj, K.; Mehmeti, A.; Morrone, D.; Toma, P.; Todorović, M. Life cycle-based evaluation of environmental impacts and external costs of treated wastewater reuse for irrigation: A case study in southern Italy. Journal of Cleaner Production 2021, 293, 126142. [CrossRef]
- Szalkowska, K.; Zubrowska-Sudol, M. Opportunities for water reuse implementation in metropolitan areas in a complex approach with an LCA analysis, taking Warsaw, Poland as an example. Sustainability 2023, 15, 1190. [CrossRef]
- Hargitai, R.H.; Sebestyén, V.; Somogyi, V. Potential water reuse pathways from a life cycle analysis perspective in the poultry industry. Journal of Water Process Engineering 2024, 64, 105577. [CrossRef]
- Akhoundi, A.; Nazif, S. Life-Cycle Assessment of Tertiary Treatment Technologies to Treat Secondary Municipal Wastewater for Reuse in Agricultural Irrigation, Artificial Recharge of Groundwater, and Industrial Usages. J. Environ. Eng. 2020, 146, 04020031. [CrossRef]
- Vu, T.T.; Huang, C.-F.; Phan, H.A.; Bach, T.T.N.; Zhang, P.; Bui, H.M. Biogas Utilization and Water Reuse in Paper Mill Wastewater Treatment: A Life Cycle Analysis. Water, Air, & Soil Pollution 2025, 236, 265. [CrossRef]
- Mclennan, C.; Rudi, G.; Altchenko, Y.; Ait-Mouheb, N. Will the European Regulation for water reuse for agricultural irrigation foster this practice in the European Union? Water Reuse 2024, 14, 115–135. [CrossRef]
- Du, Z.; Wang, Z.; Guo, F.; Wang, T. Dynamic structures and emerging trends in the management of major trauma: a bibliometric analysis of publications between 2012 and 2021. Frontiers in Public Health 2022, 10, 1017817. [CrossRef]
- Tsangas, M.; Papamichael, I.; Banti, D.; Samaras, P.; Zorpas, A.A. LCA of municipal wastewater treatment. Chemosphere 2023, 341, 139952.
- Larsen, V.G.; Tollin, N.; Sattrup, P.A.; Birkved, M.; Holmboe, T. What are the challenges in assessing circular economy for the built environment? A literature review on integrating LCA, LCC and S-LCA in life cycle sustainability assessment, LCSA. Journal of Building Engineering 2022, 50, 104203. [CrossRef]
- Dong, B.; Song, C.; Li, H.; Lin, A.; Wang, J.; Li, W. Life cycle assessment on the environmental impacts of different pig manure management techniques. International Journal of Agricultural and Biological Engineering 2022, 15, 78–84. [CrossRef]
- Schaubroeck, T.; Schaubroeck, S.; Heijungs, R.; Zamagni, A.; Brandão, M.; Benetto, E. Attributional & consequential life cycle assessment: definitions, conceptual characteristics and modelling restrictions. Sustainability 2021, 13, 7386.
- Luo, C.; Yao, X.; Zhang, Y.; Zhou, H. An empirical study on the impact of different structural systems on carbon emissions of prefabricated buildings based on SimaPro. World Journal of Engineering and Technology 2023, 11, 434–453. [CrossRef]
- Huijbregts, M.A.J.; et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment 2017, 22, 138–147. [CrossRef]
- Devi, S.A.; Mirwan, M. Analisis Life Cycle Assessment (LCA) pada Proses Produksi Pupuk ZA II Menggunakan Metode Recipe 2016. INSOLOGI: Jurnal Sains dan Teknologi 2023, 2, 620–632. [CrossRef]
- Anazonwu, I.A.; Fahmi, M.Z. Wastewater treatment, greenhouse gas emissions, and our environment. Recent Advances in Natural Sciences 2024, 121–121.
- Chen, X.; Zhao, B.; Shuai, C.; Qu, S.; Xu, M. Global spread of water scarcity risk through trade. Resources, Conservation and Recycling 2022, 187, 106643. [CrossRef]
- Mannina, G.; Cosenza, A.; Ekama, G.A. A comprehensive integrated membrane bioreactor model for greenhouse gas emissions. Chemical Engineering Journal 2018, 334, 1563–1572. [CrossRef]
- Kesari, K.K.; et al. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water Air Soil Pollution 2021, 232, 208. [CrossRef]
- Li, G.; Hao, C.H.; Jing, Y.M.; Liu, D.X.; Li, Y. Eutrophication problems of recycled water for landscape water and ecological restoration. Applied Mechanics and Materials 2013, 361, 938–941. [CrossRef]
- Pranta, A.D.; Rahaman, M.T.; Ahmed, M.S.; Arefin Rafi, M.S. Navigating eutrophication in aquatic environments: understanding impacts and unveiling solutions for effective wastewater management. Res Ecol 2023, 5, 11–18.
- Liwarska-Bizukojc, E. Evaluation of Ecotoxicity of wastewater from the full-scale treatment plants. Water 2022, 14, 3345. [CrossRef]
- Olagunju, B.D.; Olanrewaju, O.A. Life cycle assessment of ordinary portland cement (OPC) using both problem oriented (Midpoint) approach and damage oriented approach (Endpoint). In Product Life Cycle-Opportunities for Digital and Sustainable Transformation; IntechOpen: 2021. Available online: https://www.intechopen.com/chapters/77062 (accessed on 23 June 2025).
- Gu, L.; Lin, B.; Gu, D.; Zhu, Y. An endpoint damage oriented model for life cycle environmental impact assessment of buildings in China. Chinese Science Bulletin 2008, 53, 3762–3769. [CrossRef]
- Dudkowski, R. Objectives of the Study. In Managing Value Co-creation in University-Industry Partnerships, Springer International Publishing: Cham, Switzerland, 2021, 61–63.
- Pereira Filho, J.M.; Vieira, E.L.; Silva, A.M.A.; Cezar, M.F.; Amorim, F.U. Efeito do tratamento com hidróxido de sódio sobre a fração fibrosa, digestibilidade e tanino do feno de jurema-preta (Mimosa tenuiflora Wild). R. Bras. Zootec. 2003, 32, 70–76.
- Rezaei, N.; Diaz-Elsayed, N.; Mohebbi, S.; Xie, X.; Zhang, Q. A multi-criteria sustainability assessment of water reuse applications: a case study in Lakeland, Florida. Environmental Science: Water Research & Technology 2019, 5, 102–118. [CrossRef]
- deMonsabert, S.; Bakhshi, A.; Maas, C.; Liner, B. Incorporating energy impacts into water supply and wastewater management. American Council for an Energy Efficient Economy 2009. Available online: https://www.aceee.org/files/proceedings/2009/data/papers/6_86.pdf (accessed on 24 June 2025).
- Plappally, A.K. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renewable and Sustainable Energy Reviews 2012, 16, 4818–4848.



| Study No | Ref | Title | Authors | Years | Country | Journal |
| 1 | [11] | Life Cycle Assessment of Green Space Irrigation Using Treated Wastewater: A Case Study | Lenise Santos, Isabel Brás, Miguel Ferreira, Idalina Domingos, José Ferreira | 2024 | Portugal | Sustainability |
| 2 | [12] | Life cycle assessment of cucumber irrigation: unplanned water reuse versus groundwater resources in Tipaza (Algeria) | Latifa Azeb, Tarik Hartani, Nassim Aitmouheb, Ludivine Pradeleix, Nouredddin Hajjaji, Soumaya Aribi | 2020 | Algeria | Journal of Water Reuse and Desalination |
| 3 | [13] | Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation: A case study in Italy | Alessia Foglia, Corinne Andreola, Giulia Cipolletta, Serena Radini, Çağrı Akyol, Anna Laura Eusebi, Peyo Stanchev, Evina Katsou, Francesco Fatone | 2021 | Italy | Journal of Cleaner Production |
| 4 | [14] | Life cycle assessment as decision support tool for water reuse in agriculture irrigation | Nesrine Kalboussi, Yannick Biard, Ludivine Pradeleix, Alain Rapaport, Carole Sinfort, Nassim Ait-mouheb | 2022 | France | Science of the Total Environment |
| 5 | [15] | Life cycle assessment of wastewater reuse alternatives in urban water system | Rajhans Negi, Munish K. Chandel | 2024 | India | Resources, Conservation & Recycling |
| 6 | [16] | Life cycle assessment of greywater treatment systems for water-reuse management in rural areas | Carolina Rodríguez, Rafael Sánchez, Natalia Rebolledo, Nicolás Schneider, Jennyfer Serrano, Eduardo Leiva | 2021 | Chile | Science of the Total Environment |
| 7 | [17] | An LCA framework to assess environmental efficiency of water reuse: Application to contrasted locations for wastewater reuse in agriculture | Camille Maeseele, Philippe Roux | 2021 | France | Journal of Cleaner Production |
| 8 | [18] | Life cycle-based evaluation of environmental impacts and external costs of treated wastewater reuse for irrigation: A case study in southern Italy | Kledja Canaj, Andi Mehmeti, Domenico Morrone, Pierluigi Toma, Mladen Todorović | 2021 | Italy | Journal of Cleaner Production |
| 9 | [19] | Opportunities for Water Reuse Implementation in Metropolitan Areas in a Complex Approach with an LCA Analysis, Taking Warsaw, Poland as an Example | Karolina Szalkowska, Monika Zubrowska-Sudol | 2023 | Poland | Sustainability |
| 10 | [20] | Potential water reuse pathways from a life cycle analysis perspective in the poultry industry | Réka Harasztiné Hargitai, Viktor Sebestyén, Viola Somogyi | 2024 | Hungary | Journal of Water Process Engineering |
| 11 | [21] | Life-Cycle Assessment of Tertiary Treatment Technologies to Treat Secondary Municipal Wastewater for Reuse in Agricultural Irrigation, Artificial Recharge of Groundwater, and Industrial Usages | Ali Akhoundi, Sara Nazif | 2020 | Iran | Journal of Environmental Engineering (ASCE) |
| 12 | [22] | Biogas Utilization and Water Reuse in Paper Mill Wastewater Treatment: A Life Cycle Analysis | Thuy Thi Vu, Chih Feng Huang, Hao Anh Phan, Thuy Thi Ngoc Bach, Panyue Zhang, Ha Manh Bui | 2025 | Vietnam | Water Air Soil Pollution |
| Study No | LCA type | System boundaries | Functional unit |
| 1 | Attributional | Gate-to-gate expanded |
1 m² of irrigated green area/day |
| 2 | Attributional | Cradle-to-field | 1 ha /1 kg of cucumber |
| 3 | Attributional | Cradle-to-field | 1 m³ of treated effluent |
| 4 | Attributional | Cradle-to-field | 1 ha of irrigated vineyard |
| 5 | Attributional | Cradle-to-gate expanded |
1 m³ of water delivered |
| 6 | Attributional | Cradle-to-grave | 1 m³ of treated gray water |
| 7 | Attributional | Cradle-to-gate | 1 m³ of water |
| 8 | Attributional | Cradle-to-field | 1 m³ of water |
| 9 | Attributional | Gate-to-use | 211 m³/day |
| 10 | Attributional | Cradle-to-gate expanded |
Total weight of chickens slaughtered in one year |
| 11 | Attributional | Cradle-to-gate expanded |
1 m³/day of treated effluent |
| 12 | Attributional | Cradle-to-cradle | 1 m³ of treated effluent |
| Study No | Software/ Method | Database |
| 1 | SimaPro 9.6.01/ReCiPe 2016 | Ecoinvent |
| 2 | ReCiPe 2016 1.03 | Ecoinvent v3 |
| 3 | Umberto LCA+ 10/ReCiPe 2008 | Ecoinvent 3.6 |
| 4 | SimaPro 9.1.1.1/ILCD 2011 | Ecoinvent 3.6 |
| 5 | OpenLCA 1.10.3/CML-IA | Ecoinvent versão 3.8 |
| 6 | OpenLCA 1.10/TRACI 2.1 | Ecoinvent 3.7 |
| 7 | SimaPro 9.0/ReCiPe 2016 | Ecoinvent 3.5 |
| 8 | OpenLCA 1.10.2./ReCiPe 2016 | Ecoinvent 3.1 |
| 9 | OpenLCA 1.11.0/ CML-IA | ELCD 3.2. and OzLCI2019 |
| 10 | GaBi - Software 10.6.1.35/ReCiPe 2016 | GaBi - databases/ Ecoinvent 3.0 |
| 11 | SimaPro 8./Impact 2002+ | Ecoinvent V3 |
| 12 | SimaPro 9.5./ReCiPe (H) v1.13 | Ecoinvent v3.9.1 |
| Evaluation level/ Study No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| Midpoint | x | x | x | x | x | x | x | x | x | x | x | x | |
| Endpoint | x | x | x | x | x | x | x |
|
Study No |
Study Objective |
Scenarios Evaluated |
Global Warming Potential | Eutrophication | Ecotoxicity | Human Toxicity |
| 1 | Assess the environmental impacts of irrigating green spaces with treated water (Viseu, Portugal) | Single Scenario | +15% | –7% | –10% | Carc: –3.5% Non-carc: –3.5% |
| 2 | LCA of irrigation for cucumber: comparing unplanned reuse, groundwater, and planned reuse (Algeria) | Groundwater | 1.30 kg CO₂-eq/ha | 0.022 kg P-eq/ha | 0.053 kg 1,4-DB-eq/ha | Carc: 0.031 kg Non-carc: 1.33 kg (1,4-DCB-eq) |
| Reclaimed water | 1.81 kg CO₂-eq/ha | 0.020 kg P-eq/ha | 0.104 kg 1,4-DB-eq/ha | Carc: 0.036 kg Non-carc: 1.58 kg (1,4-DCB-eq) |
||
| Reuse + optimal fertilization | 0.77 kg CO₂-eq/ha | 0.018 kg P-eq/ha | 0.075 kg 1,4-DB-eq/ha | Carc: 0.014 kg Non-carc: 0.58 kg (1,4-DCB-eq) |
||
| 3 | Compare tertiary disinfection alternatives in agricultural reuse LCA | UV | –7% | –32% | –35% | +19% |
| PAA | –9% | –32% | –35% | +12% | ||
| UASB + AnMBR | –28% | +68% | –35% | +55% | ||
| 4 | LCA of vineyard irrigation: compare water sources/technologies (France) | Reuse vs. River (UV) | Lower in reuse | Lower | Lower | Lower |
| Reuse vs. Surface (UF) | Higher in reuse | Equal | Higher | Higher | ||
| Chlorination | No difference | No difference | No difference | No difference | ||
| 5 | Urban reuse strategies LCA (Europe): centralized, indirect, direct potable, etc. | NPR | –12% | –100% | –50% | –24% |
| IPR | +30% | +20% | +15% | +31% | ||
| DPR | +34% | –87% | +70% | +98% | ||
| dNPR_C | +22% | –56% | +55% | +96% | ||
| dNPR_B | +33% | –40% | +60% | +115% | ||
| Hybrid scenarios | +36 to +45% | –87 to –90% | +80% | +128% | ||
| 6 | Urban irrigation reuse LCA: energy types, distribution & sources | Case 1 (Public, no add. energy) | 14.4 kg CO₂-eq | 0.0694 kg N-eq | 300 CTUe | 8.66×10⁻⁶ CTUh |
| Case 2 (truck delivery) | 140 kg CO₂-eq | 0.177 kg N-eq | 1,260 CTUe | 1.52×10⁻⁵ CTUh | ||
| Cases 3–10 (varied configs) | 23.7–136 kg CO₂-eq | 0.137–0.247 kg N-eq | 5,930–9,540 CTUe | 1.86×10⁻⁵ – 2.87×10⁻⁵ CTUh | ||
| 7 | Compare reuse vs. conventional/desalination supply | Coastal (desalination) | Impact reduction ≥67% with reuse | Reduction ≥67% | Reduction ≥67% | Reduction ≥67% |
| Arid coastal (RT1) | Reduction in all categories | Reduction | Reduction | Reduction | ||
| RT2/fossil energy | Higher impacts than conventional | Higher | Higher | Higher | ||
| 8 | LCA: reuse vs. baseline for irrigation | TWW reuse | 0.706 kg CO₂-eq/m³ | 0.367 ×10⁻⁴ kg P-eq/m³ | 0.104 ×10⁻² kg 1,4-DCB-eq/m³ | Carc: 2.26 ×10⁻⁴ Non-carc: 6.90 ×10⁻⁵ kg 1,4-DCB-eq/m³ |
| Baseline | 0.626 kg CO₂-eq/m³ | 0.230 ×10⁻⁴ kg P-eq/m³ | 0.066 ×10⁻² kg 1,4-DCB-eq/m³ | Carc: 1.89 ×10⁻⁴ Non-carc: 6.27 ×10⁻⁵ kg 1,4-DCB-eq/m³ |
||
| 9 | Reuse for municipal washing: truck vs. dedicated network | Truck | 3.37×10³ kg CO₂-eq | 3.59 kg PO₄³⁻-eq | 1.71 kg 1,4-DB-eq | 102 kg 1,4-DB-eq |
| Dedicated network (construction total) | 3.60×10⁵ kg CO₂-eq | 261 kg PO₄³⁻-eq | 19.6 kg 1,4-DB-eq | 3,270 kg 1,4-DB-eq | ||
| 10 | Industrial reuse/reduction/tertiary LCA | SBR | –0.84% vs baseline | ≈0% | ≈0% | ≈0% |
| SBR-wwtp | –1.09% | +3.47% | +10.45% | +41.98% | ||
| River | –0.85% | ≈0% | –0.07% | –0.06% | ||
| Reduce (50% less water) | –1.22% (best) | ≈0% | +0.04% | +0.09% | ||
| Irrigation | –0.89% | ≈0% | –0.05% | –0.06% | ||
| 11 | Tertiary reuse for irrigation, recharge, industry | Irrigation: DF+GAC+Chl | 0.32 mPt (climate) | 0.82 mPt (ecosystems) | 13.6 mPt (human) | 249.2 mPt (total) |
| UF+Chl | 15.0 mPt (climate) | 3.25 mPt (ecosystems) | 92.7 mPt (human) | 273.9 mPt (total) | ||
| CW+Chl | 0.32 mPt (climate) | 84.4 mPt (ecosystems) | 13.6 mPt (human) | 261.5 mPt (total) | ||
| Artificial Recharge: MBR+Chl | 9.2 mPt (climate) | 16.4 mPt (ecosystems) | 259 mPt (human) | 1,194 mPt (total) | ||
| Industrial: UF+RO+Chl | 26.4 mPt (climate) | 23.4 mPt (ecosystems) | 576 mPt (human) | 2,026 mPt (total) | ||
| 12 | LCA of paper mill reuse: biogas burn vs. energy & water reuse | UASB + flare (baseline) | 2.05 kg CO₂-eq/m³ | 9.34×10⁻⁴ kg P-eq/m³ | 4.46×10⁻³ kg 1,4-DCB-eq/m³ | 6.08×10⁻² kg 1,4-DCB-eq/m³ |
| Biogas to energy | –30% (~1.4 kg CO₂-eq/m³) | –30% (~7×10⁻⁴ kg P-eq/m³) | –30% (~3×10⁻³ kg 1,4-DCB-eq/m³) | –30% (~4×10⁻² kg 1,4-DCB-eq/m³) | ||
| Water reuse | –10 to –30% (1.4–1.85 kg CO₂-eq/m³) | –10 to –30% (6.5–8.4×10⁻⁴ kg P-eq/m³) | –10 to –30% (3.1–4×10⁻³ kg 1,4-DCB-eq/m³) | –10 to –30% (4.3–5.4×10⁻² kg 1,4-DCB-eq/m³) | ||
| IC reactor (advanced tech) | 0.10 kg CO₂-eq/m³ | nd | Nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
