Submitted:
11 August 2025
Posted:
13 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
3. Results
3.1. IVH Prevention Bundles (IVHPB)
3.2. Head Position
3.3. Indomethacin
3.4. Erythropoietin (EPO)
3.5. Insulin-like Growth Factor 1 (IGF-1)
3.6. Stem Cells
4. Conclusion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Xu, F.; Kong, X.; Duan, S.; Lv, H.; Ju, R.; Li, Z.; Zeng, S.; Wu, H.; Zhang, X.; Liu, W.; et al. Care Practices, Morbidity and Mortality of Preterm Neonates in China, 2013-2014: a Retrospective study. Sci Rep. 2019, 9, 19863. [Google Scholar] [CrossRef]
- Nagy, Z.; Obeidat, M.; Máté, V.; Nagy, R.; Szántó, E.; Veres, D.S.; Kói, T.; Hegyi, P.; Major, G.S.; Garami, M.; et al. Occurrence and Time of Onset of Intraventricular Hemorrhage in Preterm Neonates: A Systematic Review and Meta-Analysis of Individual Patient Data. JAMA Pediatr. 2025, 179, 145–154. [Google Scholar] [CrossRef]
- Siffel, C.; Kistler, K.D.; Sarda, S/P. Global incidence of intraventricular hemorrhage among extremely preterm infants: a systematic literature review. J Perinat Med. 2021, 49, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Al-Abdi, S.Y.; Al-Aamri, M.A. A Systematic Review and Meta-analysis of the Timing of Early Intraventricular Hemorrhage in Preterm Neonates: Clinical and Research Implications. J Clin Neonatol. 2014, 3, 76–88. [Google Scholar] [CrossRef]
- UptoDate. Germinal matrix and intraventricular hemorrhage (GMH-IVH) in the newborn: Risk factors, clinical features, screening, and diagnosis. Available online: https://www.uptodate.com/contents/germinal-matrix-and-intraventricular-hemorrhage-gmh-ivh-in-the-newborn-risk-factors-clinical-features-screening-and-diagnosis (accessed on 15 July 2025).
- Yeo, K.T.; Thomas, R.; Chow, S.S.; Bolisetty, S.; Haslam, R.; Tarnow-Mordi, W.; Lui, K.; Australian and New Zealand Neonatal Network. Improving incidence trends of severe intraventricular haemorrhages in preterm infants <32 weeks gestation: a cohort study. Arch Dis Child Fetal Neonatal Ed. 2020, 105, 145–150. [Google Scholar] [CrossRef]
- Handley, S.C.; Passarella, M.; Lee, H.C.; Lorch, S.A. Incidence Trends and Risk Factor Variation in Severe Intraventricular Hemorrhage across a Population Based Cohort. J Pediatr. 2018, 200, 24–29.e3. [Google Scholar] [CrossRef] [PubMed]
- Razak, A.; Johnston, E.; Stewart, A.; Clark, M.A.T.; Stevens, P.; Charlton, M.; Wong, F.; McDonald, C.; Hunt, R.W.; Miller, S; et al. Temporal Trends in Severe Brain Injury and Associated Outcomes in Very Preterm Infants. Neonatology 2024, 121, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Özek, E.; Kersin, S.G. Intraventricular hemorrhage in preterm babies. Turk Pediatri Ars. 2020, 55, 215–221. [Google Scholar] [CrossRef]
- Egesa, W.I.; Odoch, S.; Odong, R.J.; Nakalema, G.; Asiimwe, D.; Ekuk, E.; Twesigemukama, S.; Turyasiima, M.; Lokengama, R.K.; Waibi, W.M.; et al. Germinal Matrix-Intraventricular Hemorrhage: A Tale of Preterm Infants. Int J Pediatr. 2021, 6622598. [Google Scholar] [CrossRef]
- Tsao, P.C. Pathogenesis and Prevention of Intraventricular Hemorrhage in Preterm Infants. J Korean Neurosurg Soc. 2023, 66, 228–238. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Kuban, K.; Teele, R.L. Rationale for grading intracranial hemorrhage in premature infants. Pediatrics. 1984, 74, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, S.; Zhang, T.; Duan, S.; Wang, H. Neurodevelopmental outcomes in preterm or low birth weight infants with germinal matrix-intraventricular hemorrhage: a meta-analysis. Pediatr Res. 2024, 95, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, J.; Zhang, X.; Kang, W.; Li, W.; Yue, Y.; Zhang, S.; Xu, F.; Wang, X.; Zhu, C. The Impact of Different Degrees of Intraventricular Hemorrhage on Mortality and Neurological Outcomes in Very Preterm Infants: A Prospective Cohort Study. Front Neurol. 2022, 13, 853417. [Google Scholar] [CrossRef] [PubMed]
- Rees, P.; Callan, C.; Chadda, K.R.; Vaal, M.; Diviney, J.; Sabti, S.; Harnden, F.; Gardiner, J.; Battersby, C.; Gale, C.; et al. Preterm Brain Injury and Neurodevelopmental Outcomes: A Meta-analysis. Pediatrics. 2022, 150, e2022057442. [Google Scholar] [CrossRef]
- Payne, A.H.; Hintz, S.R.; Hibbs, A.M.; Walsh, M.C.; Vohr, B.R.; Bann, C.M.; Wilson-Costello, D.E.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr. 2013, 167, 451–459. [Google Scholar] [CrossRef]
- Ann Wy, P.; Rettiganti, M.; Li, J.; Yap, V.; Barrett, K.; Whiteside-Mansell, L.; Casey, P. Impact of intraventricular hemorrhage on cognitive and behavioral outcomes at 18 years of age in low birth weight preterm infants. J Perinatol. 2015, 35, 511–515. [Google Scholar] [CrossRef]
- Reubsaet, P.; Brouwer, A.J.; van Haastert, I.C.; Brouwer, M.J.; Koopman, C.; Groenendaal, F.; de Vries, L.S. The Impact of Low-Grade Germinal Matrix-Intraventricular Hemorrhage on Neurodevelopmental Outcome of Very Preterm Infants. Neonatology. 2017, 112, 203–210. [Google Scholar] [CrossRef]
- Argyropoulou, M.I.; Xydis, V.G.; Drougia, A.; Giantsouli, A.S.; Giapros, V.; Astrakas, L.G. Structural and functional brain connectivity in moderate-late preterm infants with low-grade intraventricular hemorrhage. Neuroradiology. 2022, 64, 197–204. [Google Scholar] [CrossRef]
- Argyropoulou, M.I.; Astrakas, L.G.; Xydis, V.G.; Drougia, A.; Mouka, V.; Goel, I.; Giapros, V.; Andronikou, S. Is Low-Grade Intraventricular Hemorrhage in Very Preterm Infants an Innocent Condition? Structural and Functional Evaluation of the Brain Reveals Regional Neurodevelopmental Abnormalities. AJNR Am J Neuroradiol. 2020, 41, 542–547. [Google Scholar] [CrossRef]
- Périsset, A.; Natalucci, G.; Adams, M.; Karen, T.; Bassler, D.; Hagmann, C. Impact of low-grade intraventricular hemorrhage on neurodevelopmental outcome in very preterm infants at two years of age. Early Hum Dev. 1057. [Google Scholar] [CrossRef]
- Wei, J.C.; Catalano, R.; Profit, J.; Gould, J.B.; Lee, H.C. Impact of antenatal steroids on intraventricular hemorrhage in very-low-birth weight infants. J Perinatol. 2016, 36, 352–356. [Google Scholar] [CrossRef]
- Fortmann, I.; Mertens, L.; Boeckel, H.; Grüttner, B.; Humberg, A.; Astiz, M.; Roll, C.; Rickleffs, I.; Rody, A.; Härtel, C.; et al. A Timely Administration of Antenatal Steroids Is Highly Protective Against Intraventricular Hemorrhage: An Observational Multicenter Cohort Study of Very Low Birth Weight Infants. Front Pediatr. 2022, 10, 721355. [Google Scholar] [CrossRef]
- Ayed, M.; Ahmed, J.; More, K.; Ayed, A.; Husain, H.; AlQurashi, A.; Alrajaan, N. Antenatal Magnesium Sulfate for Preterm Neuroprotection: A Single-Center Experience from Kuwait Tertiary NICU. Biomed Hub. 2022, 7, 80–87. [Google Scholar] [CrossRef]
- Bansal, V.; Desai, A. Efficacy of Antenatal Magnesium Sulfate for Neuroprotection in Extreme Prematurity: A Comparative Observational Study. J Obstet Gynaecol India. 2022, 72 (Suppl 1), Suppl–1. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Obstetric Care consensus No. 6: Periviable Birth. Obstet Gynecol. 2017, 130, e187–e199. [Google Scholar] [CrossRef]
- Odd, D.; Reeve, N.F.; Barnett, J.; Cutter, J.; Daniel, R.; Gale, C.; Siasakos, D. PRECIOUS study (PREterm Caesarean/vaginal birth and IVH/OUtcomeS): does mode of birth reduce the risk of death or brain injury in very preterm babies? A cohort and emulated target trial protocol. BMJ Open. 2024, 14, e089722. [Google Scholar] [CrossRef]
- Hemmati, F.; Sharma, D.; Namavar Jahromi, B.; Salarian, L.; Farahbakhsh, N. Delayed cord clamping for prevention of intraventricular hemorrhage in preterm neonates: a randomized control trial. J Matern Fetal Neonatal Med. 2022, 35, 3633–3639. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Ito, Y.; Mikami, R.; Matsuo, K.; Kawamura, N.; Yamoto, A.; Ito, E. Fluctuations in internal cerebral vein and central side veins of preterm infants. Pediatr Int. 2021, 63, 1319–1326. [Google Scholar] [CrossRef]
- Helwich, E.; Rutkowska, M.; Bokiniec, R.; Gulczyńska, E.; Hożejowski, R. Intraventricular hemorrhage in premature infants with Respiratory Distress Syndrome treated with surfactant: incidence and risk factors in the prospective cohort study. Dev Period Med. 2017, 21, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Kolnik, S.E.; Upadhyay, K.; Wood, T.R.; Juul, S.E.; Valentine, G.C. Reducing Severe Intraventricular Hemorrhage in Preterm Infants With Improved Care Bundle Adherence. Pediatrics. 2023, 152, e2021056104. [Google Scholar] [CrossRef] [PubMed]
- Tang, I.; Huntingford, S.; Zhou, L.; Fox, C.; Miller, T.; Krishnamurthy, M.B.; Wong, F.Y. Reducing severe intraventricular haemorrhage rates in <26-week preterm infants with bedside assessment and care bundle implementation. Acta Paediatr. 1179. [Google Scholar] [CrossRef]
- Peltola, S.D.; Akpan, U.S.; Tumin, D.; Huffman, P. Quality improvement initiative to decrease severe intraventricular hemorrhage rates in preterm infants by implementation of a care bundle. J Perinatol. 2025. [Google Scholar] [CrossRef] [PubMed]
- de Bijl-Marcus, K.; Brouwer, A.J.; De Vries, L.S.; Groenendaal, F.; Wezel-Meijler, G.V. Neonatal care bundles are associated with a reduction in the incidence of intraventricular haemorrhage in preterm infants: a multicentre cohort study. Arch Dis Child Fetal Neonatal Ed. 2020, 105, 419–424. [Google Scholar] [CrossRef]
- Wong, S.E.; Sampson, L.; Dunn, M.; Rolnitsky, A.; Ng, E. Sustained Reduction in Severe Intraventricular Hemorrhage in Micropremature Infants: A Quality Improvement Intervention. Children 2025, 12, 264. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Engel, C.; Trotter, A. Evaluating the Effect of a Neonatal Care Bundle for the Prevention of Intraventricular Hemorrhage in Preterm Infants. Children (Basel). 2021, 8, 257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Persad, N.; Kelly, E.; Amaral, N.; Neish, A.; Cheng, C.; Fan, C.S.; Runeckles, K.; Shah, V. Impact of a "Brain Protection Bundle" in Reducing Severe Intraventricular Hemorrhage in Preterm Infants <30 Weeks GA: A Retrospective Single Centre Study. Children 2021, 8, 983. [Google Scholar] [CrossRef]
- Edwards, E.M.; Ehret, D.E.Y.; Cohen, H.; Zayack, D.; Soll, R.F.; Horbar, J.D. Quality Improvement Interventions to Prevent Intraventricular Hemorrhage: A Systematic Review. Pediatrics 2024, 154, e2023064431. [Google Scholar] [CrossRef]
- de Bijl-Marcus, K.A.; Brouwer, A.J.; de Vries, L.S.; van Wezel-Meijler, G. The Effect of Head Positioning and Head Tilting on the Incidence of Intraventricular Hemorrhage in Very Preterm Infants: A Systematic Review. Neonatology 2017, 111, 267–279. [Google Scholar] [CrossRef]
- Goyen, T.A.; Jani, P.R.; Skelton, H.; Pussell, K.; Manley, B.; Tarnow-Mordi, W.; Positioning the Preterm Infant for Neuroprotection (PIN) Trial Investigator Collaborative Group. Does Midline Head Positioning Decrease Intraventricular Hemorrhage or Is It Futile? Without a Definitive Trial, We Will Never Know. World J. Pediatr. 2025, 21, 533–536. [Google Scholar] [CrossRef]
- Emery, J.R.; Peabody, J.L. Head Position Affects Intracranial Pressure in Newborn Infants. J. Pediatr. 1983, 103, 950–953. [Google Scholar] [CrossRef]
- Cowan, F.; Thoresen, M. Changes in Superior Sagittal Sinus Blood Velocities Due to Postural Alterations and Pressure on the Head of the Newborn Infant. Pediatrics 1985, 75, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.N.; Joshi, A.; Moscoso, P.; Castillo, T. The Effect of Head Position on Intracranial Pressure in the Neonate. Crit. Care Med. 1983, 11, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; van Boetzelar, M.C.; Müller, W.; Urlesberger, B. Effect of Tilting on Cerebral Hemodynamics in Preterm and Term Infants. Biol. Neonate. 2001, 80, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.M.; Rao, R.; Mathur, A.M. Head Position Change Is Not Associated with Acute Changes in Bilateral Cerebral Oxygenation in Stable Preterm Infants during the First 3 Days of Life. Am. J. Perinatol. 2015, 32, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Ancora, G.; Maranella, E.; Aceti, A.; Pierantoni, L.; Grandi, S.; Corvaglia, L.; Faldella, G. Effect of Posture on Brain Hemodynamics in Preterm Newborns Not Mechanically Ventilated. Neonatology 2010, 97, 212–217. [Google Scholar] [CrossRef]
- Pellicer, A.; Gayá, F.; Madero, R.; Quero, J.; Cabañas, F. Noninvasive Continuous Monitoring of the Effects of Head Position on Brain Hemodynamics in Ventilated Infants. Pediatrics 2002, 109, 434–440. [Google Scholar] [CrossRef]
- Spengler, D.; Loewe, E.; Krause, M.F. Supine vs. Prone Position with Turn of the Head Does Not Affect Cerebral Perfusion and Oxygenation in Stable Preterm Infants ≤32 Weeks Gestational Age. Front. Physiol. 2018, 9, 1664. [Google Scholar] [CrossRef]
- Al-Abdi, S.Y.; Nojoom, M.S.; Alshaalan, H.M.; Al-Aamri, M.A. Pilot-Randomized Study on Intraventricular Hemorrhage with Midline versus Lateral Head Positions. Saudi Med. J. 2011, 32, 420–421. [Google Scholar]
- Al-Abdi, S.; Alallah, J.; Al Omran, A.; Al Alwan, Q.; Al Hashimi, H.; Haidar, S. The Risk of Intraventricular Hemorrhage with Flat Midline versus Flat Right Lateral Head Positions: A Prematurely Terminated Multicenter Randomized Clinical Trial. In The Pediatric Academic Societies (PAS), 2015.
- Kochan, M.; Leonardi, B.; Firestine, A.; McPadden, J.; Cobb, D.; Shah, T.A.; Vazifedan, T.; Bass, W.T. Elevated Midline Head Positioning of Extremely Low Birth Weight Infants: Effects on Cardiopulmonary Function and the Incidence of Periventricular-Intraventricular Hemorrhage. J. Perinatol. 2019, 39, 54–62. [Google Scholar] [CrossRef]
- Kumar, P.; Carroll, K.F.; Prazad, P.; Raghavan, A.; Waruingi, W.; Wang, H. Elevated Supine Midline Head Position for Prevention of Intraventricular Hemorrhage in VLBW and ELBW Infants: A Retrospective Multicenter Study. J. Perinatol. 2021, 41, 278–285. [Google Scholar] [CrossRef]
- Romantsik, O.; Calevo, M.G.; Bruschettini, M. Head Midline Position for Preventing the Occurrence or Extension of Germinal Matrix-Intraventricular Haemorrhage in Preterm Infants. Cochrane Database Syst. Rev. 2020, 7, CD012362. [Google Scholar] [CrossRef]
- Yeung, C.H.T.; Sekulich, D.C.; Scott, A.; Nolte, W.M.; Gibson, K.; Su, R.; Alrifai, M.W.; Lopata, S.M.; Lewis, T.; Reese, J.; et al. The Relationship of Indomethacin Exposure with Efficacy and Renal Toxicity Outcomes for Preterm Infants in the Neonatal Intensive Care Unit. Clin. Transl. Sci. 2025, 18, e70251. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Smith, P.B.; Hornik, C.P.; Zimmerman, K.O.; Hornik, C.D.; Pradeep, S.; Clark, R.H.; Benjamin, D.K., Jr.; Laughon, M.; Greenberg, R.G. Medication Use in the Neonatal Intensive Care Unit and Changes from 2010 to 2018. J. Pediatr. 2022, 240, 66–71.e4. [Google Scholar] [CrossRef]
- Leffler, C.W.; Mirro, R.; Shibata, M.; Parfenova, H.; Armstead, W.M.; Zuckerman, S. Effects of Indomethacin on Cerebral Vasodilator Responses to Arachidonic Acid and Hypercapnia in Newborn Pigs. Pediatr. Res. 1993, 33, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Coyle, M.G.; Oh, W.; Petersson, K.H.; Stonestreet, B.S. Effects of Indomethacin on Brain Blood Flow, Cerebral Metabolism, and Sagittal Sinus Prostanoids after Hypoxia. Am. J. Physiol. 1995, 269, H1450–H1459. [Google Scholar] [CrossRef]
- McCalden, T.A.; Nath, R.G.; Thiele, K. The role of prostacyclin in the hypercapnic and hypoxic cerebrovascular dilations. Life Sci. 1984, 34, 1801–1807. [Google Scholar] [CrossRef]
- Ment, L.R.; Stewart, W.B.; Ardito, T.A.; Huang, E.; Madri, J.A. Indomethacin promotes germinal matrix microvessel maturation in the newborn beagle pup. Stroke 1992, 23, 1132–1137. [Google Scholar] [CrossRef]
- Schmidt, B.; Davis, P.; Moddemann, D.; Ohlsson, A.; Roberts, R.S.; Saigal, S.; Solimano, A.; Vincer, M.; Wright, L.L.; Trial of Indomethacin Prophylaxis in Preterms Investigators. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N. Engl. J. Med. 2001, 344, 1966–1972. [Google Scholar] [CrossRef]
- Ment, L.R.; Oh, W.; Ehrenkranz, R.A.; Philip, A.G.; Vohr, B.; Allan, W.; Duncan, C.C.; Scott, D.T.; Taylor, K.J.; Katz, K.H.; et al. Low-dose indomethacin and prevention of intraventricular hemorrhage: a multicenter randomized trial. Pediatrics 1994, 93, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Bandstra, E.S.; Montalvo, B.M.; Goldberg, R.N.; Pacheco, I.; Ferrer, P.L.; Flynn, J.; Gregorios, J.B.; Bancalari, E. Prophylactic indomethacin for prevention of intraventricular hemorrhage in premature infants. Pediatrics 1988, 82, 533–542. [Google Scholar] [CrossRef]
- Hanke, K.; Fortmann, I.; Humberg, A.; Faust, K.; Kribs, A.; Prager, S.; Felderhoff-Müser, U.; Krüger, M.; Heckmann, M.; Jäger, A.; et al. Indomethacin Prophylaxis Is Associated with Reduced Risk of Intraventricular Hemorrhage in Extremely Preterm Infants Born in the Context of Amniotic Infection Syndrome. Neonatology 2023, 120, 334–343. [Google Scholar] [CrossRef]
- Luque, M.J.; Tapia, J.L.; Villarroel, L.; Marshall, G.; Musante, G.; Carlo, W.; Kattan, J.; Neocosur Neonatal Network. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin. J. Perinatol. 2014, 34, 43–48. [Google Scholar] [CrossRef]
- Gillam-Krakauer, M.; Slaughter, J.C.; Cotton, R.B.; Robinson, B.E.; Reese, J.; Maitre, N.L. Outcomes in infants < 29 weeks of gestation following single-dose prophylactic indomethacin. J. Perinatol. 2021, 41, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Yanowitz, T.D.; Baker, R.W.; Sobchak Brozanski, B. Prophylactic indomethacin reduces grades III and IV intraventricular hemorrhages when compared to early indomethacin treatment of a patent ductus arteriosus. J Perinatol. 2003, 23, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Razak, A.; Patel, W.; Durrani, N.U.R.; Pullattayil, A.K. Interventions to Reduce Severe Brain Injury Risk in Preterm Neonates: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e237473. [Google Scholar] [CrossRef]
- Mitra, S.; Gardner, C.E.; MacLellan, A.; Disher, T.; Styranko, D.M.; Campbell-Yeo, M.; Kuhle, S.; Johnston, B.C.; Dorling, J. Prophylactic cyclo-oxygenase inhibitor drugs for the prevention of morbidity and mortality in preterm infants: a network meta-analysis. Cochrane Database Syst. Rev. 2022, 4, CD013846. [Google Scholar] [CrossRef]
- Nelin, T.D.; Pena, E.; Giacomazzi, T.; Lee, S.; Logan, J.W.; Moallem, M.; Bapat, R.; Shepherd, E.G.; Nelin, L.D. Outcomes following indomethacin prophylaxis in extremely preterm infants in an all-referral NICU. J Perinatol. 2017, 37, 932–937. [Google Scholar] [CrossRef]
- Clyman, R.I.; Hills, N.K. Effects of prophylactic indomethacin on morbidity and mortality in infants <25 weeks' gestation: a protocol driven intention to treat analysis. J. Perinatol. 2022, 42, 1662–1668. [Google Scholar] [CrossRef]
- Szakmar, E.; Harrison, S.; Elshibiny, H.; Munster, C.; El-Dib, M. Effect of implementing a clinical practice guideline for prophylactic indomethacin on reduction of severe IVH in extremely preterm infants. J. Neonatal Perinatal Med. Ahead of print. 2025. [Google Scholar] [CrossRef]
- Al-Matary, A.; Abu Shaheen, A.; Abozaid, S. Use of Prophylactic Indomethacin in Preterm Infants: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 760029. [Google Scholar] [CrossRef]
- Singh, R.; Gorstein, S.V.; Bednarek, F.; Chou, J.H.; McGowan, E.C.; Visintainer, P.F. A predictive model for SIVH risk in preterm infants and targeted indomethacin therapy for prevention. Sci. Rep. 2013, 3, 2539. [Google Scholar] [CrossRef] [PubMed]
- Lea, C.L.; Smith-Collins, A.; Luyt, K. Protecting the premature brain: current evidence-based strategies for minimising perinatal brain injury in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 2017, 102, F176–F182. [Google Scholar] [CrossRef]
- Chawla, S.; Natarajan, G.; Laptook, A.R.; Chowdhury, D.; Bell, E.F.; Ambalavanan, N.; Carlo, W.A.; Gantz, M.; Das, A.; Tapia, J.L.; et al. Model for severe intracranial hemorrhage and role of early indomethacin in extreme preterm infants. Pediatr. Res. 2022, 92, 1648–1656. [Google Scholar] [CrossRef]
- Foglia, E.E.; Roberts, R.S.; Stoller, J.Z.; Davis, P.G.; Haslam, R.; Schmidt, B.; Trial of Indomethacin Prophylaxis in Preterms Investigators. Effect of Prophylactic Indomethacin in Extremely Low Birth Weight Infants Based on the Predicted Risk of Severe Intraventricular Hemorrhage. Neonatology 2018, 113, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Zayek, M.; Maertens, P.; Eyal, F. A single-dose indomethacin prophylaxis for reducing perinatal brain injury in extremely low birth weight infants: a non-inferiority analysis. J. Perinatol. 2019, 39, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Oh, W.; Laptook, A.; Vohr, B.; Tucker, R.; Stonestreet, B.S. Indomethacin prophylaxis to prevent intraventricular hemorrhage: association between incidence and timing of drug administration. J. Pediatr. 2013, 163, 706–710.e1. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Laptook, A.R.; Oh, W.; Vohr, B.R.; Stoll, B.J.; Kandefer, S.; Stonestreet, B.S.; Generic Database Subcommittee of the NICHD Neonatal Research Network. Effects of indomethacin prophylaxis timing on intraventricular haemorrhage and patent ductus arteriosus in extremely low birth weight infants. Arch. Dis. Child Fetal Neonatal Ed. 2016, 101, F418–F422. [Google Scholar] [CrossRef]
- Ment, L.R.; Vohr, B.; Allan, W.; Westerveld, M.; Sparrow, S.S.; Schneider, K.C.; Katz, K.H.; Duncan, C.C.; Makuch, R.W. Outcome of children in the indomethacin intraventricular hemorrhage prevention trial. Pediatrics 2000, 105, 485–491. [Google Scholar] [CrossRef]
- Ment, L.R.; Vohr, B.; Oh, W.; Scott, D.T.; Allan, W.C.; Westerveld, M.; Duncan, C.C.; Ehrenkranz, R.A.; Katz, K.H.; Schneider, K.C.; et al. Neurodevelopmental outcome at 36 months' corrected age of preterm infants in the Multicenter Indomethacin Intraventricular Hemorrhage Prevention Trial. Pediatrics 1996, 98, 714–718. [Google Scholar] [CrossRef]
- Sangem, M.; Asthana, S.; Amin, S. Multiple courses of indomethacin and neonatal outcomes in premature infants. Pediatr Cardiol. 2008, 29, 878–884. [Google Scholar] [CrossRef]
- Stavel, M.; Wong, J.; Cieslak, Z.; Sherlock, R.; Claveau, M.; Shah, P.S. Effect of prophylactic indomethacin administration and early feeding on spontaneous intestinal perforation in extremely low-birth-weight infants. J. Perinatol. 2017, 37, 188–193. [Google Scholar] [CrossRef]
- Wood, T.R.; Juul, S.E. Taking Stock After Another Negative Erythropoietin Neuroprotection Trial. JAMA Netw. Open 2022, 5, e2247054. [Google Scholar] [CrossRef]
- Rangarajan, V.; Juul, S.E. Erythropoietin: Emerging Role of Erythropoietin in Neonatal Neuroprotection. Pediatr. Neurol. 2014, 51, 481–488. [Google Scholar] [CrossRef]
- Kimáková, P.; Solár, P.; Solárová, Z.; Komel, R.; Debeljak, N. Erythropoietin and Its Angiogenic Activity. Int. J. Mol. Sci. 2017, 18, 1519. [Google Scholar] [CrossRef]
- Juul, S.E.; Pet, G.C. Erythropoietin and Neonatal Neuroprotection. Clin. Perinatol. 2015, 42, 469–481. [Google Scholar] [CrossRef]
- Arias Fernández, D.A.; Romero Diaz, H.A.; Figueroa Garnica, A.D.; Iturri-Soliz, P.; Arias-Reyes, C.; Schneider Gasser, E.M.; Soliz, J. Low and Sustained Doses of Erythropoietin Prevent Preterm Infants from Intraventricular Hemorrhage. Respir. Physiol. Neurobiol. 2025, 331, 104363. [Google Scholar] [CrossRef] [PubMed]
- Juul, S.E.; McPherson, R.J.; Farrell, F.X.; Jolliffe, L.; Ness, D.J.; Gleason, C.A. Erytropoietin Concentrations in Cerebrospinal Fluid of Nonhuman Primates and Fetal Sheep Following High-Dose Recombinant Erythropoietin. Biol. Neonate 2004, 85, 138–144. [Google Scholar] [CrossRef]
- Demers, E.J.; McPherson, R.J.; Juul, S.E. Erythropoietin Protects Dopaminergic Neurons and Improves Neurobehavioral Outcomes in Juvenile Rats after Neonatal Hypoxia-Ischemia. Pediatr. Res. 2005, 58, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Kellert, B.A.; McPherson, R.J.; Juul, S.E. A Comparison of High-Dose Recombinant Erythropoietin Treatment Regimens in Brain-Injured Neonatal Rats. Pediatr. Res. 2007, 61, 451–455. [Google Scholar] [CrossRef]
- Juul, S.E.; Comstock, B.A.; Wadhawan, R.; Mayock, D.E.; Courtney, S.E.; Robinson, T.; Ahmad, K.A.; Bendel-Stenzel, E.; Baserga, M.; LaGamma, E.F.; et al. ; A Randomized Trial of Erythropoietin for Neuroprotection in Preterm Infants. N Engl J Med. 2020, 382, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Fauchère, J.C.; Koller, B.M.; Tschopp, A.; Dame, C.; Ruegger, C.; Bucher, H.U. ; Swiss Erythropoietin Neuroprotection Trial Group. Safety of Early High-Dose Recombinant Erythropoietin for Neuroprotection in Very Preterm Infants. J Pediatr 2015, 167, 52–57.e3. [Google Scholar] [CrossRef]
- Wellmann, S.; Hagmann, C.F.; von Felten, S.; Held, L.; Klebermass-Schrehof, K.; Truttmann, A.C.; Knöpfli, C.; Fauchère, J.C.; Bührer, C.; Bucher, H.U.; et al. ; Safety and Short-term Outcomes of High-Dose Erythropoietin in Preterm Infants With Intraventricular Hemorrhage: The EpoRepair Randomized Clinical Trial. JAMA Netw Open. 2022, 5, e2244744. [Google Scholar] [CrossRef]
- Ohls, R.K.; Kamath-Rayne, B.D.; Christensen, R.D.; Wiedmeier, S.E.; Rosenberg, A.; Fuller, J.; Lacy, C.B.; Roohi, M.; Lambert, D.K.; Burnett, J.J.; et al. Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. Pediatrics. 2014, 133, 1023–1030. [Google Scholar] [CrossRef]
- Brown, M.S.; Eichorst, D.; Lala-Black, B.; Gonzalez, R. Higher cumulative doses of erythropoietin and developmental outcomes in preterm infants. Pediatrics. 2009, 124, e681–e687. [Google Scholar] [CrossRef]
- Song, J.; Sun, H.; Xu, F.; Kang, W.; Gao, L.; Guo, J.; Zhang, Y.; Xia, L.; Wang, X.; Zhu, C. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann Neurol. 2016, 80, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Song, J.; Kang, W.; Wang, Y.; Sun, X.; Zhou, C.; Xiong, H.; Xu, F.; Li, M.; Zhang, X.; et al. Effect of early prophylactic low-dose recombinant human erythropoietin on retinopathy of prematurity in very preterm infants. J Transl Med. 2020, 18, 397. [Google Scholar] [CrossRef] [PubMed]
- Peltoniemi, O.M.; Anttila, E.; Kaukola, T.; Buonocore, G.; Hallman, M. Randomized trial of early erythropoietin supplementation after preterm birth: Iron metabolism and outcome. Early Hum Dev. 2017, 109, 44–49. [Google Scholar] [CrossRef]
- Ohlsson, A.; Aher, S.M. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2020, 2, CD004863. [Google Scholar] [CrossRef]
- Hellstrom, A.; Ley, D.; Hallberg, B.; Lofqvist, C.; Hansen-Pupp, I.; Ramenghi, L.A.; Borg, J.; Smith, L.E.H.; Hard, A.L. IGF-1 as a Drug for Preterm Infants: A Step-Wise Clinical Development. Curr Pharm Des. 2017, 23, 5964–5970. [Google Scholar] [CrossRef] [PubMed]
- Hellström, A.; Ley, D.; Hansen-Pupp, I.; Hallberg, B.; Löfqvist, C.; van Marter, L.; van Weissenbruch, M.; Ramenghi, L.A.; Beardsall, K.; Dunger, D.; et al. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatr. 2016, 105, 576–586. [Google Scholar] [CrossRef]
- Ye, P.; D'Ercole, A.J. Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system. J. Neurosci. Res. 2006, 83, 1–6. [Google Scholar] [CrossRef]
- Jacobo, S.M.; Kazlauskas, A. Insulin-like growth factor 1 (IGF-1) stabilizes nascent blood vessels. J. Biol. Chem. 2015, 290, 6349–6360. [Google Scholar] [CrossRef] [PubMed]
- Gram, M.; Ekström, C.; Holmqvist, B.; Carey, G.; Wang, X.; Vallius, S.; Hellström, W.; Ortenlöf, N.; Agyemang, A.A.; Smith, L.E.H.; et al. Insulin-Like Growth Factor 1 in the Preterm Rabbit Pup: Characterization of Cerebrovascular Maturation following Administration of Recombinant Human Insulin-Like Growth Factor 1/Insulin-Like Growth Factor 1-Binding Protein 3. Dev. Neurosci. 2021, 43, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Löfqvist, C.; Niklasson, A.; Engström, E.; Friberg, L.E.; Camacho-Hübner, C.; Ley, D.; Borg, J.; Smith, L.E.; Hellström, A. A pharmacokinetic and dosing study of intravenous insulin-like growth factor-I and IGF-binding protein-3 complex to preterm infants. Pediatr. Res. 2009, 65, 574–579. [Google Scholar] [CrossRef]
- Gluckman, P.D. Clinical review 68: The endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. J. Clin. Endocrinol. Metab. 1995, 80, 1047–1050. [Google Scholar] [CrossRef]
- Hansen-Pupp, I.; Hellström-Westas, L.; Cilio, C.M.; Andersson, S.; Fellman, V.; Ley, D. Inflammation at birth and the insulin-like growth factor system in very preterm infants. Acta Paediatr. 2007, 96, 830–836. [Google Scholar] [CrossRef]
- Lineham, J.D.; Smith, R.M.; Dahlenburg, G.W.; King, R.A.; Haslam, R.R.; Stuart, M.C.; Faull, L. Circulating insulin-like growth factor I levels in newborn premature and full-term infants followed longitudinally. Early Hum. Dev. 1986, 13, 37–46. [Google Scholar] [CrossRef]
- Christiansen, L.I.; Ventura, G.C.; Holmqvist, B.; Aasmul-Olsen, K.; Lindholm, S.E.H.; Lycas, M.D.; Mori, Y.; Secher, J.B.; Burrin, D.G.; Thymann, T.; et al. Insulin-like growth factor 1 supplementation supports motor coordination and affects myelination in preterm pigs. Front. Neurosci. 2023, 17, 1205819. [Google Scholar] [CrossRef]
- Ley, D.; Hallberg, B.; Hansen-Pupp, I.; Dani, C.; Ramenghi, L.A.; Marlow, N.; Beardsall, K.; Bhatti, F.; Dunger, D.; Higginson, J.D.; et al. rhIGF-1/rhIGFBP-3 in Preterm Infants: A Phase 2 Randomized Controlled Trial. J. Pediatr. 2019, 206, 56–65.e8. [Google Scholar] [CrossRef] [PubMed]
- Ley, D.; Hansen-Pupp, I.; Niklasson, A.; Domellöf, M.; Friberg, L.E.; Borg, J.; Löfqvist, C.; Hellgren, G.; Smith, L.E.; Hård, A.L.; et al. Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety. Pediatr. Res. 2013, 73, 68–74. [Google Scholar] [CrossRef]
- Hansen-Pupp, I.; Hellström, A.; Hamdani, M.; Tocoian, A.; Kreher, N.C.; Ley, D.; Hallberg, B. Continuous longitudinal infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants: Evaluation of feasibility in a phase II study. Growth Horm. IGF Res. 2017, 36, 44–51. [Google Scholar] [CrossRef]
- Hansen-Pupp, I.; Engström, E.; Niklasson, A.; Berg, A.C.; Fellman, V.; Löfqvist, C.; Hellström, A.; Ley, D. Fresh-frozen plasma as a source of exogenous insulin-like growth factor-I in the extremely preterm infant. J. Clin. Endocrinol. Metab. 2009, 94, 477–482. [Google Scholar] [CrossRef]
- Chung, J.K.; Hallberg, B.; Hansen-Pupp, I.; Graham, M.A.; Fetterly, G.; Sharma, J.; Tocoian, A.; Kreher, N.C.; Barton, N.; Hellström, A.; et al. Development and verification of a pharmacokinetic model to optimize physiologic replacement of rhIGF-1/rhIGFBP-3 in preterm infants. Pediatr. Res. 2017, 81, 504–510. [Google Scholar] [CrossRef]
- Piecewicz, S.M.; Pandey, A.; Roy, B.; Xiang, S.H.; Zetter, B.R.; Sengupta, S. Insulin-like growth factors promote vasculogenesis in embryonic stem cells. PLoS One 2012, 7, e32191. [Google Scholar] [CrossRef]
- Horsch, S.; Parodi, A.; Hallberg, B.; Malova, M.; Björkman-Burtscher, I.M.; Hansen-Pupp, I.; Marlow, N.; Beardsall, K.; Dunger, D.; van Weissenbruch, M.; et al. Randomized Control Trial of Postnatal rhIGF-1/rhIGFBP-3 Replacement in Preterm Infants: Post-hoc Analysis of Its Effect on Brain Injury. Front. Pediatr. 2020, 8, 517207. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.E.; Ha, C.W.; Jung, M.; Jin, H.J.; Lee, M.; Song, H.; Choi, S.; Oh, W.; Yang, Y.S. Mesenchymal stem/progenitor cells developed in cultures from UC blood. Cytotherapy 2004, 6, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Batsali, A.K.; Kastrinaki, M.C.; Papadaki, H.A.; Pontikoglou, C. Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: biological properties and emerging clinical applications. Curr. Stem Cell Res. Ther. 2013, 8, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y.; Chang, Y.S.; Sung, S.I.; Park, W.S. Mesenchymal Stem Cells for Severe Intraventricular Hemorrhage in Preterm Infants: Phase I Dose-Escalation Clinical Trial. Stem Cells Transl. Med. 2018, 7, 847–856. [Google Scholar] [CrossRef]
- Zhou, L.; McDonald, C.A.; Yawno, T.; Razak, A.; Connelly, K.; Novak, I.; Miller, S.L.; Jenkin, G.; Malhotra, A. Feasibility and safety of autologous cord blood derived cell administration in extremely preterm infants: a single-centre, open-label, single-arm, phase I trial (CORD-SaFe study). EBioMedicine 2025, 111, 105492. [Google Scholar] [CrossRef]
- Zhou, L.; McDonald, C.; Yawno, T.; Jenkin, G.; Miller, S.; Malhotra, A. Umbilical Cord Blood and Cord Tissue-Derived Cell Therapies for Neonatal Morbidities: Current Status and Future Challenges. Stem Cells Transl. Med. 2022, 11, 135–145. [Google Scholar] [CrossRef]
- Nguyen, T.; Purcell, E.; Smith, M.J.; Penny, T.R.; Paton, M.C.B.; Zhou, L.; Jenkin, G.; Miller, S.L.; McDonald, C.A.; Malhotra, A. Umbilical Cord Blood-Derived Cell Therapy for Perinatal Brain Injury: A Systematic Review & Meta-Analysis of Preclinical Studies. Int. J. Mol. Sci. 2023, 24, 4351. [Google Scholar] [CrossRef]
- Vaes, J.E.G.; Kosmeijer, C.M.; Kaal, M.; van Vliet, R.; Brandt, M.J.V.; Benders, M.J.N.L.; Nijboer, C.H. Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity. Int. J. Mol. Sci. 2020, 22, 211. [Google Scholar] [CrossRef]
- Vaes, J.E.G.; van Kammen, C.M.; Trayford, C.; van der Toorn, A.; Ruhwedel, T.; Benders, M.J.N.L.; Dijkhuizen, R.M.; Möbius, W.; van Rijt, S.H.; Nijboer, C.H. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia 2021, 69, 655–680. [Google Scholar] [CrossRef] [PubMed]
- Romantsik, O.; Moreira, A.; Thébaud, B.; Ådén, U.; Ley, D.; Bruschettini, M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst. Rev. 2023, 2, CD013201. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, M.; Litwinska, Z.; Klos, P.; Pius-Sadowska, E.; Zagrodnik-Ulan, E.; Ustianowski, P.; Rudnicki, J.; Machalinski, B. Autologous cord blood transfusion in preterm infants—could its humoral effect be the key to control prematurity-related complications? A preliminary study. J. Physiol. Pharmacol. 2017, 68, 921–927. [Google Scholar] [PubMed]
- Ren, Z.; Xu, F.; Zhang, X.; Zhang, C.; Miao, J.; Xia, X.; Kang, M.; Wei, W.; Ma, T.; Zhang, Q.; et al. Autologous cord blood cell infusion in preterm neonates safely reduces respiratory support duration and potentially preterm complications. Stem Cells Transl. Med. 2020, 9, 169–176. [Google Scholar] [CrossRef]
| Author | Type of study | Population | Dosage | IVH (IP vs. control) | sIVH (IP vs. control) | Main Conclusions |
| Ment, 1994 [62] | RCT | 431 neonates, BW 600-1250g (209 IP-222 placebo) |
0.1 mg/kg at 6-12 hours, followed by 0.1 mg/kg/day for 2 days | 14% vs. 18%, p=0.03) | 0.5% vs. 4.5%, p=0.01 (grade IV IVH) |
IP was associated with reduced rate of IVH and particularly grade IV IVH |
| Smidt, 2001 [61] | RCT | 1202 neonates, BW 500-999g (601 IP-601 placebo) |
0.1 mg/kg/day for 3 days | ND | 9% vs. 13%, p=0.02 | IP reduced the rate of sIVH and PDA IP did not improve survival without neurosensory impairment at 18 months |
| Yanowitz, 2003 [67] | Retrospective cohort | 160 neonates, GA < 29 weeks ,BW < 1350g (102 IP-158 (evaluated for PDA at 26 hours) of who 117 received indomethacin) |
0.1mg/kg/day at <24h hours for 3 days (IP) 0.2 mg/kg at 36h flowed by 2 doses, every 12 hours 0.1-0.2mg/kg (PDA) |
ND | 6% vs. 14%, p=0.041 | Reduced incidence of sIVH with IP compared to early echocardiographic strategy |
| Nelin, 2017 [70] | Retrospective cohort | 671 outborn neonates, GA <28 weeks (530 IP-141 controls) |
ND | 55% vs. 53%, p=0.63 | 21% vs. 23%, p=0.64 | IP was not associated with lower IVH rates IP was associated with improved survival rates |
| Gillam-Krakauer, 2021 [66] | Retrospective cohort | 384 neonates, GA< 29 weeks (299 IP-85 control) |
0.2 mg/kg at 12 hours (single dose) |
38% vs. 45% | 12% vs. 14% | Decreased IVH rates with IP, in the gestation-adjusted but not in the propensity-adjusted model IP was associated with decreased mortality No increased risk of acute kidney injury |
| Clyman, 2022 [71] | Intention-to-treat, Cohort-controlled | 106 neonates, GA<25 weeks (68 IP-38 controls) |
0.2 mg/kg at <24 hours, followed by 2-4 doses 0.1 mg/kg |
ND | 27% vs. 35% | IP was not associated with a significant reduction in IVH or other prematurity-related morbidities IP was associated with a lower risk of PDA associated morbidities |
| Hanke, 2023 [64] | Observational multicenter cohort | 1767 neonates, GA<26 weeks with amniotic infection syndrome (195 IP-1572 controls) |
0.1 mg/kg/day for up to 3 days | 32.7% vs. 36.9%, p=0.04 | 9.7% vs. 16%, p=0.02 | Singificant reduced IVH rates in preterm neonates with amniotic infection syndrome |
| Author | Study | Population | Dosage | IVH (EPO vs. control) | sIVH (EPO vs. control) | Main conclusions |
| Ohls, 2014 [96] | RCT | 99 neonates, BW 500-1250g (33 rhEPO-33 darbepoetin-33 placebo) |
400 U/kg rhEPO sc three times per week until 35 weeks PMA | ND | 9.4% vs. 23% | There was no statistically significant difference in the rate of sIVH and other prematurity complications between groups. EPO and darbepoetin administration were associated with fewer transfusions and exposure to fewer donors. |
| Fauchere, 2015 [94] | RCT | 443 neonates, GA 26-32 weeks (229 rhEPO- 214 placebo) |
3000 U/kg iv rhEPO at the age of <3 hours, 12-18 hours and 36-42 hours | 21.1% vs. 18.8% | ND | Early high-dose of rhEPO was not associated with adverse effects, and no significant differences in prematurity complications were observed. |
| Song, 2016 [98] | RCT | 743 neonates, GA < 32 weeks (336 rhEPO-377 placebo) | 500 U/kg iv rhEPO, initial dose <72 h postnatally, every other day for 2 weeks | ND | 6.6% vs. 15.9% (p<0.001) | Repeated low doses of rhEPO significantly reduced the incidence of sIVH and the neurodevelopmental disability at 18 months. |
| Peltoniemi, 2017 [100] | RCT | 39 neonates, BW 700-1500g, GA < 30 weeks (21 rhEPO-18 placebo) |
250 U/kg/day iv rhEPO during the first 6 postanatal days | 14% vs. 17% (p=1.000) | 10% vs. 0% (p=0.490) |
Early postnatal administration of rhEPO without iron supplementation reduced the iron load. No benefit on IVH incidence or neurodevelopmental outcome at 2 years. No significant difference in the rate of prematurity complications (IVH, ROP, NEC) |
| Juul, 2020 [93] | RCT | 941 neonates, GA 24-28 weeks (376 rhEPO-365 placebo), |
1000 U/kg iv every 48 hours for 6 doses, followed by 400 U/kg sc three times per week until 32 weeks PMA | 35% vs. 39% | 12% vs. 14% | No benefit of high doses of rhEPO on neurodevelopmental outcome at 2 years No significant difference in the rate of prematurity complications (IVH, ROP, NEC) |
| Sun, 2020 [99] | RCTs reanalysis | 1898 neonates, GA 24-32 weeks | 500 U/kg iv rhEPO, initial dose <72 h postnatally, every other day for 2 weeks | ND | 3.9% vs. 7.6% (p=0.001) |
Repeated low doses of rhEPO had no significant impact on the incidence of ROP Significantly lower rates of IVH,NEC and mortality in the rhEPO group |
| Fernandez, 2025 [89] | Pilot study | 40 neonates, GA < 32 weeks (33 rhEPO, 7 placebo) |
400 U/kg iv three times per week until 32 weeks PMA | CA 3 days: 6.5% vs. 71.4% CA 10 days: 6% vs. 28.6% |
ND | Low and sustained doses of EPO significantly reduced the rate of IVH. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
