Submitted:
07 August 2025
Posted:
08 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
3. Results
3.1. Novel Treatment Options for TRD
3.1.1. Promising Experimental Drugs for TRD
3.1.2. Botulinum Neurotoxin
3.2. Neurobiological Mechanism of Action of BoNT-A
3.3. Why Botulinum Toxin May Be Effective in Depression
3.4. Botulin Toxin in the Treatment of MDD: Clinical Evidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erchinger, V.J.; Ersland, L.; Aukland, S.M.; Abbott, C.C.; Oltedal, L. Magnetic resonance spectroscopy in depressed subjects treated with electroconvulsive therapy—A systematic review of literature. Front. Psychiatry 2021, 12. [Google Scholar] [CrossRef]
- Monroe, S.M.; Harkness, K.L. Major depression and its recurrences: Life course matters. Annu. Rev. Clin. Psychol. 2022, 18, 329–357. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nature reviews Disease primers 2016, 2, 1–20. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Z.; Chen, D.; Peng, Y.; Lu, Z. Prevalence and associated factors of depression and anxiety symptoms among college students: A systematic review and meta-analysis. J Child Psychol Psychiatry 2022, 63, 1222–1230. [Google Scholar] [CrossRef]
- Ohayon, M.M.; Schatzberg, A.F. Using chronic pain to predict depressive morbidity in the general population. Archives of general psychiatry 2003, 60, 39–47. [Google Scholar] [CrossRef]
- Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The role of neural plasticity in depression: From hippocampus to prefrontal cortex. Neural Plast 2017, 2017, 6871089. [Google Scholar] [CrossRef]
- Wohleb, E.S.; Franklin, T.; Iwata, M.; Duman, R.S. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016, 17, 497–511. [Google Scholar] [CrossRef]
- Dean, J.; Keshavan, M. The neurobiology of depression: An Integrated View. Asian J Psychiatr 2017, 27, 101–111. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, D.; Li, Y.; Gu, S.; Dong, J.; Ma, X.; Xu, S.; Wang, F.; Huang, J.H. Monoamine neurotransmitters control basic emotions and affect major depressive disorders. Pharmaceuticals 2022, 15, 1203. [Google Scholar] [CrossRef]
- Shao, X.; Zhu, G. Associations among monoamine neurotransmitter pathways, personality traits, and major depressive disorder. Frontiers in psychiatry 2020, 11, 381. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Wang, Y.; Zeng, B.; Zhu, B.; Dai, F. Association between depression and oxidative balance score: National Health and Nutrition Examination Survey (NHANES) 2005–2018. Journal of affective disorders 2023, 337, 57–65. [Google Scholar] [CrossRef]
- Karabin, T.; Biala, G.; Kruk-Slomka, M. The monoamine theory of depression as a target to effective pharmacotherapy. Current Issues in Pharmacy and Medical Sciences 2023, 36, 108–113. [Google Scholar] [CrossRef]
- Schmaal, L.; Veltman, D.J.; van Erp, T.G.M.; Sämann, P.G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W.J.; et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Mol Psychiatry 2016, 21, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Schmaal, L.; Pozzi, E.; C. Ho, T.; Van Velzen, L.S.; Veer, I.M.; Opel, N.; Van Someren, E.J.; Han, L.K.; Aftanas, L.; Aleman, A. ENIGMA MDD: Seven years of global neuroimaging studies of major depression through worldwide data sharing. Translational psychiatry 2020, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Van Velzen, L.S.; Kelly, S.; Isaev, D.; Aleman, A.; Aftanas, L.I.; Bauer, J.; Baune, B.T.; Brak, I.V.; Carballedo, A.; Connolly, C.G. White matter disturbances in major depressive disorder: A coordinated analysis across 20 International cohorts in the ENIGMA MDD working group. Molecular psychiatry 2020, 25, 1511–1525. [Google Scholar] [CrossRef] [PubMed]
- Strawbridge, R.; Young, A.H.; Cleare, A.J. Biomarkers for depression: Recent insights, current challenges and future prospects. Neuropsychiatric Disease and Treatment 2017, 13, 1245–1262. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhao, K.; Wei, X.; Carlisle, N.B.; Keller, C.J.; Oathes, D.J.; Fonzo, G.A.; Zhang, Y. Deep graph learning of multimodal brain networks defines treatment-predictive signatures in major depression. Molecular Psychiatry 2025, 1–12. [Google Scholar] [CrossRef]
- Castrén, E.; Monteggia, L.M. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biological psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef]
- Wiesinger, T.; Kremer, S.; Bschor, T.; Baethge, C. Antidepressants and quality of life in patients with major depressive disorder – systematic review and meta-analysis of double-blind, placebo-controlled RCTs. Acta Psychiatr Scand 2023, 147, 545–560. [Google Scholar] [CrossRef]
- Saelens, J.; Gramser, A.; Watzal, V.; Zarate Jr, C.A.; Lanzenberger, R.; Kraus, C. Relative effectiveness of antidepressant treatments in treatment-resistant depression: A systematic review and network meta-analysis of randomized controlled trials. Neuropsychopharmacology 2025, 50, 913–919. [Google Scholar] [CrossRef]
- American Psychiatric Association practice guideline for the treatment of patients with Major Depressive Disorder. Am J Psychiatry 2010, 167, 1.
- National Institute for Health and Care Excellence (NICE) Depression in Adults: Treatment and Management; National Institute for Health and Care Excellence (NICE), 2022.
- Marazziti, D. Psicofarmacoterapia clinica - Capitolo 3. Depressione Resistente; VII edizione.; Giovanni Fioriti Editore, 2025.
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D Report. Am J Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Gaynes, B.N.; Lux, L.; Gartlehner, G.; Asher, G.; Forman-Hoffman, V.; Green, J.; Boland, E.; Weber, R.P.; Randolph, C.; Bann, C.; et al. Defining treatment-resistant depression. Depression and Anxiety 2020, 37, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Byrow, Y. Is treatment-resistant depression a useful concept? BMJ Ment Health 2016, 19, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Zhdanava, M.; Pilon, D.; Ghelerter, I.; Chow, W.; Joshi, K.; Lefebvre, P.; Sheehan, J.J. The prevalence and national burden of treatment-resistant depression and major depressive disorder in the United States. The Journal of clinical psychiatry 2021, 82, 29169. [Google Scholar] [CrossRef]
- Fava, M.; Freeman, M.P.; Flynn, M.; Judge, H.; Hoeppner, B.B.; Cusin, C.; Ionescu, D.F.; Mathew, S.J.; Chang, L.C.; Iosifescu, D.V. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Molecular psychiatry 2020, 25, 1592–1603. [Google Scholar] [CrossRef]
- Souery, D.; Papakostas, G.I.; Trivedi, M.H. Treatment-resistant depression. Journal of Clinical Psychiatry 2006, 67, 16. [Google Scholar]
- Wijeratne, C.; Sachdev, P. Treatment-resistant depression: Critique of current approaches. Aust N Z J Psychiatry 2008, 42, 751–762. [Google Scholar] [CrossRef]
- Frevert, J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R D 2015, 15, 1–9. [Google Scholar] [CrossRef]
- Frevert, J.; Dressler, D. Clinical relevance of immunoresistance to botulinum. Botulinum toxin therapy manual for dystonia and spasticity 2016, 33. [Google Scholar]
- Albrecht, P.; Jansen, A.; Lee, J.-I.; Moll, M.; Ringelstein, M.; Rosenthal, D.; Bigalke, H.; Aktas, O.; Hartung, H.-P.; Hefter, H. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology 2019, 92. [Google Scholar] [CrossRef] [PubMed]
- Dessy, L.A.; Fallico, N.; Mazzocchi, M.; Scuderi, N. Botulinum toxin for glabellar lines: A review of the efficacy and safety of currently available products. American Journal of Clinical Dermatology 2011, 1. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 2005, 26, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R.; Guyer, B. Botulinum toxin type A and other botulinum toxin serotypes: A comparative review of biochemical and pharmacological actions. Euro J of Neurology 2001, 8, 21–29. [Google Scholar] [CrossRef]
- Blasi, J.; Chapman, E.R.; Yamasaki, S.; Binz, T.; Niemann, H.; Jahn, R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. The EMBO Journal 1993, 12, 4821–4828. [Google Scholar] [CrossRef]
- Sikorra, S.; Henke, T.; Galli, T.; Binz, T. Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins. Journal of Biological Chemistry 2008, 283, 21145–21152. [Google Scholar] [CrossRef]
- Carr, W.W.; Jain, N.; Sublett, J.W. Immunogenicity of botulinum toxin formulations: Potential therapeutic implications. Adv Ther 2021, 38, 5046–5064. [Google Scholar] [CrossRef]
- Dessy, L.A.; Fallico, N.; Mazzocchi, M.; Scuderi, N. Botulinum toxin for glabellar lines. Am J Clin Dermatol 2011, 12, 377–388. [Google Scholar] [CrossRef]
- Ayoub, N. Botulinum toxin therapy: A comprehensive review on clinical and pharmacological insights. Journal of Clinical Medicine 2025, 14, 2021. [Google Scholar] [CrossRef]
- Mazzocchio, R.; Caleo, M. More than at the neuromuscular synapse: Actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 2015, 21, 44–61. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacological Reviews 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Caleo, M.; Restani, L. Direct central nervous system effects of botulinum neurotoxin. Toxicon 2018, 147, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.; Neumann, I.; Magid, M.; Finzi, E.; Sinke, C.; Wollmer, M.A.; Krüger, T.H.C. Botulinum toxin for the management of depression: An updated review of the evidence and meta-analysis. Journal of Psychiatric Research 2021, 135, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Shao, F.; Lenahan, C.; Shao, A.; Li, Y. Efficacy and safety of botulinum toxin vs. placebo in depression: A systematic review and meta-analysis of randomized controlled trials. Front. Psychiatry 2020, 11. [Google Scholar] [CrossRef]
- Crowley, J.S.; Silverstein, M.L.; Reghunathan, M.; Gosman, A.A. Glabellar botulinum toxin injection improves depression scores: A systematic review and meta-analysis. Plastic and Reconstructive Surgery 2022, 150, 211e. [Google Scholar] [CrossRef] [PubMed]
- Arnone, D.; Galadari, H.; Rodgers, C.J.; Östlundh, L.; Aziz, K.A.; Stip, E.; Young, A.H. Efficacy of onabotulinumtoxinA in the treatment of unipolar major depression: Systematic review, meta-analysis and meta-regression analyses of double-blind randomised controlled trials. J Psychopharmacol 2021, 35, 910–918. [Google Scholar] [CrossRef]
- Caleo, M.; Spinelli, M.; Colosimo, F.; Matak, I.; Rossetto, O.; Lackovic, Z.; Restani, L. Transynaptic action of botulinum neurotoxin type A at central cholinergic boutons. J. Neurosci. 2018, 38, 10329–10337. [Google Scholar] [CrossRef]
- Hallett, M. Mechanism of action of botulinum neurotoxin: Unexpected consequences. Toxicon 2018, 147, 73–76. [Google Scholar] [CrossRef]
- Makunts, T.; Wollmer, M.A.; Abagyan, R. Postmarketing safety surveillance data reveals antidepressant effects of botulinum toxin across various indications and injection sites. Sci Rep 2020, 10, 12851. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Liu, X.; Su, C.-J.; Zhang, Q.-L.; Wang, Z.-H.; Cao, L.-F.; Guo, X.-Y.; Huang, Y.; Luo, W.; et al. Antidepressant-like action of single facial injection of botulinum neurotoxin A is associated with augmented 5-HT Levels and BDNF/ERK/CREB Pathways in Mouse Brain. Neurosci. Bull. 2019, 35, 661–672. [Google Scholar] [CrossRef]
- Ni, L.; Chen, H.; Xu, X.; Sun, D.; Cai, H.; Wang, L.; Tang, Q.; Hao, Y.; Cao, S.; Hu, X. Neurocircuitry underlying the antidepressant effect of retrograde facial botulinum toxin in mice. Cell & Bioscience 2023, 13, 30. [Google Scholar] [CrossRef]
- Ekman, P. The directed facial action task: Emotional responses without appraisal. In Handbook of emotion elicitation and assessment; Series in affective science; Oxford University Press: New York, NY, US, 2007; ISBN 978-0-19-516915-7. [Google Scholar]
- Schwartz, G.E.; Fair, P.L.; Salt, P.; Mandel, M.R.; Klerman, G.L. Facial muscle patterning to affective imagery in depressed and nondepressed subjects. Science 1976, 192, 489–491. [Google Scholar] [CrossRef]
- Rodríguez-Cerdeira, C.; Eckhardt, W. Depression treatment: Is there a role for botulinum toxin type A? Microorganisms 2024, 12, 2615. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, M.; Teichmann, B.; Schröder, U.; Sprengelmeyer, R.; Ceballos-Baumann, A.O. Pharmacologic denervation of frown muscles enhances baseline expression of happiness and decreases baseline expression of anger, sadness, and fear. Journal of the American Academy of Dermatology 2003, 49, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Wollmer, M.A.; Magid, M.; Kruger, T.H.C.; Finzi, E. The use of botulinum toxin for treatment of depression. In botulinum toxin therapy; Whitcup, S.M., Hallett, M., Eds.; Springer International Publishing: Cham, 2021; ISBN 978-3-030-66306-3. [Google Scholar]
- Darwin, C. The expression of the emotions in man and animals; The expression of the emotions in man and animals; John Murray: London, England, 1872. [Google Scholar]
- Strack, F.; Martin, L.L.; Stepper, S. Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. Journal of Personality and Social Psychology 1988, 54, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-G.; Kotha, P.; Chen, Y.-H. Understandings of acupuncture application and mechanisms. Am J Transl Res 2022, 14, 1469–1481. [Google Scholar]
- Wollmer, M.A.; Kalak, N.; Jung, S.; DeBoer, C.; Magid, M.; Reichenberg, J.S.; Brand, S.; Holsboer-Trachsler, E.; Kruger, T.H.C. Agitation predicts response of depression to botulinum toxin treatment in a randomized controlled trial. Front. Psychiatry 2014, 5. [Google Scholar] [CrossRef]
- Brennan, C. Botulinum toxin type-A (BoNT-A) injections of the corrugator muscles for aesthetics and depression? Plast Surg Nurs 2016, 36, 167–169. [Google Scholar] [CrossRef]
- Finzi, E. The face of emotion: How botox affects our mood and relationships; Palgrave Macmillan: New York City, 2013; ISBN 978-0-230-34185-2. [Google Scholar]
- Finzi, E.; Rosenthal, N.E. Emotional proprioception: Treatment of depression with afferent facial feedback. Journal of Psychiatric Research 2016, 80, 93–96. [Google Scholar] [CrossRef]
- Al Abdulmohsen, T.; Kruger, T.H.C. The contribution of muscular and auditory pathologies to the symptomatology of autism. Med Hypotheses 2011, 77, 1038–1047. [Google Scholar] [CrossRef]
- Davis, J.I.; Senghas, A.; Brandt, F.; Ochsner, K.N. The effects of BOTOX injections on emotional experience. Emotion 2010, 10, 433–440. [Google Scholar] [CrossRef]
- Lewis, M.B.; Bowler, P.J. Botulinum toxin cosmetic therapy correlates with a more positive mood. Journal of Cosmetic Dermatology 2009, 8, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Sommer, B.; Zschocke, I.; Bergfeld, D.; Sattler, G.; Augustin, M. Satisfaction of patients after treatment with botulinum toxin for dynamic facial lines. Dermatologic Surgery 2003, 29, 456. [Google Scholar] [PubMed]
- Sykianakis, D.; Stratigos, A.; Chatziioannou, A.; Christodoulou, C. Botulinum toxin type A treatment is associated with improved social and psychological behavior: A retrospective study. J Cosmet Dermatol 2022, 21, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.-C.; Papa, G.; Foroni, F. Deeper than Skin Deep – The Effect of Botulinum Toxin-A on Emotion Processing. Toxicon 2016, 118, 86–90. [Google Scholar] [CrossRef]
- Bulnes, L.C.; Mariën, P.; Vandekerckhove, M.; Cleeremans, A. The effects of botulinum toxin on the detection of gradual changes in facial emotion. Sci Rep 2019, 9, 11734. [Google Scholar] [CrossRef]
- Havas, D.A.; Glenberg, A.M.; Gutowski, K.A.; Lucarelli, M.J.; Davidson, R.J. Cosmetic use of botulinum toxin-A affects processing of emotional language. Psychol Sci 2010, 21, 895–900. [Google Scholar] [CrossRef]
- Hennenlotter, A.; Dresel, C.; Castrop, F.; Ceballos-Baumann, A.O.; Wohlschläger, A.M.; Haslinger, B. The link between facial feedback and neural activity within central circuitries of emotion—new insights from botulinum toxin–induced denervation of frown muscles. Cerebral Cortex 2009, 19, 537–542. [Google Scholar] [CrossRef]
- Kim, M.J.; Neta, M.; Davis, F.C.; Ruberry, E.J.; Dinescu, D.; Heatherton, T.F.; Stotland, M.A.; Whalen, P.J. Botulinum toxin-induced facial muscle paralysis affects amygdala responses to the perception of emotional expressions: preliminary findings from an A-B-A design. Biol Mood Anxiety Disord 2014, 4, 11. [Google Scholar] [CrossRef]
- Shin, L.M.; Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 2010, 35, 169–191. [Google Scholar] [CrossRef]
- Matsuo, K.; Ban, R.; Hama, Y.; Yuzuriha, S. Eyelid opening with trigeminal proprioceptive activation regulates a brainstem arousal mechanism. PLoS One 2015, 10, e0134659. [Google Scholar] [CrossRef]
- Finzi, E. Botulinum toxin treatment for depression: A new paradigm for psychiatry. Toxins 2023, 15, 336. [Google Scholar] [CrossRef] [PubMed]
- Wollmer, M.A.; Magid, M.; Kruger, T.H.C.; Finzi, E. Treatment of depression with botulinum toxin. Toxins (Basel) 2022, 14, 383. [Google Scholar] [CrossRef] [PubMed]
- Burgen, A.S.V.; Dickens, F.; Zatman, L.J. The action of botulinum toxin on the neuro-muscular junction. J Physiol 1949, 109, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Myers, B. Corticolimbic regulation of cardiovascular responses to stress. Physiology & Behavior 2017, 172, 49–59. [Google Scholar] [CrossRef]
- Krohn, F.; Novello, M.; van der Giessen, R.S.; De Zeeuw, C.I.; Pel, J.J.M.; Bosman, L.W.J. The integrated brain network that controls respiration. Elife 2023, 12, e83654. [Google Scholar] [CrossRef]
- Šimić, G.; Tkalčić, M.; Vukić, V.; Mulc, D.; Španić, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšić, M.; R. Hof, P. Understanding emotions: Origins and roles of the amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef]
- Lamotte, G.; Shouman, K.; Benarroch, E.E. Stress and central autonomic network. Autonomic Neuroscience: Basic and Clinical 2021, 235. [Google Scholar] [CrossRef]
- Quadt, L.; Critchley, H.; Nagai, Y. Cognition, emotion, and the central autonomic network. Autonomic Neuroscience 2022, 238, 102948. [Google Scholar] [CrossRef]
- Zhang, X.; Ge, T. tong; Yin, G.; Cui, R.; Zhao, G.; Yang, W. Stress-induced functional alterations in amygdala: Implications for neuropsychiatric diseases. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, W.; Fan, Y.; Li, Y.; Liu, J.; Xu, Y.; Jiang, C.; Tang, Z.; Cao, C.; Liu, T.; et al. The safety and efficacy of botulinum toxin A on the treatment of depression. Brain Behav 2021, 11, e2333. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.Y.; Zhao, J.; Rahman, M.; St-Cyr, S.; McGowan, P.O.; Kim, J.C. Hippocampus-anterior hypothalamic circuit modulates stress-induced endocrine and behavioral response. Front Neural Circuits 2022, 16, 894722. [Google Scholar] [CrossRef]
- Keynan, J.N.; Meir-Hasson, Y.; Gilam, G.; Cohen, A.; Jackont, G.; Kinreich, S.; Ikar, L.; Or-Borichev, A.; Etkin, A.; Gyurak, A.; et al. Limbic activity modulation guided by functional magnetic resonance imaging–inspired electroencephalography improves implicit emotion regulation. Biological Psychiatry 2016, 80, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Barreiros, A.R.; Almeida, I.; Baía, B.C.; Castelo-Branco, M. Amygdala modulation during emotion regulation training with fMRI-cased neurofeedback. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef]
- Jentsch, V.L.; Merz, C.J.; Wolf, O.T. Restoring emotional stability: Cortisol effects on the neural network of cognitive emotion regulation. Behavioural Brain Research 2019, 374, 111880. [Google Scholar] [CrossRef]
- Parsaik, A.K.; Mascarenhas, S.S.; Hashmi, A.; Prokop, L.J.; John, V.; Okusaga, O.; Singh, B. Role of botulinum toxin in depression. Journal of Psychiatric Practice 2016, 22, 99. [Google Scholar] [CrossRef]
- Magid, M.; Finzi, E.; Kruger, T.H.C.; Robertson, H.T.; Keeling, B.H.; Jung, S.; Reichenberg, J.S.; Rosenthal, N.E.; Wollmer, M.A. Treating depression with botulinum toxin: A pooled analysis of randomized controlled trials. Pharmacopsychiatry 2015, 48, 205–210. [Google Scholar] [CrossRef]
- Hexsel, D.; Hexsel, C.; Siega, C.; Schilling-Souza, J.; Rotta, F.T.; Rodrigues, T.C. Fields of effects of 2 commercial preparations of botulinum toxin type A at equal labeled unit doses: A double-blind randomized trial. JAMA Dermatology 2013, 149, 1386–1391. [Google Scholar] [CrossRef]
- Finzi, E.; Wasserman, E. Treatment of depression with botulinum toxin A: A case series. Dermatol Surg 2006, 32, 645–649. [Google Scholar] [CrossRef]
- Wollmer, M.A.; de Boer, C.; Kalak, N.; Beck, J.; Götz, T.; Schmidt, T.; Hodzic, M.; Bayer, U.; Kollmann, T.; Kollewe, K.; et al. Facing depression with botulinum toxin: A randomized controlled trial. J Psychiatr Res 2012, 46, 574–581. [Google Scholar] [CrossRef]
- Finzi, E.; Rosenthal, N.E. Treatment of depression with onabotulinumtoxinA: A randomized, double-blind, placebo controlled trial. J Psychiatr Res 2014, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Magid, M.; Reichenberg, J.S.; Poth, P.E.; Robertson, H.T.; LaViolette, A.K.; Kruger, T.H.C.; Wollmer, M.A. Treatment of major depressive disorder using botulinum toxin A: A 24-week randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2014, 75, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Brin, M.F.; Durgam, S.; Lum, A.; James, L.; Liu, J.; Thase, M.E.; Szegedi, A. OnabotulinumtoxinA for the treatment of major depressive disorder: A phase 2 randomized, double-blind, placebo-controlled trial in adult females. Int Clin Psychopharmacol 2020, 35, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Chugh, S.; Chhabria, A.; Jung, S.; Kruger, T.H.C.; Wollmer, M.A. Botulinum toxin as a treatment for depression in a real-world setting. J Psychiatr Pract 2018, 24, 15–20. [Google Scholar] [CrossRef]
- Shu, H.; Shen, T.; Deng, W.; Cao, J.; Xu, Y.; Liu, J.; Zhou, X.; Luo, W.F. Comparative effectiveness of two different doses of botulinum toxin A for the treatment of mild to moderate depression. J Affect Disord 2024, 350, 824–830. [Google Scholar] [CrossRef]
- Cristel, R.T.; Gandhi, N.D.; Issa, T.Z.; Kola, E.; Demesh, D.; Dayan, S.H. A Randomized, single-blind, crossover study evaluating the impact of onabotulinumtoxinA treatment on mood and appearance during the COVID-19 pandemic. Aesthet Surg J 2021, 41, NP1199–NP1205. [Google Scholar] [CrossRef]
- Klassen, A.F.; Cano, S.J.; Scott, A.; Snell, L.; Pusic, A.L. Measuring patient-reported outcomes in facial aesthetic patients: Development of the FACE-Q. Facial Plast Surg 2010, 26, 303–309. [Google Scholar] [CrossRef]
- Lyubomirsky, S.; Lepper, H.S. A measure of subjective happiness: Preliminary reliability and construct validation. Social Indicators Research 1999, 46, 137–155. [Google Scholar] [CrossRef]
- Feng, X.-Y.; Shen, T.-T.; Wu, Q.-C.; Wang, J.; Ni, P.; Liu, J.; Zhou, X.-P.; Hu, H.; Luo, W.-F. A novel approach to treating post-stroke depression: Administration of botulinum toxin A via local facial injection. Front Neurol 2024, 15, 1372547. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, T.; Shen, T.; Wu, W.; Cao, J.; Sun, J.; Liu, J.; Zhou, X.; Jiang, C.; Tang, Z.; et al. Botulinum toxin A (BoNT/A) for the treatment of depression: A randomized, double-blind, placebo, controlled trial in China. Journal of Affective Disorders 2022, 318, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, F.; Neumann, I.; Krüger, T.H.C.; Wollmer, M.A. Botulinum toxin therapy for psychiatric disorders in clinical practice: A retrospective case study. Toxins (Basel) 2023, 15, 385. [Google Scholar] [CrossRef] [PubMed]
- Kruger, T.H.C.; Magid, M.; Wollmer, M.A. Can botulinum toxin help patients with borderline personality disorder? Am J Psychiatry 2016, 173, 940–941. [Google Scholar] [CrossRef]
- Kruger, T.H.C.; Schulze, J.; Bechinie, A.; Neumann, I.; Jung, S.; Sperling, C.; Engel, J.; Müller, A.; Kneer, J.; Kahl, K.G.; et al. Neuronal effects of glabellar botulinum toxin injections using a valenced inhibition task in borderline personality disorder. Sci Rep 2022, 12, 14197. [Google Scholar] [CrossRef]
- Ceolato-Martin, C.; Chevallier-Collins, C.; Clément, J.-P.; Charles, E.; Lacroix, A.; Ranoux, D. OnabotulinumtoxinA in resistant depression: A randomized trial comparing two facial injection sites (OnaDEP Study). Depress Anxiety 2024, 2024, 1177925. [Google Scholar] [CrossRef]
- Guvenc, U. Botulinum toxin and its effect on depression. EJMI 2023, 477–481. [Google Scholar] [CrossRef]
- Finzi, E.; Kels, L.; Axelowitz, J.; Shaver, B.; Eberlein, C.; Krueger, T.H.; Wollmer, M.A. Botulinum toxin therapy of bipolar depression: A case series. J Psychiatr Res 2018, 104, 55–57. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Fulkerson, J.M.; El-Mallakh, R.S. Use of botulinum toxin A for depression symptoms in patients with treatment-resistant bipolar illness: A case series. Bipolar Disord 2023, 25, 703–707. [Google Scholar] [CrossRef]
- Demchenko, I.; Swiderski, A.; Liu, H.; Jung, H.; Lou, W.; Bhat, V. Botulinum toxin injections for psychiatric disorders: A systematic review of the clinical trial landscape. Toxins (Basel) 2024, 16, 191. [Google Scholar] [CrossRef]
- Naumann, M.; Jankovic, J. Safety of botulinum toxin type A: A systematic review and meta-analysis. Curr Med Res Opin 2004, 20, 981–990. [Google Scholar] [CrossRef]
- Connor, K.M.; Cook, J.L.; Davidson, J.R.T. Botulinum toxin treatment of social anxiety disorder with hyperhidrosis: A placebo-controlled double-blind trial. J Clin Psychiatry 2006, 67, 30–36. [Google Scholar] [CrossRef]
- Dong, H.; Fan, S.; Luo, Y.; Peng, B. Botulinum toxin relieves anxiety and depression in patients with hemifacial spasm and blepharospasm. Neuropsychiatr Dis Treat 2019, 15, 33–36. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Ji, X.; Liu, M.; Zhou, C. Clinical efficacy of escitalopram combined with botulinum toxin A in patients with generalized anxiety disorder and comorbid headache. Psychopharmacology (Berl) 2023, 240, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Wollmer, M.A.; Neumann, I.; Jung, S.; Bechinie, A.; Herrmann, J.; Müller, A.; Wohlmuth, P.; Fournier-Kaiser, L.; Sperling, C.; Peters, L.; et al. Clinical effects of glabellar botulinum toxin injections on borderline personality disorder: A randomized controlled trial. J Psychopharmacol 2022, 36, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.; Sinke, C.; Neumann, I.; Wollmer, M.A.; Kruger, T.H.C. Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 2024, 274, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, T.; Luo, W. Botulinum neurotoxin therapy for depression: therapeutic mechanisms and future perspective. Front Psychiatry 2021, 12, 584416. [Google Scholar] [CrossRef]
- Restani, L.; Novelli, E.; Bottari, D.; Leone, P.; Barone, I.; Galli-Resta, L.; Strettoi, E.; Caleo, M. Botulinum neurotoxin A impairs neurotransmission following retrograde transynaptic transport. Traffic 2012, 13, 1083–1089. [Google Scholar] [CrossRef]
- Stearns, T.P.; Shad, M.U.; Guzman, G.C. Glabellar botulinum toxin injections in major depressive disorder: A critical review. Prim Care Companion CNS Disord 2018, 20, 18r02298. [Google Scholar] [CrossRef]
- Zamanian, A.; Ghanbari Jolfaei, A.; Mehran, G.; Azizian, Z. Efficacy of botox versus placebo for treatment of patients with major depression. Iran J Public Health 2017, 46, 982–984. [Google Scholar]
| NCT ID | Agent / Class (route–dose–regimen) | Comparator | Design / Phase / Duration | Population (key inclusion / stratification) | N (plan) | Primary endpoint(s) & timing | Key secondary / mechanistic outcomes | Status & key dates |
|---|---|---|---|---|---|---|---|---|
| NCT03748446 | Xenon-O2 (35:65) single inhalation (sub-anesthetic) + TAU | Nitrogen-O2 (35:65) + TAU | Randomized, double-blind crossover; Early Phase 1 | 20 severe depressions: 10 MDD, 10 bipolar depression (TRD focus) | 20 | Day-1 improvement on HDRS (6-item) & QIDS-C; repeated acute timepoints | None listed | Recruiting; first posted 2018-11-20; last update 2025-05-18 |
| NCT05357040 | Nitrous oxide 25% or 50% (60′ weekly ×4) | Oxygen–air mixture (FiO2≈0.3) | Phase 2, RCT parallel 1:1; nitrous arm split 25% vs 50%; double-blind (pt/assessor); 7 wk total | Adults with MDD (incl. TRD); outpatient | 172 | HDRS-21 change over 4 wk | 24-h response/remission; POMS; CAT-MH (dep/anx/suicide); S-STS; dose–response; compliance; VAS well-being; AEs | Recruiting; start 2021-06-30; primary compl. 2025-10-01 |
| NCT05415397 (INFLAMED) | Celecoxib 400 mg/day add-on (12 wk) | Placebo add-on | Phase 3, RCT 1:1, parallel, quadruple-blind | DSM-5 MDD with ImmunoMetabolic Depression (IDS AES ≥6) + CRP >1 mg/L; on SSRI/SNRI | 140 | IDS-SR trajectories (bi-weekly) over 12 wk | IDS response/remission; AES subscore; fatigue, food craving, sleep, anxiety, functioning, pain; pill count; CRP/IL-6/TNF-α/lipids/glucose; AEs | Recruiting; start 2022-09-28; compl. est. 2025-07 |
| NCT05558995 | Ketogenic diet (20–30 g carbs; 80–100 g protein; fats allowed) 12 wk; adjunct to SSRIs | None (open-label) | Single-arm feasibility; Phase NA; 2-wk induction + 10-wk maintenance | MDD 18–50, partial SSRI responders, residual anhedonia | 15 | Adherence rate over 12 wk | EEfRT; MADRS; SHAPS; GAD-7; CGI; plasma BDNF & cytokines (TNF-α, IL-1, IL-6, IL-10); extensive safety labs | Recruiting; last update 2023-11-18 |
| NCT05570110 | Enoxolone (11β-HSD2 inhibitor) PO; dose NR | Placebo | Randomized, double-blind; biomarker-stratified; Phase NA | MDD; groups split by baseline SBP (median) & urine aldosterone/cortisol; exploratory HRV, sleep, salt taste, CRP, MRI | NR | Differential clinical response by biomarker strata; biomarker change | BP; aldosterone/cortisol; Na+/K+; HR/HRV; sleep; inflammatory markers; optional MRI/DTI | Recruiting; update 2024-04-09 |
| NCT05570812 | Pregnenolone PO ramp 50→500 mg/day (4 wk) then 500 mg/day (4 wk) | Placebo (identical titration) | Phase 2, randomized, parallel, quadruple-blind | PLWH on ART, 18–85 yrs, CES-D ≥20; can stay on ADs | 120 (90 active / 30 plc) | Left insular cortex GABA (MRS) Day14 & Day56 (baseline-adjusted) | CES-D; CD14+CD16+ monocytes; responder GABA; AEs; dose mods | Recruiting; start 2023-03-03; primary compl. 2027-06-30 |
| NCT05644301 (INSTA-MD) | Minocycline 100 mg BID ×12 wk or Celecoxib 200 mg BID ×12 wk (add-on to TAU) | Placebo + TAU | Phase 3, randomized, parallel, quadruple-blind; hs-CRP stratified (<3/>3 mg/L); 6 arms | DSM-5 MDD, non-remission to adequate AD; physically healthy | 240 | HDRS-17 change; remission (≤7) at 12 wk | IDS-SR; HDRS response; PSQI; STAI; CORE; MARS; AEs; metabolic markers; cytokines; PBMCs; kynurenine pathway; VEGF, BDNF | Recruiting; start 2023-09-21; compl. est. 2026-09 |
| NCT05710887 | Nitrous oxide 50% (45′ single session) + TAU in ED | Oxygen–air mixture + TAU | Phase 2, RCT parallel; double-blind (pt/assessor); ED setting; ≤24 h follow-up | 18–65, acutely suicidal, non-psychotic MDD in ED | 50 | CAT-MH change (suicide/dep/anx) within 24 h | Compliance; rapid (30–60′) & sustained response; correlation with lifetime suicide predictors; AEs | Not yet recruiting; start est. 2025-10-01; primary compl. 2027-08-01 |
| NCT05757791 | Empagliflozin 10 mg ×14 d → 25 mg ×28 d (6 wk) | None (open-label) | Phase 2, single-group | Adults 18–65, MDD (MADRS ≥20), ≤2 failed ADs; no prior SGLT2 | 16 | MADRS change baseline→wk6 | C-SSRS; SHAPS | Recruiting; start 2023-03-17; primary compl. est. 2025-12 |
| NCT06136546 | Infliximab 5 mg/kg IV (single infusion) | Saline IV | Phase 2, randomized, parallel, triple-blind; 2-wk follow-up | MDD, 25–50 yrs, CRP ≥3 mg/L; HAMD-17 ≥15; stable/off AD ≥4 wk | 100 | Psychomotor speed (Simple RT) & executive function (Choice RT) via TestMyBrain (daily ×2 wk) | HAMD-17; Dimensional Anhedonia Rating Scale; CRP; TNF-α & receptors | Recruiting; start 2025-01-23; primary compl. 2028-08-31 |
| NCT06323785 | Whole-body hyperthermia (water-filtered IR) | Sham hyperthermia | RCT, parallel, quadruple-blind; 6 wk; Phase NA | MDD 18–65; HAMD-17 ≥14; German-speaking | 30 | HAMD-17 at 1 wk | BDI; MOS-SF QoL; HAMD-17 at 6 wk | Recruiting; start est. 2024-06-15; primary compl. 2026-03-01 |
| NCT06537921 (CODA) | Minocycline 200 mg/day PO ×8 wk adjunct | None | Single-group, open-label feasibility; 12 wk total | MDD + obesity (BMI ≥30) + CRP ≥3 mg/L; TRD; MRI-eligible | 35 | Feasibility: enrolment, adherence, completion of biomarkers/MRI/PROs; effect-size estimates | Blood/saliva biomarkers; MRI baseline & wk8; questionnaires | Recruiting; start 2024-10-01; compl. est. 2027-09-01 |
| NCT06671977 | DMT IV (low & medium bolus+infusion) ± THC comparators | Placebo | Phase 1, randomized crossover; triple-blind; 2 sessions 4 wk apart | Adults 21–65: MDD cohort (moderate–severe, ≥1 inadequate AD) + healthy controls | 60 | Safety/physiology; MEQ30; PSI; VAS anxiety/dep; CEQ; reinforcing effects; tolerability; EEG | Expectancy/blinding indices; blood assays; NEO; AAQ | Recruiting; start 2025-03-14; compl. est. 2027-12-01 |
| NCT06698666 | Rosuvastatin 10 mg PO daily ×12 wk (± sertraline TAU) | Sertraline (standard care) — details NR | RCT; parallel; convenience sample; Phase NA | Adults 20–45, mild–moderate MDD; MADRS 7–34 | 144 (72/arm) | MADRS change after 12 wk | Safety AEs; serum cholesterol (baseline & wk12) | Recruiting; start 2022; last update 2024-11-21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
