Submitted:
06 August 2025
Posted:
07 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources
2.3. Geographical Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Geographical Distribution
3.3. Inferential Analysis
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ED | Emergency Department |
| FU | Frequent User |
| LHD | Local Health District |
| NHS | National Health Service; |
| LHA | Local Health Authority |
| GP | General Practitioner |
| GU | Geographical Unit |
| OR | Odds Ratios |
| MOR | Median Odds Ratios |
Appendix A
Italian National Health Service
References
- OECD/European Observatory on Health Systems and Policy. Italy: country health profile 2017. OECD Publishing/European Observatory on Health Systems and Policies, 2017.
- Cinelli G, Gugiatti A, Meda F, Petracca F. La struttura e le attività del SSN. In: Rapporto OASI 2020. CERGAS - Bocconi. Milano: Egea; 2020. p. 37-115.
- Carle F, Franchino G, Bruno V. (2022). Osservatorio della Salute delle Regioni Italiane. Assistenza Ospedaliera. Rapporto Osservasalute 2021. p. 517-581.
- Lee DC, Doran KM, Polsky D, Cordova E, Carr BG. Geographic variation in the demand for emergency care: A local population-level analysis. Healthc (Amst). 2016; doi: 10.1016/j.hjdsi.2015.05.003. Epub 2015 Jun 11.
- Reid RJ, Johnson EA, Hsu C, Ehrlich K, Coleman K, Trescott C, et al. Spreading a medical home redesign: effects on emergency department use and hospital admissions. Ann Fam Med. 2013; doi: 10.1370/afm.1476.
- Smulowitz PB, Honigman L, Landon BE. A novel approach to identifying targets for cost reduction in the emergency department. Ann Emerg Med. 2013; doi: 10.1016/j.annemergmed.2012.05.042.
- Marmot M. Social determinants of health inequalities. Lancet. 2005; doi: 10.1016/S0140-6736-(05)71146-6.
- Dufour I, Chouinard MC, Dubuc N, Beaudin J, Lafontaine S, Hudon C. Factors associated with frequent use of emergency-department services in a geriatric population: a systematic review. BMC Geriatr. 2019; doi: 10.1186/s12877-019-1197-9.
- Gentili S, Gialloreti E, Riccardi F, Scarcella P, Liotta G. Predictors of emergency room access and not urgent emergency room access by the frail older adults. Front Public Health. 2021; doi: 10.3389/fpubh.2021.721634.
- Chiu YM, Dufour I, Courteau J, Vanasse A, Chouinard MC, Dubois MF, et al. Profiles of frequent emergency department users with chronic conditions: a latent class analysis. BMJ Open. 2022; doi: 10.1136/bmjopen-2021-055297.
- Moe J, Kirkland SW, Rawe E, Ospina MB, Vandermeer B, Campbell S, et al. Effectiveness of interventions to decrease emergency department visits by adult frequent users: a systematic review. Acad Emerg Med. (2017) ;24(1):40-52. doi: 10.1111/acem.13060.
- LaCalle E, Rabin E. Frequent users of emergency departments: the myths, the data, and the policy implications. Ann Emerg Med. (2010) 56:42-8. doi: 10.1016/j.annemergmed.2010.01.032.
- Legramante JM, Morciano L, Lucaroni F, Gilardi F, Caredda E, Pesaresi A, et al. Frequent use of emergency departments by the elderly population when continuing care is not well established. PLoS One. (2016) 11(12):e0165939. doi: 10.1371/journal.pone.0165939.
- Furia G, Vinci A, Colamesta V, Papini P, Grossi A, Cammalleri V, et al. Appropriateness of frequent use of emergency departments: a retrospective analysis in Rome, Italy. Front Public Health. 2023; doi: 10.3389/fpubh.2023.1150511.
- Borrega JG, Hermes C, König V, Kitz V, Möller S, Stark D, et al. Sustainability in intensive and emergency care: a nationwide survey by the German Society of Medical Intensive Care and Emergency Medicine. Med Klin Intensivmed Notfmed. 2023; doi: 10.1007/s00063-023-01039-2.
- Pietrantonio F, Rosiello F, Alessi E, Pascucci M, Rainone M, Cipriano E, et al. Burden of COVID-19 on Italian Internal Medicine Wards: Delphi, SWOT, and performance analysis after two pandemic waves in the Local Health Authority “Roma 6” Hospital structures. Int J Environ Res Public Health. 2021; doi: 10.3390/ijerph18115999.
- Armocida B, Formenti B, Ussai S, Palestra F, Missoni E. The Italian health system and the COVID-19 challenge. Lancet Public Health. 2020; doi: 10.1016/S2468-2667(20)30074-8.
- Maruster L, Van der Zee DJ, Buskens E. Identifying frequent health care users and care consumption patterns: process mining of emergency medical services data. J Med Internet Res. 2021; doi: 10.2196/27499.
- Krieg C, Hudon C, Chouinard MC, Dufour I. Individual predictors of frequent emergency department use: a scoping review. Review BMC Health Serv Res. 2016; doi: 10.1186/s12913-016-1852-1.
- Di Bella E, Gandullia L, Leporatti L, Locatelli W, Montefiori M, Persico L, et al. Frequent use of emergency departments and chronic conditions in ageing societies: a retrospective analysis based in Italy. Popul Health Metr. 2020; doi: 10.1186/s12963-020-00237-w.
- Gibson OR, Segal L, McDermott RA. A systematic review of evidence on the association between hospitalisation for chronic disease related ambulatory care sensitive conditions and primary health care resourcing. BMC Health Serv Res. 2013; doi: 10.1186/1472-6963-13-336.
- Alcusky M, Singer D, Keith SW, Hegarty SE, Lombardi M, Saccenti E, et al. Evaluation of care processes and health care utilization in newly implemented medical homes in Italy: a population-based cross-sectional study. Am J Med Qual. 2020; doi: 10.1177/1062860619860590.
- Costa C, Santana P, Dimitroulopoulou S, Burstrom B, Borrell C, Schweikart J. Population Health Inequalities Across and Within European Metropolitan Areas through the Lens of the EURO-HEALTHY Population Health Index. Int J Environ Res Public Health. 2019; doi: 10.3390/ijerph16050836.
- Borrell C, Pons-Vigués M, Morrison J, Díez È. Factors and processes influencing health inequalities in urban areas. J Epidemiol Community Health. 2013; doi: 10.1136/jech-2012-202014.
- Mitsakou C, Dimitroulopoulou S, Heaviside C, Katsouyanni K, Samoli E, Rodopoulou S, et al. Environmental public health risks in European metropolitan areas within the EURO-HEALTHY project. Sci Total Environ. 2019; doi: 10.1016/j.scitotenv.2018.12.130.
- Santana P, Costa C, Cardoso G, Loureiro A Ferrão J. Suicide in Portugal: spatial determinants in a context of economic crisis. Health Place. 2015; doi: 10.1016/j.healthplace.2015.07.001.
- Mauro M, Giancotti M. The 2022 primary care reform in Italy: Improving continuity and reducing regional disparities? Health Policy. 2023; doi: 10.1016/j.healthpol.2023.104862.
- Matranga D, Maniscalco L. Inequality in Healthcare Utilization in Italy: How Important Are Barriers to Access? Int J Environ Res Public Health. 2022; doi: 10.3390/ijerph19031697.
- Bilheimer LT. Evaluating metrics to improve population health. Prev Chronic Dis. 2010;7(4):A69.
- Giebel C, McIntyre JC, Daras K, Gabbay M, Downing J, Pirmohamed M, et al. What are the social predictors of accident and emergency attendance in disadvantaged neighbourhoods? Results from a cross-sectional household health survey in the north west of England. BMJ Open. 2019; doi: 10.1136/bmjopen-2018-022820.
- Scantlebury R, Rowlands G, Durbaba S, Schofield P, Sidhu K, Ashworth M. Socioeconomic deprivation and accident and emergency attendances: cross sectional analysis of general practices in England. Br J Gen Pract. 2015; doi: 10.3399/bjgp15X686893.
- Hull SA, Jones IR, Moser K. Factors influencing the attendance rate at accident and emergency departments in East London: the contributions of practice organization, population characteristics and distance. J Health Serv Res Policy. 1997; doi: 10.1177/135581969700200104.
- Rudge GM, Mohammed MA, Fillingham SC, Girling A, Sidhu K, Stevens AJ. The combined influence of distance and neighbourhood deprivation on Emergency Department attendance in a large English population: a retrospective database study. PLoS One. 2013; doi: 10.1371/journal.pone.0067943.
- Takahashi PY, Ryu E, Hathcock MA, Olson JE, Bielinski SJ, Cerhan JR, et al. A novel housing-based socioeconomic measure predicts hospitalisation and multiple chronic conditions in a community population. J Epidemiol Community Health. 2016; doi: 10.1136/jech-2015-205925.
- Loureiro A, Costa C, Almendra R, Freitas Â, Santana P. The socio-spatial context as a risk factor for hospitalization due to mental illness in the metropolitan areas of Portugal. Cad Saude Publica 2015;31 Suppl 1:219-31.
- Hoffmann R, Borsboom G, Saez M, Dell’Olmo M, Burström BB, Corman D, et al. Social differences in avoidable mortality between small areas of 15 European cities: An ecological study. Int J Health Geogr. 2014; doi: 10.1186/1476-072X-13-8.
- Gotsens M, Marí-Dell’Olmo M, Pérez K, Palência L, Martinez-Beneito MA, Rodríguez-Sanz M, et al. Socioeconomic inequalities in injury mortality in small areas of 15 European cities. Health Place. 2013; doi: 10.1016/j.healthplace.2013.09.003.
- Nolasco A, Moncho J, Quesada JA, Melchor I, Pereyra-Zamora P, Tamayo-Fonseca N, et al. Trends in socioeconomic inequalities in preventable mortality in urban areas of 33 Spanish cities, 1996–2007 (MEDEA project). Int J Equity Health. 2015; doi: 10.1186/s12939-015-0164-0.
- Open Salute Lazio. Dati sullo stato di salute della popolazione residente nella Regione Lazio. 2023. https://www.opensalutelazio.it/salute/stato_salute.php?stato_salute. Accessed 30 aug 2023.
- Pines JM, Asplin BR, Kaji AH, Lowe RA, Magid DJ, Raven M, et al. Frequent users of emergency department services: gaps in knowledge and a proposed research agenda. Acad Emerg Med. 2011; doi: 10.1111/j.1553-2712.2011.01086.x.
- Birmingham LE, Cochran T, Jennifer A, Frey JA, Stiffler KA, Wilber ST. Emergency department use and barriers to wellness: a survey of emergency department frequent users. BMC Emerg Med. 2017; doi: 10.1186/s12873-017-0126-5.
- Rosano A, Pacelli B, Zengarini N, Costa G, Cislaghi C, Caranci N. Update and review of the 2011 Italian deprivation index calculated at the census section level. Epidemiol Prev 2020; 44 (2-3):162-170. doi: 10.19191/EP20.2-3.P162.039.
- Corrao G, Rea F, Di Martino M, De Palma R, Scondotto S, Fusco D, et al. Developing and validating a novel multisource comorbidity score from administrative data: A large population-based cohort study from Italy. BMJ Open. 2017; doi: 10.1136/bmjopen-2017-019503.
- Di Martino M, Furfaro S, Mulas MF, Mataloni F, Santurri M, Paris A, et al. Population segmentation as a tool for planning community healthcare networks: the key role of social and health information systems. Recenti Prog Med. 2022; doi: 10.1701/3748.37313.
- Mataloni F, Bauleo L, Badaloni C, Nobile F, Savastano J, Noccioli F, et al. Geocoding one million of addresses using API: a semiautomatic multistep procedure. Epidemiol Prev. 2022; doi: 10.19191/EP22.3.A463.031. PMID: 35443573.
- Hellmann R, Feral-Pierssens AL, Michault A, Casalino E, Ricard-Hibon A, Adnet F, et al. The analysis of the geographical distribution of emergency departments’ frequent users: a tool to prioritize public health policies? BMC Public Health. 2021; doi: 10.1186/s12889-021-11682-z.
- Roma Capitale - Territorio. Zone urbanistiche. 2023. https://www.comune.roma.it/web-resources/cms/documents/Territorio_RomaCapitale.pdf. Accessed 30 aug 2023.
- Domínguez-Berjón MF, Borrell C, López R, Pastor V. Mortality and socioeconomic deprivation in census tracts of an urban setting in southern Europe. J Urban Health. 2005; doi: 10.1093/jurban/jti047. Epub 2005 May 11. PMID: 15888637; PMCID: PMC3456560.
- Pongiglione B, Torbica A, Gusmano MK. Inequalities in avoidable hospitalisation in large urban areas: retrospective observational study in the metropolitan area of Milan. BMJ Open. 2020; doi: 10.1136/bmjopen-2020-042424.
- Kangovi S, Barg FK, Carter T, Long JA, Shannon R, Grande D. Understanding why patients of low socioeconomic status prefer hospitals over ambulatory care. Health Aff (Millwood). 2013; doi: 10.1377/hlthaff.2012.0825.
- Lee JE, Sung JH, Ward WB, Fos PJ, Lee WJ, Kim JC. Utilization of the emergency room: impact of geographic distance. Geospat Health. 2007; doi: 10.4081/gh.2007.272.
- Rudge GM, Mohammed MA, Fillingham SC, Girling A, Sidhu K, Stevens AJ. The combined influence of distance and neighbourhood deprivation on Emergency Department attendance in a large English population: a retrospective database study. PLoS One. 2013; doi: 10.1371/journal.pone.0067943. Print 2013.
- Lucero AD, Lee A, Hyun J, Lee C, Kahwaji C, Miller G, et al. Underutilization of the emergency department during The Covid-19 pandemic. West J Emerg Med. 2020; doi: 10.5811/westjem.2020.8.48632.
- Reschen ME, Bowen J, Novak A, Giles M, Singh S, Lasserson D, et al. Impact of the COVID-19 pandemic on emergency department attendances and acute medical admissions. BMC Emerg Med. 2021; doi: 10.1186/s12873-021-00529-w.
- Woo JH, Grinspan Z, Shapiro J, Rhee SY. Frequent Users of hospital Emergency Departments in Korea characterized by claims data from the National Health Insurance: a cross sectional study. PLoS One. 2016; doi:10.1371/journal.pone.0147450.
- Or Z, Penneau A. A multilevel analysis of the determinants of emergency care visits by the elderly in France. Health Policy. 2018; doi: 10.1016/j.healthpol.2018.05.003.
- Scantlebury R, Rowlands G, Durbaba S, Schofield P, Sidhu K, Ashworth M. Socioeconomic deprivation and accident and emergency attendances: cross-sectional analysis of general practices in England. Br J Gen Pract. 2015; doi: 10.3399/bjgp15X686893.
- OECD Health at a Glance: Europe 2018: State of Health in the EU Cycle, OECD Publishing, 2018. https://doi.org/https://doi.org/10.1787/health_glance_eur-2018-en.
- Vinton DT, Capp R, Rooks SP, Abbott JT, Ginde AA. Frequent users of US emergency departments: characteristics and opportunities for intervention. Emerg Med J. 2014; doi: 10.1136/emermed-2013-202407. Epub 2014 Jan 28.
- Valtorta NK, Moore DC, Barron L, Stow D, Hanratty B. Older adults’ social relationships and health care utilization: a systematic review. Am J Public Health. 2018; doi: 10.2105/AJPH.2017.304256.
- Mercier G, Georgescu V, Bousquet J. Geographic variation in potentially avoidable hospitalizations in France. Health Aff (Millwood). 2015; doi: 10.1377/hlthaff.2014.1065.
- Freitas A, Rodrigues TC, Santana P. Assessing urban health inequities through a multidimensional and participatory framework: evidence from the EURO-HEALTHY Project. J Urban Health. 2020; doi: 10.1007/s11524-020-00471-5.
- Hull SA, Homer K, Boomla K, et al. Population and patient factors affecting emergency department attendance in London: retrospective cohort analysis of linked primary and secondary care records. Br J Gen Pract. 2018; doi: 10.3399/bjgp18X694397.
- Van den Heede K, Van de Voorde C. Interventions to reduce emergency department utilisation: a review of reviews. Health Policy. 2016; doi: 10.1016/j.healthpol.2016.10.002.
- Althaus F, Paroz S, Hugli O, Ghali WA, Daeppen J-B, Peytremann-Bridevaux I, et al. Effectiveness of interventions targeting frequent users of emergency departments: a systematic review. Acad Emerg Med. 2017; doi: 10.1111/acem.13060.
- Kanzaria HK, Niedzwiecki MJ, Montoy JC, Raven MC, Hsia RY. Persistent frequent emergency department use: Core Group exhibits extreme levels of use for more than a decade. Health Aff (Millwood). 2017; doi: 10.1377/hlthaff.2017.0658.
- Vu F, Daeppen JB, Hugli O, Iglesias K, Stucki S, Paroz S, et al. Screening of mental health and substance users in frequent users of a general Swiss emergency department. BMC Emerg Med. 2015; doi: 10.1186/s12873-015-0053-2.
- Marmot M, Bell R. The Sustainable Development Goals and Health Equity. Epidemiology. 2018; doi: 10.1097/EDE.0000000000000773.
- Ellena M, Ballester J, Mercogliano P, Ferracin E, Barbato G, Costa G, et al. Social inequalities in heat-attributable mortality in the city of Turin, northwest of Italy: a time series analysis from 1982 to 2018. Environ Health. 2020; doi: 10.1186/s12940-020-00667-x.
- Cheshire J. Featured Graphic. Lives on the line: mapping life expectancy along the London Tube network. Environment and Planning A. 2012; doi: 10.1068/a45341.
- Ritsatakis A, Ostergren PO, Webster P. Tackling the social determinants of inequalities in health during phase V of the Healthy Cities Project in Europe. Health Promot Int. 2015; doi: 10.1093/heapro/dav034.

| PATIENTS | NO FU | FU≥4 | FU≥5 | FU≥7 | FU≥10 | ||||||||
| N | % | N | % | N | % | N | % | N | % | N | % | ||
| Total | 72,781 | 100.0 | 70,743 | 100.0 | 2,038 | 100.0 | 977 | 100.0 | 349 | 100.0 | 130 | 100.0 | |
| Gender | Male | 35,123 | 48.3 | 34,054 | 48.1 | 1,069 | 52.5 | 507 | 51.9 | 187 | 53.6 | 75 | 57.7 |
| Female | 37,658 | 51.7 | 36,689 | 51.9 | 969 | 47.5 | 470 | 48.1 | 162 | 46.4 | 55 | 42.3 | |
| Age | 18-29 | 10,104 | 13.9 | 9,885 | 14.0 | 219 | 10.7 | 99 | 10.1 | 35 | 10.0 | 14 | 10.8 |
| 30-39 | 7,484 | 10.3 | 7,285 | 10.3 | 199 | 9.8 | 96 | 9.8 | 42 | 12.0 | 18 | 13.8 | |
| 40-49 | 10,512 | 14.4 | 10,243 | 14.5 | 269 | 13.2 | 133 | 13.6 | 55 | 15.8 | 21 | 16.2 | |
| 50-59 | 13,381 | 18.4 | 13,024 | 18.4 | 357 | 17.5 | 181 | 18.5 | 70 | 20.1 | 34 | 26.2 | |
| 60-69 | 10,235 | 14.1 | 9,933 | 14.0 | 302 | 14.8 | 147 | 15.0 | 57 | 16.3 | 21 | 16.2 | |
| 70-79 | 10,066 | 13.8 | 9,739 | 13.8 | 327 | 16.0 | 147 | 15.0 | 42 | 12.0 | 10 | 7.7 | |
| 80+ | 10,999 | 15.1 | 10,634 | 15.0 | 365 | 17.9 | 174 | 17.8 | 48 | 13.8 | 12 | 9.2 | |
| Socio-economic level | High | 16,680 | 22.9 | 16,297 | 23.0 | 383 | 18.8 | 177 | 18.1 | 66 | 18.9 | 26 | 20.0 |
| Medium-high | 17,916 | 24.6 | 17,473 | 24.7 | 443 | 21.7 | 206 | 21.1 | 73 | 20.9 | 28 | 21.5 | |
| Medium | 13,398 | 18.4 | 13,051 | 18.4 | 347 | 17.0 | 161 | 16.5 | 52 | 14.9 | 20 | 15.4 | |
| Medium-low | 11,695 | 16.1 | 11,346 | 16.0 | 349 | 17.1 | 165 | 16.9 | 53 | 15.2 | 24 | 18.5 | |
| Low | 13,092 | 18.0 | 12,576 | 17.8 | 516 | 25.3 | 268 | 27.4 | 105 | 30.1 | 32 | 24.6 | |
| Chronic conditions | No chronic conditions | 43,531 | 59.8 | 42,561 | 60.2 | 970 | 47.6 | 451 | 46.2 | 156 | 44.7 | 59 | 45.4 |
| One chronic condition | 15,718 | 21.6 | 15,249 | 21.6 | 469 | 23.0 | 226 | 23.1 | 83 | 23.8 | 40 | 30.8 | |
| Multiple chronic conditions (low-mid clinical complexity) |
9,345 | 12.8 | 9,035 | 12.8 | 310 | 15.2 | 144 | 14.7 | 45 | 12.9 | 9 | 6.9 | |
| Multiple chronic conditions (high clinical complexity) |
4,187 | 5.8 | 3,898 | 5.5 | 289 | 14.2 | 156 | 16.0 | 65 | 18.6 | 22 | 16.9 | |
| ATTENDANCES | NO FU | FU≥4 | FU≥5 | FU≥7 | FU≥10 | ||||||||
| N | % | N | % | N | % | N | % | N | % | N | % | ||
| Total | 99,811 | 100.0 | 88,514 | 100.0 | 11,297 | 100.0 | 7,053 | 100.0 | 3,721 | 100.0 | 2,046 | 100.0 | |
| Triage admission code | Emergency | 5,150 | 5.2 | 4,528 | 5.1 | 622 | 5.5 | 345 | 4.9 | 175 | 4.7 | 95 | 4.6 |
| Urgency | 19,176 | 19.2 | 16,986 | 19.2 | 2,190 | 19.4 | 1,327 | 18.8 | 651 | 17.5 | 334 | 16.3 | |
| Deferrable Urgency | 35,505 | 35.6 | 31,605 | 35.7 | 3,900 | 34.5 | 2,269 | 32.2 | 1,157 | 31.1 | 610 | 29.8 | |
| Minor urgency | 36,530 | 36.6 | 32,861 | 37.1 | 3,669 | 32.5 | 2,389 | 33.9 | 1,208 | 32.5 | 712 | 34.8 | |
| Non urgency | 3,450 | 3.5 | 2,534 | 2.9 | 916 | 8.1 | 723 | 10.3 | 530 | 14.2 | 295 | 14.4 | |
| ICD-9-CM Diagnosis group on discharge | Infectious and parasitic diseases | 1,625 | 1.6 | 1,469 | 1.7 | 156 | 1.4 | 92 | 1.3 | 40 | 1.1 | 21 | 1.0 |
| Neoplasms | 675 | 0.7 | 532 | 0.6 | 143 | 1.3 | 86 | 1.2 | 39 | 1.0 | 20 | 1.0 | |
| Endocrine, nutritional and metabolic diseases, and immunity disorders | 686 | 0.7 | 580 | 0.7 | 106 | 0.9 | 63 | 0.9 | 29 | 0.8 | 11 | 0.5 | |
| Diseases of the blood and blood-forming organs | 1,150 | 1.2 | 894 | 1.0 | 256 | 2.3 | 184 | 2.6 | 96 | 2.6 | 54 | 2.6 | |
| Mental disorders | 3,173 | 3.2 | 2,315 | 2.6 | 858 | 7.6 | 656 | 9.3 | 444 | 11.9 | 325 | 15.9 | |
| Diseases of nervous system and sense organs | 3,596 | 3.6 | 3,165 | 3.6 | 431 | 3.8 | 268 | 3.8 | 139 | 3.7 | 66 | 3.2 | |
| Disease of the circulatory system | 8,514 | 8.5 | 7,592 | 8.6 | 922 | 8.2 | 478 | 6.8 | 197 | 5.3 | 92 | 4.5 | |
| Diseases of the respiratory system | 4,136 | 4.1 | 3,740 | 4.2 | 396 | 3.5 | 215 | 3.0 | 107 | 2.9 | 28 | 1.4 | |
| Diseases of the digestive system | 6,866 | 6.9 | 6,110 | 6.9 | 756 | 6.7 | 443 | 6.3 | 192 | 5.2 | 85 | 4.2 | |
| Diseases of the genitourinary system | 2,905 | 2.9 | 2,450 | 2.8 | 455 | 4.0 | 291 | 4.1 | 98 | 2.6 | 38 | 1.9 | |
| Complications of pregnancy, childbirth and puerperium | 675 | 0.7 | 622 | 0.7 | 53 | 0.5 | 34 | 0.5 | 5 | 0.1 | 3 | 0.1 | |
| Diseases of the skin and subcutaneous tissue | 961 | 1.0 | 876 | 1.0 | 85 | 0.8 | 39 | 0.6 | 19 | 0.5 | 6 | 0.3 | |
| Diseases of the musculoskeletal system and connective tissue | 6,153 | 6.2 | 5,651 | 6.4 | 502 | 4.4 | 262 | 3.7 | 127 | 3.4 | 63 | 3.1 | |
| Congenital anomalies | 566 | 0.6 | 495 | 0.6 | 71 | 0.6 | 47 | 0.7 | 20 | 0.5 | 12 | 0.6 | |
| Certain conditions originating in the perinatal period | 46 | 0.0 | 41 | 0.0 | 5 | 0.0 | 2 | 0.0 | 2 | 0.1 | 2 | 0.1 | |
| Symptoms, signs and ill-defined conditions | 21,504 | 21.5 | 18,781 | 21.2 | 2,723 | 24.1 | 1,713 | 24.3 | 856 | 23.0 | 425 | 20.8 | |
| Injury and poisoning | 27,269 | 27.3 | 25,818 | 29.2 | 1451 | 12.8 | 745 | 10.6 | 340 | 9.1 | 192 | 9.4 | |
| External causes of injury and supplemental classification | 2,601 | 2.6 | 1,770 | 2.0 | 831 | 7.4 | 669 | 9.5 | 485 | 13.0 | 258 | 12.6 | |
| Missing | 6,710 | 6.7 | 5,613 | 6.3 | 1,097 | 9.7 | 766 | 10.9 | 486 | 13.1 | 345 | 16.9 | |
| Main issue on admission | Coma | 13 | 0.0 | 10 | 0.0 | 3 | 0.0 | 1 | 0.0 | 1 | 0.0 | 1 | 0.0 |
| Shock | 12 | 0.0 | 12 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | |
| Dyspnea | 3,626 | 3.6 | 3,222 | 3.6 | 404 | 3.6 | 221 | 3.1 | 107 | 2.9 | 40 | 2.0 | |
| Abdominal Pain | 8,087 | 8.1 | 7,053 | 8.0 | 1,034 | 9.2 | 674 | 9.6 | 347 | 9.3 | 190 | 9.3 | |
| Neck Pain | 164 | 0.2 | 145 | 0.2 | 19 | 0.2 | 9 | 0.1 | 1 | 0.0 | 0 | 0.0 | |
| Chest Pain | 5,362 | 5.4 | 4,784 | 5.4 | 578 | 5.1 | 319 | 4.5 | 168 | 4.5 | 84 | 4.1 | |
| Non-traumatic bleeding | 1,093 | 1.1 | 953 | 1.1 | 140 | 1.2 | 81 | 1.1 | 33 | 0.9 | 8 | 0.4 | |
| Fever | 3,206 | 3.2 | 2,895 | 3.3 | 311 | 2.8 | 186 | 2.6 | 62 | 1.7 | 23 | 1.1 | |
| Intoxication | 288 | 0.3 | 214 | 0.2 | 74 | 0.7 | 52 | 0.7 | 35 | 0.9 | 32 | 1.6 | |
| Hypertension | 1,122 | 1.1 | 996 | 1.1 | 126 | 1.1 | 75 | 1.1 | 37 | 1.0 | 18 | 0.9 | |
| Rhythm alteration | 1,829 | 1.8 | 1,642 | 1.9 | 187 | 1.7 | 102 | 1.4 | 32 | 0.9 | 14 | 0.7 | |
| Acute neurological syndrome | 871 | 0.9 | 799 | 0.9 | 72 | 0.6 | 42 | 0.6 | 16 | 0.4 | 8 | 0.4 | |
| Other nervous system symptoms | 2,236 | 2.2 | 2,010 | 2.3 | 226 | 2.0 | 133 | 1.9 | 77 | 2.1 | 43 | 2.1 | |
| Social issues | 51 | 0.1 | 20 | 0.0 | 31 | 0.3 | 27 | 0.4 | 22 | 0.6 | 18 | 0.9 | |
| Medico-legal checks | 53 | 0.1 | 38 | 0.0 | 15 | 0.1 | 11 | 0.2 | 9 | 0.2 | 7 | 0.3 | |
| Allergic reaction | 450 | 0.5 | 419 | 0.5 | 31 | 0.3 | 13 | 0.2 | 7 | 0.2 | 4 | 0.2 | |
| Trauma or burn | 28,670 | 28.7 | 27,344 | 30.9 | 1,326 | 11.7 | 680 | 9.6 | 298 | 8.0 | 167 | 8.2 | |
| Dermatological disorders | 313 | 0.3 | 286 | 0.3 | 27 | 0.2 | 12 | 0.2 | 7 | 0.2 | 4 | 0.2 | |
| Eye symptoms or disorders | 726 | 0.7 | 541 | 0.6 | 185 | 1.6 | 130 | 1.8 | 78 | 2.1 | 37 | 1.8 | |
| Dental disorders | 2,024 | 2.0 | 1,795 | 2.0 | 229 | 2.0 | 115 | 1.6 | 44 | 1.2 | 13 | 0.6 | |
| ENT symptoms or disorders | 1,108 | 1.1 | 980 | 1.1 | 128 | 1.1 | 70 | 1.0 | 28 | 0.8 | 10 | 0.5 | |
| Urological symptoms or disorders | 1,860 | 1.9 | 1,452 | 1.6 | 408 | 3.6 | 256 | 3.6 | 96 | 2.6 | 42 | 2.1 | |
| Psychomotor agitation | 1,594 | 1.6 | 1,021 | 1.2 | 573 | 5.1 | 438 | 6.2 | 294 | 7.9 | 229 | 11.2 | |
| Other | 35,048 | 35.1 | 29,879 | 33.8 | 5,169 | 45.8 | 3,406 | 48.3 | 1,922 | 51.7 | 1,054 | 51.5 | |
| Predictor Variable | OR | 95% Confidence Limits | p Value | ||||
| Age (years) | 1.00 | 1.00 | 1.00 | 0.794 | |||
| Gender | Male | reference | - | - | - | ||
| Female | 0,87 | 0,79 | 0,95 | 0.002 | |||
| Chronic conditions | No chronic conditions | reference | - | - | - | ||
| One chronic condition | 1.37 | 1.20 | 1.56 | <0.001 | |||
| Multiple chronic conditions (low-mid clinical complexity) | 1.54 | 1.32 | 1.80 | <0.001 | |||
| Multiple chronic conditions (high clinical complexity) | 3.18 | 2.70 | 3.76 | <0.001 | |||
| Socio-economic level | High | reference | - | - | - | ||
| Medium-high | 1.07 | 0.92 | 1.25 | 0.335 | |||
| Medium | 1.12 | 0.95 | 1.31 | 0.166 | |||
| Medium-low | 1.29 | 1.09 | 1.51 | 0.004 | |||
| Low | 1.70 | 1.46 | 1.97 | <0.001 | |||
| Multilevel parameters | |||||||
| Intercept-only model | MOR | p (wald) | |||||
| LHD* | 1.08 | 0.127 | |||||
| GP* | 1.24 | 0.008 | |||||
| Full model | MOR | p (wald) | |||||
| LHD | 1.05 | 0.207 | |||||
| GP | 1.18 | 0.061 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
