Preprint
Article

This version is not peer-reviewed.

Two Undecidable Decision Problems on an Ordered Pair of Non-Negative Integers

Submitted:

02 December 2025

Posted:

09 December 2025

You are already at the latest version

Abstract
For n ∈ N , let En = {1 = xk , xi + xj = xk, xi · xj = xk : i, j, k ∈ {0, … , n}} . For n ∈ N, ƒ(n) denotes the smallest b ∈ N such that if a system of equations SEn has a solution in Nn+1 , then S has a solution in {0 , … , b}n+1 . The author proved earlier that the function ƒ : N → N is computable in the limit and eventually dominates every computable function g : N → N . We present a short program in MuPAD which for n ∈ N prints the sequence {ƒi(n)}i=0 of non-negative integers converging to ƒ(n) . Since ƒ is not computable, no algorithm takes as input non-negative integers n and m and decides whether or not ∀(x0, … , xn) ∈ Nn+1 ∃(y0, … , yn) ∈ {0 , … , m}n+1 (∀k ∈ {0 , … , n} (1 = xk ⇒ 1 = yk)) ∧ (∀i, j, k ∈ {0, … , n} (xi + xj = xkyi + yj = yk) )∧(∀i, j, k ∈ {0 , … , n} ( xi · xj = xkyi · yj = yk)) . Similarly, no algorithm takes as input non-negative integers n and m and decides whether or not ∀(x0, … , xn) ∈ Nn+1 ∃ (y0, … , yn) ∈ {0, … , m}n+1 (∀j, k ∈ {0 , … , n} (xj + 1 = xkyj + 1 = yk)) ∧ (∀i, j, k ∈ {0 , … , n} (xi · xj = xkyi · yj = yk) ) . For n ∈ N, β(n) denotes the smallest b ∈ N such that if a system of equations S ⊆ E n has a unique solution in Nn+1 , then this solution belongs to {0, … , b}n+1. The author proved earlier that the function β : N → N is computable in the limit and eventually dominates every function δ : N → N with a single-fold Diophantine representation. The computability of β is unknown. We present a short program in MuPAD which for n ∈ N prints the sequence {βi(n)}i=0 of non-negative integers converging to β(n).
Keywords: 
;  ;  ;  ;  

1. The Collatz Problem Leads to a Short Computer Program That Computes in the Limit a Function γ : N { 0 , 1 } of Unknown Computability 

Definition 1.(cf. [10]). A computation in the limit of a function f : N N is a semi-algorithm which takes as input a non-negative integer n and for every m N prints a non-negative integer ξ ( n , m ) such that lim m ξ ( n , m ) = f ( n ) .
By Definition 1, a function f : N N is computable in the limit when there exists an infinite computation which takes as input a non-negative integer n and prints a non-negative integer on each iteration and prints f ( n ) on each sufficiently high iteration.
It is known that there exists a limit-computable function f : N N which is not computable, see Theorem 1. Every known proof of this fact does not lead to the existence of a short computer program that computes f in the limit. So far, short computer programs can only compute in the limit functions from N to N whose computability is proven or unknown.
Lemma 1.  
For every n N ,
sign ( n 1 ) · ( 2 n + ( 1 ( 1 ) n ) · ( 5 n + 2 ) ) 4 = 0 , if n = 1 n 2 , if n is even 3 n + 1 , if n is odd and n 1
MuPAD is a part of the Symbolic Math Toolbox in MATLAB R2019b. By Lemma 1, the following program in MuPAD computes in the limit a function γ : N { 0 , 1 } .
input("Input a non-negative integer n",n):
while TRUE do
print(sign(n)):
n:=sign(n-1)*(2*n+(1-(-1)^n)*(5*n+2))/4:
end_while:
The computability of γ is unknown, see [1]. The Collatz conjecture implies that γ ( n ) = 0 for every n N .

2. A Limit-Computable Function f : N N Which Eventually Dominates Every Computable Function g : N N  

For n N , let
E n = { 1 = x k , x i + x j = x k , x i · x j = x k : i , j , k { 0 , , n } }
Theorem 1.([9]). There exists a limit-computable function f : N N which eventually dominates every computable function g : N N .
We present an alternative proof of Theorem 1. For n N , f ( n ) denotes the smallest b N such that if a system of equations S E n has a solution in N n + 1 , then S has a solution in { 0 , , b } n + 1 . The function f : N N is computable in the limit and eventually dominates every computable function g : N N , see [12]. The term "dominated" in the title of [12] means "eventually dominated". Flowchart 1 shows a semi-algorithm which computes f ( n ) in the limit, see [12].
Preprints 187892 i001
A semi-algorithm which computes f ( n ) in the limit

3. The First Undecidable Decision Problem on an Ordered Pair of Non-Negative Integers 

Flowchart 2 shows a simpler semi-algorithm which computes f ( n ) in the limit.
Preprints 187892 i002
A simpler semi-algorithm which computes f ( n ) in the limit
Lemma 2.  
For every n , m N , the number printed by Flowchart 2 does not exceed the number printed by Flowchart 1.
Proof. 
For every ( a 0 , , a n ) { 0 , , m } n + 1 ,
E n { 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
   □
Lemma 3.  
For every n , m N , the number printed by Flowchart 1 does not exceed the number printed by Flowchart 2.
Proof. 
Let n , m N . For every system of equations S E n , if ( a 0 , , a n ) { 0 , , m } n + 1 and ( a 0 , , a n ) solves S , then ( a 0 , , a n ) solves the following system of equations:
{ 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
   □
Theorem 2.  
For every n , m N , Flowcharts 1 and 2 print the same number.
Proof. 
It follows from Lemmas 2 and 3.    □
Definition 2.  
An approximation of a tuple ( x 0 , , x n ) N n + 1 is a tuple ( y 0 , , y n ) N n + 1 such that
( k { 0 , , n } ( 1 = x k 1 = y k ) )
( i , j , k { 0 , , n } ( x i + x j = x k y i + y j = y k ) )
( i , j , k { 0 , , n } ( x i · x j = x k y i · y j = y k ) )
Observation 1.  
For every n N , there exists a set A ( n ) N n + 1 such that
card ( A ( n ) ) 2 card ( E n ) = 2 n + 1 + 2 · ( n + 1 ) 3
and every tuple ( x 0 , , x n ) N n + 1 possesses an approximation in A ( n ) .
Observation 2.  
For every n N , f ( n ) equals the smallest b N such that every tuple ( x 0 , , x n ) N n + 1 possesses an approximation in { 0 , , b } n + 1 .
Observation 3.  
For every n , m N , Flowcharts 1 and 2 print the smallest b { 0 , , m } such that every tuple ( x 0 , , x n ) { 0 , , m } n + 1 possesses an approximation in { 0 , , b } n + 1 .
Theorem 3.  
No algorithm takes as input non-negative integers n and m and returns the logical value of the following sentence: every tuple ( x 0 , , x n ) N n + 1 possesses an approximation in { 0 , , m } n + 1 .
Proof. 
Since the function f is not computable, it follows from Observation 2.    □

4. A Short Program inMuPADThat Computes f in the Limit 

The following program in MuPAD implements the semi-algorithm shown in Flowchart 2.
input("Input a non-negative integer n",n):
m:=0:
while TRUE do
X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[u])) $u=1..(m+1)^(n+1)]:
for p from 1 to (m+1)^(n+1) do
for q from 1 to (m+1)^(n+1) do
v:=1:
for k from 1 to n+1 do
if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:
for i from 1 to n+1 do
for j from i to n+1 do
if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:
if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:
end_for:
end_for:
end_for:
if max(op(X[q]))<max(op(X[p])) and v=1 then Y[p]:=0 end_if:
end_for:
end_for:
print(max(op(Y))):
m:=m+1:
end_while:

5. The Second Undecidable Decision Problem on an Ordered Pair of Non-Negative Integers 

For n N , h ( n ) denotes the smallest b N such that if a system of equations S   { x j + 1 = x k , x i · x j = x k : i , j , k { 0 , , n } } has a solution in N n + 1 , then S has a solution in { 0 , , b } n + 1 . From [12] and Lemma 3 in [11], it follows that the function h : N N is computable in the limit and eventually dominates every computable function g : N N . A bit shorter program in MuPAD computes h in the limit.
Theorem 4.  
No algorithm takes as input non-negative integers n and m and returns the logical value of the following sentence:
( x 0 , , x n ) N n + 1 ( y 0 , , y n ) { 0 , , m } n + 1
( j , k { 0 , , n } ( x j + 1 = x k y j + 1 = y k ) )
( i , j , k { 0 , , n } ( x i · x j = x k y i · y j = y k ) )
Proof. 
It holds because the function h is not computable.    □

6. A Limit-Computable Function β : N N of Unknown Computability Which Eventually Dominates Every Function δ : N N with a Single-Fold Diophantine Representation 

The Davis-Putnam-Robinson-Matiyasevich theorem states that every listable set M N n ( n N { 0 } ) has a Diophantine representation, that is
( a 1 , , a n ) M x 1 , , x m N W ( a 1 , , a n , x 1 , , x m ) = 0 ( R )
for some polynomial W with integer coefficients, see [6]. The representation (R) is said to be single-fold, if for any a 1 , , a n N the equation W ( a 1 , , a n , x 1 , , x m ) = 0 has at most one solution ( x 1 , , x m ) N m .
Hypothesis 1.([2,3,4,5,7,8]). Every listable set X N k ( k N { 0 } ) has a single-fold Diophantine representation.
For n N , β ( n ) denotes the smallest b N such that if a system of equations S E n has a unique solution in N n + 1 , then this solution belongs to { 0 , , b } n + 1 . The computability of β is unknown.
Theorem 5.  
The function β : N N is computable in the limit and eventually dominates every function δ : N N with a single-fold Diophantine representation.
Proof. 
This is proved in [12]. Flowchart 3 shows a semi-algorithm which computes β ( n ) in the limit, see [12].
Preprints 187892 i003
A semi-algorithm which computes β ( n ) in the limit    □

7. A Short Program inMuPADThat Computes β in the Limit 

Flowchart 4 shows a simpler semi-algorithm which computes β ( n ) in the limit.
Preprints 187892 i004
A simpler semi-algorithm which computes β ( n ) in the limit
Lemma 4.  
For every n , m N , the number printed by Flowchart 4 does not exceed the number printed by Flowchart 3.
Proof. 
For every ( a 0 , , a n ) { 0 , , m } n + 1 ,
E n { 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
   □
Lemma 5.  
For every n , m N , the number printed by Flowchart 3 does not exceed the number printed by Flowchart 4.
Proof. 
Let n , m N . For every system of equations S E n , if ( a 0 , , a n ) { 0 , , m } n + 1 is a unique solution of S in { 0 , , m } n + 1 , then ( a 0 , , a n ) solves the system S ^ , where
S ^ = { 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
By this and the inclusion S ^ S , S ^ has exactly one solution in { 0 , , m } n + 1 , namely ( a 0 , , a n ) .    □
Theorem 6.  
For every n , m N , Flowcharts 3 and 4 print the same number.
Proof. 
It follows from Lemmas 2 and 3.    □
The following program in MuPAD implements the semi-algorithm shown in Flowchart 4.
input("Input a non-negative integer n",n):
m:=0:
while TRUE do
X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[u])) $u=1..(m+1)^(n+1)]:
for p from 1 to (m+1)^(n+1) do
for q from 1 to (m+1)^(n+1) do
v:=1:
for k from 1 to n+1 do
if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:
for i from 1 to n+1 do
for j from i to n+1 do
if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:
if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:
end_for:
end_for:
end_for:
if q<>p and v=1 then Y[p]:=0 end_if:
end_for:
end_for:
print(max(op(Y))):
m:=m+1:
end_while:

References

  1. Calude, C. S. To halt or not to halt? That is the question; World Scientific: Singapore, 2024. [Google Scholar]
  2. Cantone, D.; Casagrande, A.; Fabris, F.; Omodeo, E. The quest for Diophantine finite-fold-ness  . Matematiche (Catania) 2021, 76(no. 1), 133–160. [Google Scholar] [CrossRef]
  3. Cantone, D.; Cuzziol, L.; Omodeo, E. G. On Diophantine singlefold specifications  . Matematiche (Catania) 2024, 79(no. 2), 585–620. Available online: https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/2703/1218.
  4. Cantone, D.; Omodeo, E. G. “One equation to rule them all”, revisited . Rend. Istit. Mat. Univ. Trieste 2021, 53 Art.(No. 28), 32 pp. [Google Scholar] [CrossRef]
  5. Davis, M.; Matiyasevich, Yu.; Robinson, J. Hilbert’s tenth problem, Diophantine equations: positive aspects of a negative solution; in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder). Feferman). In Proc. Sympos. Pure Math.; Amer. Math. Soc.: Providence, RI; Amer. Math. Soc.: Providence, RI, 1976; vol. 28, Part 2, p. 323–378 269–324. [Google Scholar] [CrossRef]
  6. Matiyasevich, Yu. Matiyasevich, Hilbert’s tenth problem; MIT Press: Cambridge, MA, 1993. [Google Scholar]
  7. Matiyasevich, Yu. Hilbert’s tenth problem: what was done and what is to be done  . In Proceedings of the Workshop on Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999) Contemp. Math. 270; Amer. Math. Soc.: Providence, RI, 2000; pp. 1–47. [Google Scholar] [CrossRef]
  8. Matiyasevich, Yu. Towards finite-fold Diophantine representations  . J. Math. Sci. (N. Y.) 2010, vol. 171(no. 6), 745–752. [Google Scholar] [CrossRef]
  9. Royer, J. S.; Case, J. Subrecursive Programming Systems: Complexity and Succinctness; Birkhäuser: Boston, 1994. [Google Scholar]
  10. Soare, R. I. Interactive computing and relativized computability  . In Computability: Turing, Gödel, Church and beyond; Copeland, B. J., Posy, C. J., Shagrir, O., Eds.; MIT Press: Cambridge, MA, 2013; pp. 203–260. [Google Scholar]
  11. Tyszka, A. A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions  . Open Comput. Sci. 2018, 8(no. 1), 109–114. [Google Scholar] [CrossRef]
  12. Tyszka, A. All functions g:NN which have a single-fold Diophantine representation are dominated by a limit-computable function f:N∖{0}→N which is implemented in MuPAD and whose computability is an open problem  . In Computation, cryptography, and network security; Daras, N. J., Rassias, M. Th., Eds.; Springer: Cham, 2015; pp. 577–590. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated