Submitted:
04 August 2025
Posted:
05 August 2025
Read the latest preprint version here
Abstract
Keywords:


input("Input a non-negative integer n",n):
m:=0:
while TRUE do
X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[u])) $u=1..(m+1)^(n+1)]:
for p from 1 to (m+1)^(n+1) do
for q from 1 to (m+1)^(n+1) do
v:=1:
for k from 1 to n+1 do
if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:
for i from 1 to n+1 do
for j from i to n+1 do
if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:
if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:
end_for:
end_for:
end_for:
if max(op(X[q]))<max(op(X[p])) and v=1 then Y[p]:=0 end_if:
end_for:
end_for:
print(max(op(Y))):
m:=m+1:
end_while:
References
- J. S. Royer and J. Case, Subrecursive Programming Systems: Complexity and Succinctness, Birkhäuser, Boston, 1994.
- A. Tyszka, All functions g:N→N which have a single-fold Diophantine representation are dominated by a limit-computable function f:N∖{0}→N which is implemented in MuPAD and whose computability is an open problem, in: Computation, cryptography, and network security (eds. N. J. Daras, M. Th. Rassias), Springer, Cham, 2015, 577–590, https://doi.org/10.1007/978-3-319-18275-9_24.
- A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018), no. 1, 109–114, https://dx.doi.org/10.1515/comp-2018-0012.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
