Preprint
Article

This version is not peer-reviewed.

Three Undecidable Decision Problems About a Non-Negative Integer n Which Have a Short Description in Terms of Arithmetic

Submitted:

06 February 2026

Posted:

09 February 2026

You are already at the latest version

Abstract
We prove that the following decision problems (1) and (2) are algorithmically undecidable when \( n∈N \). (1) \( ∃(y_0,...,y_n)∈N^{n+1} ∀i,j,k∈{0,...,n} (((2^{2^{2^j \cdot 3^k}}+1 divides n) ⇒ (y_j+1=y_k))∧((2^{2^{2^i \cdot 3^j \cdot 5^{k+1}}}+1 divides n)⇒(y_i \cdot y_j=y_k))) \). (2) \( ∃p,q∈N ((n=2^p \cdot 3^q)∧∀(x_0,...,x_p)∈N^{p+1} ∃(y_0,...,y_p)∈{0,...,q}^{p+1} ∀i,j,k∈{0,...,p} (((x_j+1=x_k)⇒(y_j+1=y_k))∧((x_i \cdot x_j=x_k)⇒(y_i \cdot y_j=y_k)))) \). For \( n∈N \), let \( E_n={1=x_k, x_i+x_j=x_k, x_i \cdot x_j=x_k: i,j,k∈{0,...,n}} \). For \( n∈N \), f(n) denotes the smallest b∈N such that if a system of equations \( S⊆E \)_n has a solution in \( N^{n+1} \), then S has a solution in\( {0,...,b}^{n+1} \). The author proved earlier that the function \( f:N→N \) is computable in the limit and eventually dominates every computable function g:N→N. We present a short program in MuPAD which for n∈N prints the sequence \( {f_i(n)}_{i=0}^∞ \) of non-negative integers converging to f(n). We prove that no algorithm takes as input a non-negative integer n and decides whether or not \( ∃p,q∈N ((n=2^p \cdot 3^q)∧∀(x_0,...,x_p)∈N^{p+1} ∃(y_0,...,y_p)∈{0,...,q}^{p+1} ((∀j,k∈{0,...,p} (x_j+1=x_k ⇒ y_j+1=y_k)) ∧ (∀i,j,k∈{0,...,p} (x_i \cdot x_j=x_k ⇒ y_i \cdot y_j=y_k)))) \). For \( n∈N \), \( β(n) \) denotes the smallest b∈N such that if a system of equations \( S⊆E_n \) has a unique solution in \( N^{n+1} \), then this solution belongs to \( {0,...,b}^{n+1} \). The author proved earlier that the function \( β:N→N \) is computable in the limit and eventually dominates every function δ:N→N with a single-fold Diophantine representation. The computability of β is unknown. We present a short program in MuPAD which for n∈N prints the sequence \( {β_i(n)}_{i=0}^∞ \) of non-negative integers converging to \( β(n) \).
Keywords: 
;  ;  ;  ;  ;  

1. The Collatz Problem Leads to a Short Computer Program That Computes in the Limit a Function γ : N { 0 , 1 } of Unknown Computability

Definition 1.(cf. [11]). A computation in the limit of a function f : N N is a semi-algorithm which takes as input a non-negative integer n and for every m N prints a non-negative integer ξ ( n , m ) such that lim m ξ ( n , m ) = f ( n ) .
By Definition 1, a function f : N N is computable in the limit when there exists an infinite computation which takes as input a non-negative integer n and prints a non-negative integer on each iteration and prints f ( n ) on each sufficiently high iteration.
It is known that there exists a limit-computable function f : N N which is not computable, see Theorem 1. Every known proof of this fact does not lead to the existence of a short computer program that computes f in the limit. So far, short computer programs can only compute in the limit functions from N to N whose computability is proven or unknown.
Lemma 1. 
For every n N ,
sgn ( n 1 ) · ( 2 n + ( 1 ( 1 ) n ) · ( 5 n + 2 ) ) 4 = 0 , if n = 1 n 2 , if n is even 3 n + 1 , if n is odd and n 1
MuPAD is a part of the Symbolic Math Toolbox in MATLAB R2019b. By Lemma 1, the following program in MuPAD computes in the limit a function γ : N { 0 , 1 } .
input("Input a non-negative integer n",n):
while TRUE do
print(sign(n)):
n:=sign(n-1)*(2*n+(1-(-1)^n)*(5*n+2))/4:
end_while:
The computability of γ is unknown, see [1]. The Collatz conjecture implies that γ ( n ) = 0 for every n N .

2. A Limit-Computable Function f : N N Which Eventually Dominates Every Computable Function g : N N

For n N , let
E n = { 1 = x k , x i + x j = x k , x i · x j = x k : i , j , k { 0 , , n } }
Theorem 1.([9]). There exists a limit-computable function f : N N which eventually dominates every computable function g : N N .
We present an alternative proof of Theorem 1. For n N , f ( n ) denotes the smallest b N such that if a system of equations S E n has a solution in N n + 1 , then S has a solution in { 0 , , b } n + 1 . The function f : N N is computable in the limit and eventually dominates every computable function g : N N , see [13]. The term "dominated" in the title of [13] means "eventually dominated". Flowchart 1 shows a semi-algorithm which computes f ( n ) in the limit, see [13].
Preprints 197909 i001
Flowchart 1
A semi-algorithm which computes f ( n ) in the limit

3. A Short Program in MuPAD That Computes f in the Limit

Flowchart 2 shows a simpler semi-algorithm which computes f ( n ) in the limit.
Preprints 197909 i002
Flowchart 2
A simpler semi-algorithm which computes f ( n ) in the limit
Lemma 2. 
For every n , m N , the number printed by Flowchart 2 does not exceed the number printed by Flowchart 1.
Proof. 
For every ( a 0 , , a n ) { 0 , , m } n + 1 ,
E n { 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
   □
Lemma 3. 
For every n , m N , the number printed by Flowchart 1 does not exceed the number printed by Flowchart 2.
Proof. 
Let n , m N . For every system of equations S E n , if ( a 0 , , a n ) { 0 , , m } n + 1 and ( a 0 , , a n ) solves S, then ( a 0 , , a n ) solves the following system of equations:
{ 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
   □
Theorem 2. 
For every n , m N , Flowcharts 1 and 2 print the same number.
Proof. 
It follows from Lemmas 2 and 3.    □
Definition 2. 
An approximation of a tuple ( x 0 , , x n ) N n + 1 is a tuple ( y 0 , , y n ) N n + 1 such that
( k { 0 , , n } ( 1 = x k 1 = y k ) )
( i , j , k { 0 , , n } ( x i + x j = x k y i + y j = y k ) )
( i , j , k { 0 , , n } ( x i · x j = x k y i · y j = y k ) )
Observation 1. 
For every n N , there exists a set A ( n ) N n + 1 such that
card ( A ( n ) ) 2 card ( E n ) = 2 n + 1 + 2 · ( n + 1 ) 3
and every tuple ( x 0 , , x n ) N n + 1 possesses an approximation in A ( n ) .
Observation 2. 
For every n N , f ( n ) equals the smallest b N such that every tuple ( x 0 , , x n ) N n + 1 possesses an approximation in { 0 , , b } n + 1 .
Observation 3. 
For every n , m N , Flowcharts 1 and 2 print the smallest b { 0 , , m } such that every tuple ( x 0 , , x n ) { 0 , , m } n + 1 possesses an approximation in { 0 , , b } n + 1 .
The following program in MuPAD implements the semi-algorithm shown in Flowchart 2.
input("Input a non-negative integer n",n):
m:=0:
while TRUE do
X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[u])) $u=1..(m+1)^(n+1)]:
for p from 1 to (m+1)^(n+1) do
for q from 1 to (m+1)^(n+1) do
v:=1:
for k from 1 to n+1 do
if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:
for i from 1 to n+1 do
for j from i to n+1 do
if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:
if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:
end_for:
end_for:
end_for:
if max(op(X[q]))<max(op(X[p])) and v=1 then Y[p]:=0 end_if:
end_for:
end_for:
print(max(op(Y))):
m:=m+1:
end_while:

4. Three Undecidable Decision Problems About a Non-Negative Integer n Which Have a Short Description in Terms of Arithmetic

Theorem 3. 
No algorithm takes as input non-negative integers n and m and decides whether or not
( x 0 , , x n ) N n + 1 ( y 0 , , y n ) { 0 , , m } n + 1
( ( k { 0 , , n } ( 1 = x k 1 = y k ) )
( i , j , k { 0 , , n } ( x i + x j = x k y i + y j = y k ) )
( i , j , k { 0 , , n } ( x i · x j = x k y i · y j = y k ) ) )
Proof. 
Since the function f is not computable, it follows from Observation 2.    □
Lemma 4.([12]). For non-negative integers, the equation x + y = z is equivalent to a system which consists of equations of the forms β + 1 = γ and α · β = γ .
For n N , h ( n ) denotes the smallest b N such that if a system of equations S   { x j + 1 = x k , x i · x j = x k : i , j , k { 0 , , n } } has a solution in N n + 1 , then S has a solution in { 0 , , b } n + 1 . From Lemma 4 and [13], it follows that the function h : N N is computable in the limit and eventually dominates every computable function g : N N . A bit shorter program in MuPAD computes h in the limit.
Theorem 4. 
No algorithm takes as input non-negative integers n and m and decides whether or not
( x 0 , , x n ) N n + 1 ( y 0 , , y n ) { 0 , , m } n + 1
( ( j , k { 0 , , n } ( x j + 1 = x k y j + 1 = y k ) )
( i , j , k { 0 , , n } ( x i · x j = x k y i · y j = y k ) ) )
Proof. 
It holds because the function h is not computable.    □
Theorem 5. 
No algorithm takes as input a non-negative integer n and decides whether or not
p , q N ( ( n = 2 p · 3 q )
( x 0 , , x p ) N p + 1 ( y 0 , , y p ) { 0 , , q } p + 1
( ( j , k { 0 , , p } ( x j + 1 = x k y j + 1 = y k ) )
( i , j , k { 0 , , p } ( x i · x j = x k y i · y j = y k ) ) ) )
Proof. 
It follows from Theorem 4.    □
Corollary 1. 
For some non-negative integer n, the formal statement in Theorem 5 is logically undecidable.
Let [ · ] denote the integer part function.
Lemma 5. 
The function
N n θ ( n [ n ] 2 , | n [ n ] 2 [ n ] | ) N 2
is surjective.
Proof. 
It holds because θ ( { i 2 + j : ( i , j N ) ( j i ) } ) = N 2 .    □
Theorem 6. 
No algorithm takes as input a non-negative integer n and decides whether or not
( x 0 , , x n [ n ] 2 ) N n [ n ] 2 + 1 ( y 0 , , y n [ n ] 2 ) { 0 , , | n [ n ] 2 [ n ] | } n [ n ] 2 + 1
( ( j , k { 0 , , n [ n ] 2 } ( x j + 1 = x k y j + 1 = y k ) )
( i , j , k { 0 , , n [ n ] 2 } ( x i · x j = x k y i · y j = y k ) ) )
Proof. 
It follows from Theorem 4 and Lemma 5.    □
Corollary 2. 
For some non-negative integer n, the formal statement in Theorem 6 is logically undecidable.
Lemma 6.([10]). For every x , y N , x y implies that the numbers 2 2 x + 1 and 2 2 y + 1 are relatively prime.
Lemma 7.([12]). There exists a constructive algorithm that takes as input a Diophantine equation D ( x 0 , , x l ) = 0 and returns a system S of equations of the forms y j + 1 = y k and y i · y j = y k which is solvable in non-negative integers if and only if the equation D ( x 0 , , x l ) = 0 is solvable in non-negative integers.
Theorem 7. 
No algorithm takes as input a non-negative integer n and decides whether or not
( y 0 , , y n ) N n + 1 i , j , k { 0 , , n } ( P )
( ( 2 2 2 j · 3 k + 1 divides n ) ( y j + 1 = y k ) ) ( ( 2 2 2 i · 3 j · 5 k + 1 + 1 divides n ) ( y i · y j = y k ) )
Proof. 
If n > 0 , then we can compute a unique ( p , q ) N 2 such that n = 2 p · ( 2 q + 1 ) . The decision problem (P) is algorithmically undecidable because we can obtain undecidability when n > 0 and for every i , j , k { 0 , , n }
( max ( j , k ) > p ) ( 2 2 2 j · 3 k + 1 does not divide n )
and
( max ( i , j , k ) > p ) ( 2 2 2 i · 3 j · 5 k + 1 + 1 does not divide n )
In this case, by Lemma 6, for every system of equations
S { y j + 1 = y k , y i · y j = y k : i , j , k { 0 , , p } }
the problem of solvability of S in non-negative integers y 0 , , y p is equivalent to the problem (P) for some n = 2 p · ( 2 q + 1 ) , where n can be computed. Next, we apply Lemma 7 and a negative solution to Hilbert’s 10th problem.    □
Corollary 3. 
For some non-negative integer n, the formal statement in Theorem 7 is logically undecidable.

5. A Limit-Computable Function β : N N of Unknown Computability Which Eventually Dominates Every Function δ : N N with a single-fold Diophantine Representation

The Davis-Putnam-Robinson-Matiyasevich theorem states that every listable set M N n ( n N { 0 } ) has a Diophantine representation, that is
( a 1 , , a n ) M x 1 , , x m N W ( a 1 , , a n , x 1 , , x m ) = 0 ( R )
for some polynomial W with integer coefficients, see [6]. The representation (R) is said to be single-fold, if for any a 1 , , a n N the equation W ( a 1 , , a n , x 1 , , x m ) = 0 has at most one solution ( x 1 , , x m ) N m .
Hypothesis 1.([2,3,4,5,7,8]). Every listable set X N k ( k N { 0 } ) has a single-fold Diophantine representation.
For n N , β ( n ) denotes the smallest b N such that if a system of equations S E n has a unique solution in N n + 1 , then this solution belongs to { 0 , , b } n + 1 . The computability of β is unknown.
Theorem 8. 
The function β : N N is computable in the limit and eventually dominates every function δ : N N with a single-fold Diophantine representation.
Proof. 
This is proved in [13]. Flowchart 3 shows a semi-algorithm which computes β ( n ) in the limit, see [13].
Preprints 197909 i003
Flowchart 3
A semi-algorithm which computes β ( n ) in the limit>    □

6. A Short Program in MuPAD That Computes β in the Limit

Flowchart 4 shows a simpler semi-algorithm which computes β ( n ) in the limit.
Preprints 197909 i004
Flowchart 4
A simpler semi-algorithm which computes β ( n ) in the limit
Lemma 8. 
For every n , m N , the number printed by Flowchart 4 does not exceed the number printed by Flowchart 3.
Proof. 
For every ( a 0 , , a n ) { 0 , , m } n + 1 ,
E n { 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
   □
Lemma 9. 
For every n , m N , the number printed by Flowchart 3 does not exceed the number printed by Flowchart 4.
Proof. 
Let n , m N . For every system of equations S E n , if ( a 0 , , a n ) { 0 , , m } n + 1 is a unique solution of S in { 0 , , m } n + 1 , then ( a 0 , , a n ) solves the system S ^ , where
S ^ = { 1 = x k : ( k { 0 , , n } ) ( 1 = a k ) }
{ x i + x j = x k : ( i , j , k { 0 , , n } ) ( a i + a j = a k ) }
{ x i · x j = x k : ( i , j , k { 0 , , n } ) ( a i · a j = a k ) }
By this and the inclusion S ^ S , S ^ has exactly one solution in { 0 , , m } n + 1 , namely ( a 0 , , a n ) .    □
Theorem 9. 
For every n , m N , Flowcharts 3 and 4 print the same number.
Proof. 
It follows from Lemmas 8 and 9.    □
The following program in MuPAD implements the semi-algorithm shown in Flowchart 4.
input("Input a non-negative integer n",n):
m:=0:
while TRUE do
X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[u])) $u=1..(m+1)^(n+1)]:
for p from 1 to (m+1)^(n+1) do
for q from 1 to (m+1)^(n+1) do
v:=1:
for k from 1 to n+1 do
if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:
for i from 1 to n+1 do
for j from i to n+1 do
if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:
if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:
end_for:
end_for:
end_for:
if q<>p and v=1 then Y[p]:=0 end_if:
end_for:
end_for:
print(max(op(Y))):
m:=m+1:
end_while:

References

  1. Calude, C. S. To halt or not to halt? That is the question; World Scientific: Singapore, 2024. [Google Scholar]
  2. Cantone, D.; Casagrande, A.; Fabris, F.; Omodeo, E. The quest for Diophantine finite-fold-ness. Matematiche (Catania) 2021, 76(no. 1), 133–160. [Google Scholar] [CrossRef]
  3. Cantone, D.; Cuzziol, L.; Omodeo, E. G. On Diophantine singlefold specifications. Matematiche (Catania) 2024, 79(no. 2), 585–620. Available online: https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/2703/1218.
  4. Cantone, D.; Omodeo, E. G. “One equation to rule them all”, revisited. Rend. Istit. Mat. Univ. Trieste 32 pp. (electronic). 2021, 53 Art.(No. 28). [Google Scholar] [CrossRef]
  5. Davis, M.; Matiyasevich, Yu.; Robinson, J. Hilbert’s tenth problem, Diophantine equations: positive aspects of a negative solution; in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math. In Part 2; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI; Amer. Math. Soc.: Providence, RI, 1976; vol. 28, p. 323–378 269–324. [Google Scholar] [CrossRef]
  6. Yu. Matiyasevich, Hilbert’s tenth problem; MIT Press: Cambridge, MA, 1993. [Google Scholar]
  7. Matiyasevich, Yu. Hilbert’s tenth problem: what was done and what is to be done, in: Proceedings of the Workshop on Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999). In Contemp. Math. 270; Amer. Math. Soc.: Providence, RI, 2000; pp. 1–47. [Google Scholar] [CrossRef]
  8. Matiyasevich, Yu. Towards finite-fold Diophantine representations. J. Math. Sci. (N. Y.) 2010, vol. 171(no. 6), 745–752. [Google Scholar] [CrossRef]
  9. Royer, J. S.; Case, J. Subrecursive Programming Systems: Complexity and Succinctness; Birkhäuser: Boston, 1994. [Google Scholar]
  10. Sierpiński, W. Elementary theory of numbers, 2nd ed.; Schinzel, A., Ed.; PWN – Polish Scientific Publishers and North-Holland: Warsaw-Amsterdam, 1987. [Google Scholar]
  11. Soare, R. I. Interactive computing and relativized computability. In Computability: Turing, Gödel, Church and beyond; Copeland, B. J., Posy, C. J., Shagrir, O., Eds.; MIT Press: Cambridge, MA, 2013; pp. 203–260. [Google Scholar]
  12. Tyszka, A. A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions. Open Comput. Sci. 2018, 8(no. 1), 109–114. [Google Scholar] [CrossRef]
  13. Tyszka, A. All functions g:NN which have a single-fold Diophantine representation are dominated by a limit-computable function f:N∖{0}→N which is implemented in MuPAD and whose computability is an open problem. In Computation, cryptography, and network security; Daras, N. J., Rassias, M. Th., Eds.; Springer: Cham, 2015; pp. 577–590. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated