Submitted:
23 July 2025
Posted:
24 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Definition, Standards and Programmes for Monitoring the Intensity of Agricultural Land Use
2.1. Definition of A-LUI
2.2. Programmes for Monitoring A-LUI at National, European and Global Scale
- Land Register: The land register records the types of land and their use in Germany. It is maintained by the state surveying and land registry offices. Most countries have detailed land register records of land type and ownership, maintained by the state surveying and land registry offices.
- Agricultural Structure Survey: Regular surveys of agricultural land use, yields, livestock, etc. by National Statistical Offices.
- IACS (Integrated Administration and Control System for Management Aid): In agriculture, the IACS system plays a central role in monitoring and managing data such as information on the use of plant protection products, fertiliser data, soil and water data, and yield and production data, as well as environmental and health data. The monitoring and control of IACS data in agriculture is carried out by different institutions and authorities, mainly at regional, national and European level.
- Europe
- Corine: The European Environment Agency (EEA) coordinates various land use monitoring projects, including the production of Corine Land Cover maps.
- Lucas: LUCAS (Land Use/Cover Area Frame Survey) This is a regular statistical survey of land use and land cover in the EU.Copernicus data: Copernicus is the European Earth Observation Programme (ESA) and provides extensive data on land use from satellite data (Sentinel-1-3).
- Farm structure survey datasets (https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Farm_structure_survey_(FSS))
- Agricultural census data (e.g. production, environmental indicators) at national levels and at sub-national levels (NUTS 1, NUTS 2, NUTS3). https://ec.europa.eu/eurostat/web/agriculture/information-data#Agricultural%20production.
- World
- Global Land Cover (GLC): Several international initiatives produce global land cover maps, including projects supported by FAO and the United Nations Environment Programme (UNEP).
- MODIS (Moderate Resolution Imaging Spectroradiometer): An instrument on NASA's Terra and Aqua satellites that provides global data on land cover and land use change.
- Global Land Analysis and Discovery (GLAD): A University of Maryland project to monitor global land use using high-resolution satellite imagery.
- FAO (Food and Agriculture Organisation of the United Nations), OECD (Organisation for Economic Co-operation and Development) and World Bank (World Bank) use indicators to monitor A-LUI worldwide.
3. Approaches to Monitoring of A-LUI
3.1. In Situ Approaches
3.2. Remote Sensing Approach
3.2.1. Principles of Recording A-LUI Using RS
3.2.2. Challenges of Recording A-LUI Using RS
4. Definition of A-LUI Using RS
- (I)
- The trait indicators of LUI, which represents the diversity of the biochemical-, physical, optical, morphological-, structural-, textural- and functional characteristics of LUI traits that affect, interact with or are influenced by their genese-, taxonomic-, structural- and functional LUI indicators;
- (II)
- The genesis indicators of LUI, which refers to the diversity of the length of evolutionary pathways associated with a particular set of LUI traits, taxa, structures and functions of LUI diversity. Therefore, groups of LUI traits, LUI taxa, LUI structures and LUI functions that maximise the accumulation of functional diversity of LUI diversity are identified;
- (III)
- The structural indicators of LUI, namely, the diversity of the composition and configuration of LUI characteristics;
- (IV)
- The taxonomic indicators of LUI, representing the diversity of LUI components that differ from a taxonomic perspective;
- (V)
- The functional indicators of LUI, which is the diversity of LUI functions and processes, as well as their intra- and interspecific interactions.
4.1. Monitoring the Trait Indicators of A-LUI Using RS
4.1.1. Trait Indicators of A-LUI - Spectranometric Approach
4.1.2. Trait Indicators of A-LUI - Chlorophyll Content
4.1.3. Trait Indicators of A-LUI - Chlorophyll Fluorescence
4.1.4. Trait Indicators of A-LUI - Leaf Nitrogen Content
4.2. Monitoring the Genesis Indicators of A-LUI with RS
4.2.1. Genesis Indicators of A-LUI - Subsurface Drainage
4.2.2. Genesis Indicators of A-LUI - Terrace Mapping
4.2.3. Genesis Indicators of A-LUI - Allmenden
4.2.4. Genesis Indicators of A-LUI - Deforestation
4.3. Monitoring the Structural Indicators of A-LUI with RS
4.3.1. Structural A-LUI Indicators - Crop Composition and Configuration
4.3.2. Structural A-LUI Indicators - Surface Roughness of the Vegetation
4.3.3. Structural A-LUI Indicators - Soil Roughness
4.4. Monitoring the Taxonomic A-LUI Indicators with RS
4.4.1. Taxonomic A-LUI Indicators - Cropping Patterns
4.4.2. Taxonomic A-LUI Indicators - Crop Classifications
4.4.3. Taxonomic A-LUI Indicators - Intensification of Grassland
4.5. Monitoring the Functional A-LUI Indicators with RS
4.5.1. Functional A-LUI Indicators - Plant Density and Biomass Production
4.5.2. Functional A-LUI Indicators – Pesticide, Herbicide and Fungicide
4.5.3. Functional A-LUI Indicators - Fertilisation Intensity
4.5.4. Functional A-LUI indicators - Soil Organic Carbon (SOC)
5. New Approaches for the Quantification and Evaluation of A-LUI Using RS
5.1. RS and AI for Recording A-LUI
5.2. Semantic Web and Linked Open Data for the Monitoring of A-LUI
6. Conclusions and Further Research
- Integration of different RS technologies: Development of integrated multi-sensor approaches to capture specific management practices more precisely and map them in a spatially differentiated way.
- Hybrid modelling and AI-based approaches: Further development of hybrid models that combine physical radiative transfer models with data-driven methods to capture complex ecological and agricultural processes even more accurately.
- Standardisation and harmonisation: Promotion of international cooperation to standardise RS data and indicators in order to increase comparability and global applicability.
- Scaling strategies: Research into effective scaling approaches to link local, detailed in-situ data with large-scale RS data in order to develop robust models for large-scale applications.
- Sustainability assessment: Greater integration of RS-based indicators into environmental and socio-economic modelling to provide more comprehensive assessments of the sustainability and environmental impacts of agricultural intensification strategies.
- This considerably improves the informative value and practical applicability of RS-based LUI indicators and thus contributes significantly to the sustainable development of agricultural systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

| FAO | OECD | World Bank | EUROSTAT | |
|---|---|---|---|---|
|
Geographical area of monitoring |
Worldwide coverage, with a special focus on developing countries | Primarily OECD member countries, focus on highly developed industrialised nations | Developing countries and emerging markets | European Union (EU) and some enlargement countries |
| Time availability of the indicators | Indicators of land use intensity have been available since the 1960s, Increased surveillance since the 1990s |
Data and analyses on land use intensity since the 1980s, Regular reports since the early 2000s. |
Data on land use intensity since the 1990s, Comprehensive database (WDI) since the 2000s. |
Harmonised data on agriculture and land use since the 1990s, Regular (every three to five years) surveys since the 1990s |
| Link | FAO database FAOSTAT https://www.fao.org/statistics/data-dissemination/agrifood-systems/en, (data access: 11.07.2024) |
OECD https://www.oecd.org/, (data access: 11.07.2024) |
World Development Indicators (WDI) https://databank.worldbank.org/source/world-development-, (data access: 11.07.2024) |
Farm Structure Surveys (FSS) https://ec.europa.eu/eurostat/web/microdata/farm-structure-survey (data access: 11/07/2024) |
| Indicators (selective examples) | ||||
| Indicator | FAO | OECD | World Bank | Eurostat |
| Agricultural area | Total area for agriculture (arable land, permanent grassland, permanent crops) | Agricultural land, including arable land, permanent crops, and pastures | Agricultural land (sq. km) | Utilised agricultural area (UAA) |
| Arable land | Land for crops, including repeatedly cultivated soils and fallow land | Arable land, including temporary crops and fallow land | Arable land (hectares) | Arable land |
| Permanent grassland | Land for perennial grasses and forage plants | Permanent pastures and meadows | Permanent meadows and pastures (hectares) | Permanent grassland |
| Permanent crops | Land for perennial crops such as fruit trees and vineyards | Permanent crops, such as orchards and vineyards | Permanent crops (hectares) | Permanent crops |
| Harvest yields | Amount of crop per unit area | Crop yields, measured by specific crop outputs per hectare | Cereal yield (kg per hectare) | Crop production per unit area |
| Use of fertilisers | Amount of fertiliser per hectare | Fertiliser consumption (kg per hectare of arable land) | Fertiliser consumption (kg per hectare of arable land) | Consumption of fertilisers per unit area of agricultural land |
| Pesticide use | Amount of pesticides per hectare | Pesticide sales and usage | Pesticide consumption (kg per hectare of arable land) | Pesticide sales and consumption |
| Irrigated area | Proportion of artificially irrigated agricultural land | Area equipped for irrigation (hectares) | Irrigated land (% of total agricultural land) | Irrigated area |
| Machine inventory | Number and type of machines per unit area | Agricultural machinery, such as tractors per hectare | Agricultural machinery (tractors per 100 sq. km of arable land) | Number of tractors and other agricultural machinery per unit area of agricultural land |
| Labour input | Labour hours per unit area | Labour input in agriculture, measured by hours worked per hectare | Employment in agriculture (% of total employment) | Labour force in agriculture |
| Livestock density | Number of animals per unit area of pastureland | Livestock density, measured as livestock units per hectare of pasture land | Livestock production index | Livestock density per unit area of pasture land |
| Carbon sequestration in the soil | Amount of carbon sequestered in the soil | Soil organic carbon content | Soil organic carbon content | Soil organic carbon content |
| Ground cover | Type and extent of ground cover | Land cover types and changes | Land cover (% of land area) | Land cover and land use |
| Erosion risk | Risk of soil erosion due to water or wind | Soil erosion rates | Soil erosion rates | Soil erosion and degradation risk |
| Biodiversity | Diversity of plant and animal species on farmland land (eg. Farmland birds, pollinators, butterflies) | Farmland biodiversity indices (eg. Farmland birds, pollinators, butterflies) | Agricultural biodiversity indices (eg. Farmland birds, pollinators, butterflies) | Biodiversity indicators in agricultural landscapes (eg. Farmland birds, pollinators, butterflies) |
| Water consumption in agriculture | Amount of water used for irrigation | Agricultural water withdrawal | Agricultural water withdrawal (% of total water withdrawal) | Water use in agriculture |
| Agricultural production per unit of input | Efficiency of the means of production in agriculture | Total factor productivity in agriculture | Agricultural value added per worker | Output per hectare of agricultural land |
| Energy consumption in agriculture | Energy consumption in agriculture | Energy use in agriculture | Energy use in agriculture | Energy consumption in agriculture |
| Sustainability indicators | Sustainability of agricultural practices | Sustainable agriculture practices indicators | Sustainable land management indicators | Sustainable farming practices |
| Climate impact of agriculture | Greenhouse gas emissions from agriculture | Greenhouse gas emissions from agriculture | Agricultural methane emissions (kt of CO2 equivalent) | Greenhouse gas emissions from agriculture |
| Nutrient balance in the soil | Balance of nitrogen and phosphorus in the soil | Nitrogen and phosphorus balance | Soil nutrient balance | Nutrient balance in agricultural soils |
| Bioproductivity | Productivity of biological systems on agricultural land | Biological productivity of agricultural systems | Agricultural productivity indexes | Biological productivity of agricultural lands |
| Plant protection measures | Measures to combat pests and diseases | Pest and disease control practices | Pest and disease control indicators | Plant protection measures and their impact |
| Energy efficiency in agriculture | Efficiency of energy consumption in agriculture | Energy efficiency in agricultural practices | Energy productivity in agriculture | Energy efficiency indicators in farming |
| Utilisation of genetic resources | Utilisation and conservation of genetic resources in agriculture | Use and conservation of genetic resources | Genetic resource management indicators | Conservation and use of agricultural genetic resources |
| Landscape diversity | Diversity of landscapes and agroecosystems | Landscape diversity and heterogeneity | Landscape diversity indicators | Landscape heterogeneity and diversity in agricultural areas |
| Soil compaction | Degree of soil compaction caused by agricultural machinery | Soil compaction indicators | Soil compaction risk | Soil compaction due to agricultural practices |
| Waste management in agriculture | Handling agricultural waste | Agricultural waste management practices | Waste management in agriculture | Management and recycling of agricultural waste |
| Soil moisture | Moisture content of the soil | Soil moisture levels | Soil moisture content indicators | Soil moisture monitoring in agricultural lands |
| Landscape fragmentation | Fragmentation of natural and agricultural landscapes | Landscape fragmentation and its impact on agriculture | Landscape fragmentation indexes | Impact of landscape fragmentation on agriculture |
| Sustainable land use practices | Spreading sustainable agricultural practices | Adoption of sustainable agricultural practices | Sustainable land management practices | Implementation of sustainable farming practices |
| Water utilisation efficiency | Efficiency of water utilisation in agriculture | Water use efficiency in agricultural practices | Agricultural water productivity | Water use efficiency in irrigated agriculture |
| Agroecological indicators | Indicators for the assessment of agroecological systems | Agro-ecological assessment indicators | Agro-ecological practices | Assessment of agro-ecological systems |
| Erosion due to wind | Loss of topsoil due to wind erosion | Wind erosion rates | Wind erosion indicators | Impact of wind erosion on agricultural land |
| Soil fertility | Level of soil fertility and its changes | Soil fertility levels | Soil fertility indicators | Changes in soil fertility |
| Land use changes | Changes in the utilisation of agricultural land | Changes in agricultural land use | Land use change indicators | Agricultural land use changes |
| Irrigation efficiency | Efficiency of irrigation methods | Irrigation efficiency | Efficiency of irrigation systems | Efficiency of water use in irrigation systems |
| Climate adaptation measures | Measures to adapt to climate change | Climate adaptation practices in agriculture | Climate resilience indicators | Implementation of climate adaptation measures in agriculture |
| Resource utilisation efficiency | Efficient use of natural resources | Resource use efficiency in agriculture | Resource productivity indicators | Efficiency of resource use in agriculture |
| Soil acidification | Degree of soil acidification and its causes | Soil acidification levels | Soil pH indicators | Impact of acidification on agricultural soils |
| Soil salinisation | Level of soil salinisation and its effects | Soil salinisation rates | Soil salinity indicators | Effects of salinisation on agricultural productivity |
| Utilisation of renewable energies | Share of renewable energies in agriculture | Renewable energy use in agricultural practices | Share of renewable energy in agriculture | Use of renewable energy sources in farming |
| Environmentally friendly cultivation methods | Spreading environmentally friendly cultivation methods | Adoption of eco-friendly farming practices | Eco-friendly agricultural practices | Implementation of environmentally friendly farming methods |
| Economic sustainability | Economic viability of farms | Economic sustainability of agricultural holdings | Economic viability indicators | Economic sustainability of farms |
| Social sustainability | Social aspects of agricultural practice | Social sustainability in agriculture | Social indicators in rural areas | Social impacts of agricultural practices |
| Productivity per unit area | Productivity of agricultural land | Land productivity indicators | Productivity of agricultural land | Output per unit of agricultural area |
| Water quality indicators | Impact of agriculture on water quality | Impact of agriculture on water quality | Water quality in agricultural areas | Effects of agricultural runoff on water quality |
| Infrastructure for agriculture | Availability and quality of agricultural infrastructure | Agricultural infrastructure development | Infrastructure investment in agriculture | Quality and accessibility of agricultural infrastructure |
| Innovation in agriculture | Implementation of new technologies and processes | Agricultural innovation and technology adoption | Innovation indicators in agriculture | Adoption of new agricultural techn |
| Satellit / Mission | Sensor / Typ | Spatial resolution | Spectral bands / Sensor typ | Availability | Start date |
Operator of the satellite mission |
|---|---|---|---|---|---|---|
| WorldView-3 | Visible (PAN+MS+SWIR) | 0,31 m (PAN), 1,24 m (MS) | Panchromatic Multispectral SWIR |
Commercial | 2014 | Maxar |
| WorldView-2 | Optically | 0,46 m (PAN), 1,84 m (MS) | Panchromatic Multispectral |
Commercial | 2009 | Maxar |
| GeoEye-1 | Optically | 0,41 m (PAN), 1,65 m (MS) | Panchromatic Multispectral |
Commercial | 2008 | Maxar |
| Pleiades Neo | Optically | 0,3 m (PAN), 1,2 m (MS) | Panchromatic Multispectral |
Commercial | 2021+ | Airbus |
| Pleiades 1A/1B | Optically | 0,5 m (PAN), 2,0 m (MS) | Panchromatic Multispectral |
Commercial | 2011/2012 | Airbus |
| SkySat | Optically + Video | 0,5–0,8 m (PAN), 1–2 m (MS) | RGB, NIR, Video | Commercial | 2013+ | Planet |
| BJ-3B (SuperView-2) | Optically | 0,3 m (PAN), 1,2 m (MS) | Panchromatic Multispectral |
Commercial | 2022 | 21AT (China) |
| Capella Space | RADAR (X-Band SAR) | 0,3–0,5 m (Spotlight) | SAR | Commercial | 2018+ | Capella Space (USA) |
| ICEYE | RADAR (X-Band SAR) | 0,25–1 m | SAR | Commercial | 2018+ | ICEYE (Finnland) |
| TerraSAR-X | RADAR (X-Band SAR) | bis 1 m (Spotlight-Modus) | SAR | Commercial / Scientifically free | 2007 | DLR / Airbus |
| PAZ | RADAR (SAR) | 1 m | SAR (X-Band) | Commercial | 2018 | Hisdesat (Spain) |
| Sentinel-1A/B | RADAR (C-Band SAR) | 10 m | SAR | Freely available | 2014/2016 | ESA / Copernicus |
| Drohnen / UAV | Optically + Multispectral | < 0,1 m | RGB, Multispectral, Hyperspectral, LiDAR |
Own operation | User-based | |
| Aerial photos | Optically | 0,20cm | Orthophotos (DOP) True Orthophotos, RGB, CIR |
Commercial / Authorities and partly scientific free | Federal states, Federal Agency for Cartography and Geodesy |
| Indikator | Satelliten | Reference |
|---|---|---|
| Trait diversity of LUI | ||
| Chlorophyll-a/b Content Leaf chlorophyll content (LCC) Chlorophyllgehalt (Cab) Canopy Chlorophyll Content (CCC) Carotinoide, anthocyanin Anthocyanin reflectance index (ARI) Carotenoid reflectance index (CRI) |
Sentinel-11, Sentinel-21, Landsat 81, CRIME1, , EnMAP1, Airborne hyperspectral CASI2, Airborne Visible/ Infrared Imaging Spectrometer AVIRIS2, Airborne HyMap2, UAV-(HSP,MSP)3, Handheld portable hyperspectral camera (Specim IQ) ASD4, Laboratory spectroscopy5 |
[87,88,252,253,254,255,256,257,258,259,94,97,110,247,248,249,250,251] |
| Foliar Nitrogen, Phosphorus, Potassium - NPK | UAV (LiDAR, MSP) 3, SVC HR-1024i spectrometer ASD4 | [87,260,261] |
|
Solar-induced chlorophyll fluorescence (SIF), Photosynthesis activity |
Sentinel-31, GOSIF data1, AS-SpecFOM (Ground based)6, FluoSpec2 system (Ground based) | [72,99,262,263,264,265] |
| Leaf nitrogen content (LNC) Nitrogen use efficiency, Nitrogen nutrition index |
Sentinel-21, CRIME1, PRISMA1,Airborne micro-hyperspec NIR-100 camera2, UAV | [87,88,90,111,112,266,267] |
| Plant water content Leaf water content Plant water stress Cropland water-use efficiency Crop Water Productivity |
GLASS1, Landsat1, Sentinel-21, UAV (MSP, HSP)3, mmWave RADAR (Tower)6, Cropland ecosystem flux sites6, Local TIR Sensor6, |
[268,269,270,271,272,273,274,275,276] |
| Land Surface Temperature Crop surface temperature |
Landsat1, High Spatio-Temporal Resolution Land Surface Temperature Monitoring (LSTM) Mission1, UAV (TIR, RGB, MSP)3 |
[272,277,278,279,280,281] |
| Evapotranspriration (ET) Crop evapotranspiration (ETc) |
MODIS1, DEIMOS-1 is a commercial tasking EO satellit1, Landsat1, Sentinel-21, SuperDove satellites (PlanetScope)1, UAV-(RGB, MSP, TIR)3 | [282,283,284,285,286,287,288,289,290] |
| Soil moisture | MODIS-Terra1, Landsat1,AMSR-21,AMSR-E1, NISAR1, Sentinel-11, Sentinel-21, SMAP1, Airborne hyperspectral (DAIS)2, Airborne hyperspectral (AISA Eagle, Hawk) 2 | [291,292,293,294,295,296,297,298,299] |
| Irrigation Irrigation Efficiency Water Productivity and Efficiency Irrigation patterns Water-Ferilizer use efficency Water Stress Soil Water Deficit Soil water stress |
MODIS1, Landsat1, Sentinel-21, UAV (MSP)3, ASD4, |
[300,301,310,311,302,303,304,305,306,307,308,309] |
| LAI (Leaf Area Index) | MODIS1, Landsat1, Sentinel-21, UAV-(HSP, TIR, LiDAR)3, Ocean Optics USB2000 (Tower)6 | [255,256,312,313,314] |
| Genese Trait Diversity of LUI | ||
| Subsurface drainage systems, Drainage density |
RADAR (SAR)1, Landsat1, Senitnel-21, Airborne LiDAR2, Airborne data2, UAV – RGB, CIR, TIR3 | [124,125,126,127,128,315,316] |
| Terrace mapping | Landsat1, Sentinel-11, Sentinel-21, GF-2 satellite image1, WorldView-11, WorldView-31, Airborne LiDAR2, UAV-LiDAR3 | [129,130,131,136,137,138] |
| Allmenden | Airborne LiDAR3 | [139,140] |
| Deforestation | MODIS1, ALOS PALSAR data1, RADARSAT-21, Landsat1, Sentinel-11, Sentinel-21, UAV (RGB, NIR, IRT)3 | [143,144,145,146,147,317,318,319,320] |
| Polder and single-polder systems | Google Earth RS data1, Corona spy satellite imagery1 | [321,322] |
| DEM (Digital Elevation Model) DSM (Digital Surface Model) |
SRTM1, TerraSAR-X1, TanDEM-X1, Sentinel-11, Sentinel-31, ALOS-2 PALSAR-21, ALOS PRISM1, Terra ASTER1, ICESat GLAS1, Airborne LiDAR2, UAV (SAR, RGB)3 | [61,323,332,333,334,335,324,325,326,327,328,329,330,331] |
| Soil Topography Farmland microtopography feature |
Landsat1, Sentinel-11, Sentinel-21, CORONA KH-4B1, Gaofen-7 satellite1, Airborne LiDAR2 | [166,336,337,338,339,340] |
| Soil metagenomics data | UAV (MSP, LiDAR)3 | [341] |
| Structural traits of LUI | ||
| Soil, crop vegetation composition and configuration (e.g. Patch-size, distribution Field size, Interspersion and Juxtaposition Index, Proximity Index, Edge Density, Edge Contrast Index, Contagion Index, Core Area Index, Shape Index, Cropland Extent, Fragmentation,Homogenity, Isolation, Landuse intensity patterns, Canopy structure Farmland Boundary Extraction, Cropland extent, Cropland area, Harvested Area Fraction, Structural Connectivity Index, Vegetation Coherence Index, Crop Richness, Crop Evenness, Crop Simpson's Diversity Index, Fractal Dimension Index, Entropy Index, Clumping Index, Grassland plant species diversity Plant density |
MODIS1, Landsat1, Spot1, Sentinel-21, WorldView-2/-31, QuickBird1, Pleiades1, GeoEye1, GF-21, RapidEye1, PlanetScope1, Airborne Hyperspectral AVIRIS and HYDICE2, Airborne data2, UAV (RGB, MSP, HSP)3 | [31,33,344,345,346,347,348,349,350,351,352,353,67,354,355,356,148,149,156,157,266,342,343] |
| Vertical Vegetation Structure, Vegetation Height, Plant heigh 3D-structures, 3D mapping |
GEDI LiDAR1, ICESat-21, UAV (RGB, LiDAR) Phenotyping robot “MARS-PhenoBot”6, 6-DOT robot6, RGB-Camera6, Terrestrial LiDAR6 |
[357,358,359,360,361,362] |
| Surface roughness Cnopy roughness |
Sentinel-11, MODIS1, UAV (RGB)3 | [162,163,164] |
| Spektraler Heterogenität, Rao's Q diversity index, Plant Species Richness Spatiotemporal variability |
MODIS1, Landsat1, Sentinel-21 | [160,161,363] |
| Homogeneity Index, Grasland Homogeneity Index Crop homoneneity |
Sentinel-11, Sentinel-21, GF-21 | [364,365,366] |
| Soil Roughness, Soil texture, Farmland microtopography |
Landsat1, Sentinel-11, Sentinel-21, AHSI/ZY1-02D satellite1, SRTM1, Airborne LiDAR2, ASD Handspectometer4, Smartphone-captured digital images6 | [166,167,374,375,340,367,368,369,370,371,372,373] |
| Taxonomic LUI | ||
| Cropping patterns (single cropping, multiple cropping, sequential cropping, intercropping) |
MODIS1, Spot1, Landsat1, Sentinel-11, Sentinel 21, IRS1, WiFS1, Airborne AVIRIS2, RADARSAT-21, Airborne LiDAR2 | [150,168,177,178,181,376,377,169,170,171,172,173,174,175,176] |
| Crop classification, Crop type classification Crop type mapping |
MODIS1, Landsat1, Sentinel-11, Sentinel-21, Sentinel-31, Airborne AVIRIS2, UAV (HSP)3 | [135,151,182,378,379,380,381,382,383,384] |
| Classification of grassland community types | Landsat1, Sentinel-11, Sentinel-21 | [385,386,387] |
| Cropping frequency (single cropping/double cropping/triple cropping) Crop-rotation Multi-cropping frequency (MCF) Croping intensity Cropping intensity index Change Detection crops |
MODIS1, Gaofen-11, GF-11, Landsat1, Sentinel-11, Sentinel-21 | [169,183,394,395,396,397,349,377,388,389,390,391,392,393] |
| Crop residue cover mapping | Landsat1, Sentinel-21, Google Earth Engine1, UAV3, FieldSpec Pro4, Photo analysis surveys6 |
[398,399,400,401,402,403] |
| Crop burning residue | MODIS1, AVHRR1, LISS-III1, LISS-IV1, UAV3 | [404,405,406] |
| Classification between cultivated and fallow fields |
MODIS1, Landsat1, Sentinel-21 | [376,388,407,408,409] |
| Organic, conventional farming Organic and non-organic farming |
Landsat1, Spot1, Sentinel-21, KOMPSAT-21, WorldView-21, UAV (RGB)3, Hyperspectral ASD4 | [410,411,412,413] |
| Phenotyping, Phenology, Phenology-Stadien (BBCH-Scale) |
UAV (RGB, MSP, HSP, TIR, LiDAR)3, UAV (RGB, VIS, NIR, TIR, LiDAR)3, Labor-Hyperspectral – AISA-EAGLE5 | [252,312,335,414,415,416,417,418,419] |
| Crop growth duration (GDa), | MODIS1, Landsat1, Gaofen-11, Sentinel-21, RapidEye1, UAV (SAR)2 | [394,420,421,422,423] |
| Hedgerow map classifications, Hedgerows and field margins |
TerraSAR-X1, Spot1, IKONOS1, Airborne MSP2, Aerial photographs2, UAV (RGB, MSP)3 | [424,425,426,427,428,429] |
| Flower strip mapping Flower Mapping |
Airborne Hyperspectral (HySPEX, RGB, TIR)2, Airborne Hyperspectral (AISA-Eagle)2, Airborne MSP2, UAV (MSP, HSP)3 | [429,430,431,432,433,434] |
| Buffer Zone Efficiency Agricultural Pesticides Drift zones |
Landsat1, Sentinel-21 | [435] |
| Classification of agroforestry systems | RapidEye1, PlantetScope1, LISS IV1, Sentinel-21 | [436,437,438,439,440] |
| Plastic-covered greenhouses Plasticulture detection Plastic greenhouses (PGs) and Plastic-mulched farmland (PMF) |
Landsat1, Sentinel-11, Sentinel-21, GF-2 | [441,442,443,444,445] |
| Crop yield predictions Grain Yield, Protein estimation |
MODIS1, Landsat1, Sentinel-21, UAV – (MSP, HSP)3 | [266,446,455,447,448,449,450,451,452,453,454] |
| Hop cultivation classification | UAV (MSP)3, Mobile phone camera6 | [456,457] |
| Functional traits of LUI | ||
| Crop biomass, Aboveground biomass (AGB), Relative biomass potential (rel. BMP) |
MODIS1, Landsat1, Sentinel-11, Sentinel-21, PlanetScope1, UAV (MSP, RGB)3, Smartphone6 | [188,189,190,191,192,193,194,301,458] |
|
Plant Nitrogen Concentration (PNC) Leaf Nitrogen Content Fertilization Gradient |
Sentinel-21, UAV (MSP, TIR)3 | [94,203,204,205,459,460,461] |
| Soil organic carbon (SOC) Soil organic matter (SOM) |
ALOS-21, PALSAR-21, Landsat1, Spot 4/51, GF-11, RADAR (PLAS)1, Sentinel-11, Sentinel-21, Sentinel-31, Airborne hyperspectral (DAIS)2, Airborne hyperspectral (AISA Eagle, Hawk)2, Hyperspectral APEX2, UAV (SAR)3, VIS–NIR spectroscopy (Field)1, | [208,213,465,466,467,468,469,470,471,472,473,474,214,219,221,222,299,462,463,464] |
| Clay content | Landsat1, Aster1, Sentinel-21, Airborne hyperspectral (AISA Eagle, Hawk)2 | [375,475,476,477,478,479,480,481] |
| Soil total nitrogen (TN) N-Monitoring Total soil nitrogen (TSN) Nutritional Status Soil Total Nitrogen Soil Nutrients Contents |
Sentinel-11, Sentinel-21, GF-11, UAV (HSP, MSP, TIR)3, ASD (Field)4 | [206,213,488,469,480,482,483,484,485,486,487] |
| C:N Ratio Soil | Landsat1, Sentinel-11, Sentinel-21, Sentinel-31 | [222,468,489,490,491,492] |
| Carbon use efficiency (CUE) | MODIS1, Landsat1, Sentinel-21 | [493,494,495,496] |
| Silt content | GF-11, Airborne hyperspectral (AISA Eagle, Hawk)2, | [375,497] |
| Sand content | Landsat1, Sentinel-21, Aster1, GF-11, Planet/NICFI1, Airborne hyperspectral (AISA Eagle, Hawk)2 | [375,481,497,498,499,500,501] |
| Potassium content | PRISMA1, UAV (MSP)3 | [484,485] |
| Phosphorus content (P) | MODIS1, Landsat1, Sentinel-21, PRISMA1, UAV (MSP, LiDAR)3, ASD4 | [341,484,485,486,487,502] |
|
Pestizide, Herbizide, Fungizide Pest management |
Sentinel-21, UAV3, Local hyperspectral camera6, ASD - LeafSpec hyperspectral images4 | [195,196,197,198,199,200,503,504] |
| Plant Disease Detection, Crop vegetation health Plant health |
Sentinel-11, Sentinel-21, UAV (RGB, MSP, VIS, NIR, TIR, LiDAR)3, ASD FieldSpec Pro FR4 | [97,202,511,512,513,514,515,516,411,416,505,506,507,508,509,510] |
| CSR-Plant Strategie Types Plant functional groups (PFGs) Ellenberg Indicator Species |
Landsat1, Sentinel-21, Airborne hyperspectral data (AISA dual)2, Airborne AISA Fenix2, Airborne imaging spectrometer APEX2, Airborne hyperspectral HySpex2 | [517,518,519,520,521,522,523,524] |
| Gross Primary Production (GPP) Dynamic of carbon emissions, Carbon Fluxes |
MODIS1, Meris1, Landsat1, Sentinel-11, Sentinel-21, Sentinel-31, Hyperspectral Ocean Optics USB2000 (Tower)6, LEDAPS-Aerosol Robotic Network (AERONET)6 | [254,493,525,526,527,528,529,530,531,532] |
| Cropland NPP | MODIS1, Landsat1, UAV (MSP)3 | [149,314,493,533,534,535,536,537,538] |
| HANPP (Human Appropriation of Net Primary Production) | MODIS1, Landsat1, Sentinel-21 | [539,540,541,542,543] |
| Water use efficiency (WUE) | MODIS1, Landsat1, Sentinel-11, Sentinel-21 | [493,544,545,546,547,548] |
| Yield and Quality | Landsat1, Sentinel-11, Sentinel-21, UAV (MSP)3 | [193,531,549,550,551,552,553,554,555,556] |
| Harvest Index | MODIS1, HJ-1 satellite1, Sentinel-21, UAV (HSP)3, FieldSpec HandHeld Spectroradiometer (ASD)4 | [557,558,559,560] |
| Soil quality index (SQI) | Landsat1, Sentinel-21, Airborne hyperspectral (AISA)2 | [338,561,562] |
| Soil productivity potential | MODIS1, Landsat1, Sentinel-21, ASD FieldSpec4 | [310,480,563,564,565] |
| Soil Crust | KOMPSAT-2 satellite1, Airborne hyperspectral (DAIS)2, Airborne hyperspectral (AISA Eagle, Hawk)2, UAV (RGB, MSP, HSP)3, ASD Fieldspec4 | [299,566,567,568,569,570,571,572] |
| Soil infiltration | Airborne hyperspectral (DAIS)2, Airborne hyperspectral (AISA Eagle, Hawk)2, Airborne CASI-15002, SASI-6002, Airborne TASI-600 hyperspectral sensors2, UAV (HSP, Cubert UHD-185)3 | [299,573,574] |
| Soil-pH value | PALSAR-1/21, SRTM1, Landsat1, PlantetScope1, Sentinel-11, Sentinel-21, UAV (MSP)3, ASD FieldSpec4 | [298,368,582,583,584,585,555,575,576,577,578,579,580,581] |
| Soil salinity Soil salinization |
Landsat1, RADAR1, Airborne LiDAR2, HJ-1 Hyperspectral Imager Data2 | [298,586,587,588,589,590,591,592,593] |
| Land degradation, Soil degradation, Soil erosion Desertification |
Landsat1, SRTM1, Sentinel-11, Sentinel-21, RapidEye1, Airborne hyperspectral (DAIS)2, Airborne hyperspectral (AISA Eagle, Hawk)2, UAV (RGB)3 | [299,594,595,596,597,598,599] |
| Soil compaction Soil Compaction Index Soil aggregation Soil penetration resistance |
Landsat1, GoogleEarth aerial imagery1, Sentinel-21, RapidEye1, Airborne hyperspectral (CASI)2, UAV (RGB, SAR, LiDAR, MSP, TIR)3 | [595,600,601,602,603,604,605,606,607] |
| Cattle intensification, Spatial distribution of cattle |
Sentinel-11, Sentinel-21 | [608] |
| Grassland-use intensity Grassland management intensity |
Landsat1, Sentinel-11, Sentinel-21, RapidEye1, | [184,187,609,610,611,612,613] |
| Grasland fire | MODIS1, Sentinel-11, Sentinel-21, GF-6 WFV1, UAV3 | [614,615,616,617,618] |
| Grassland cut detection | SAR1, Sentinel-11, Sentinel-21 | [619,620,621] |
| Different Water quality indicators | All RS Sensors with all RS characteristics (MSP, HSP, TIR, RADAR, LiDAR) | [63] |
References
- Diogo, V.; Helfenstein, J.; Mohr, F.; Varghese, V.; Debonne, N.; Levers, C.; Swart, R.; Sonderegger, G.; Nemecek, T.; Schader, C.; et al. Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe. Environ. Sci. Policy 2022, 137, 128–142. [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier, 2020; pp. 25–54.
- YAHAYA, S.M.; MAHMUD, A.A.; ABDULLAHI, M.; HARUNA, A. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere 2023, 33, 385–406. [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: an overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43. [CrossRef]
- Sharma, K.; Rajan, S.; Nayak, S.K. Water pollution: Primary sources and associated human health hazards with special emphasis on rural areas. In Water Resources Management for Rural Development; Elsevier, 2024; pp. 3–14.
- Pannard, A.; Souchu, P.; Chauvin, C.; Delabuis, M.; Gascuel-Odoux, C.; Jeppesen, E.; Le Moal, M.; Ménesguen, A.; Pinay, G.; Rabalais, N.N.; et al. Why are there so many definitions of eutrophication? Ecol. Monogr. 2024, 1–25. [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 1–10. [CrossRef]
- Mupepele, A.C.; Bruelheide, H.; Brühl, C.; Dauber, J.; Fenske, M.; Freibauer, A.; Gerowitt, B.; Krüß, A.; Lakner, S.; Plieninger, T.; et al. Biodiversity in European agricultural landscapes: transformative societal changes needed. Trends Ecol. Evol. 2021, 36, 1067–1070. [CrossRef]
- Burian, A.; Kremen, C.; Wu, J.S.T.; Beckmann, M.; Bulling, M.; Garibaldi, L.A.; Krisztin, T.; Mehrabi, Z.; Ramankutty, N.; Seppelt, R. Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes. Nat. Ecol. Evol. 2024, 8, 752–760. [CrossRef]
- Le Provost, G.; Thiele, J.; Westphal, C.; Penone, C.; Allan, E.; Neyret, M.; van der Plas, F.; Ayasse, M.; Bardgett, R.D.; Birkhofer, K.; et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 2021, 12, 3918. [CrossRef]
- Beckmann, M.; Gerstner, K.; Akin-Fajiye, M.; Ceaușu, S.; Kambach, S.; Kinlock, N.L.; Phillips, H.R.P.; Verhagen, W.; Gurevitch, J.; Klotz, S.; et al. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Glob. Chang. Biol. 2019, 25, 1941–1956. [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Fischer, M.; Ammer, C.; Boch, S.; Boeddinghaus, R.S.; Bonkowski, M.; Buscot, F.; Fiore-Donno, A.M.; et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. 2020, 117, 28140–28149. [CrossRef]
- Gossner, M.M.; Lewinsohn, T.M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S.C.; Sikorski, J.; Wubet, T.; et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 2016. [CrossRef]
- Millard, J.; Outhwaite, C.L.; Kinnersley, R.; Freeman, R.; Gregory, R.D.; Adedoja, O.; Gavini, S.; Kioko, E.; Kuhlmann, M.; Ollerton, J.; et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 2021, 12, 2902. [CrossRef]
- Suarez, A.; Gwozdz, W. On the relation between monocultures and ecosystem services in the Global South: A review. Biol. Conserv. 2023, 278, 109870. [CrossRef]
- Cheng, C.; Liu, Z.; Song, W.; Chen, X.; Zhang, Z.; Li, B.; van Kleunen, M.; Wu, J. Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes. Nat. Commun. 2024, 15, 1–10. [CrossRef]
- Scanes, C.G. Human Activity and Habitat Loss: Destruction, Fragmentation, and Degradation. In Animals and Human Society; Elsevier, 2018; pp. 451–482 ISBN 9780128052471.
- Oliver, T.H.; Marshall, H.H.; Morecroft, M.D.; Brereton, T.; Prudhomme, C.; Huntingford, C. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 2015, 5, 941–946. [CrossRef]
- Peters, M.K.; Hemp, A.; Appelhans, T.; Becker, J.N.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B.; et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 2019, 568, 88–92. [CrossRef]
- Schneider, J.M.; Delzeit, R.; Neumann, C.; Heimann, T.; Seppelt, R.; Schuenemann, F.; Söder, M.; Mauser, W.; Zabel, F. Effects of profit-driven cropland expansion and conservation policies. Nat. Sustain. 2024. [CrossRef]
- Kaur, R.; Choudhary, D.; Bali, S.; Bandral, S.S.; Singh, V.; Ahmad, M.A.; Rani, N.; Singh, T.G.; Chandrasekaran, B. Pesticides: An alarming detrimental to health and environment. Sci. Total Environ. 2024, 915, 170113. [CrossRef]
- Bava, R.; Castagna, F.; Lupia, C.; Poerio, G.; Liguori, G.; Lombardi, R.; Naturale, M.D.; Mercuri, C.; Bulotta, R.M.; Britti, D.; et al. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics 2024, 13. [CrossRef]
- Khmaissa, M.; Zouari-Mechichi, H.; Sciara, G.; Record, E.; Mechichi, T. Pollution from livestock farming antibiotics an emerging environmental and human health concern: A review. J. Hazard. Mater. Adv. 2024, 13. [CrossRef]
- Turner, B.L.; Doolittle, W.E. THE CONCEPT AND MEASURE OF AGRICULTURAL INTENSITY. Prof. Geogr. 1978, 30, 297–301. [CrossRef]
- Herzog, F.; Steiner, B.; Bailey, D.; Baudry, J.; Billeter, R.; Bukácek, R.; De Blust, G.; De Cock, R.; Dirksen, J.; Dormann, C.F.; et al. Assessing the intensity of temperate European agriculture at the landscape scale. Eur. J. Agron. 2006, 24, 165–181. [CrossRef]
- Lüscher, G.; Jeanneret, P.; Schneider, M.K.; Turnbull, L.A.; Arndorfer, M.; Balázs, K.; Báldi, A.; Bailey, D.; Bernhardt, K.G.; Choisis, J.P.; et al. Responses of plants, earthworms, spiders and bees to geographic location, agricultural management and surrounding landscape in European arable fields. Agric. Ecosyst. Environ. 2014, 186, 124–134. [CrossRef]
- Helfenstein, J.; Hepner, S.; Kreuzer, A.; Achermann, G.; Williams, T.; Bürgi, M.; Debonne, N.; Dimopoulos, T.; Diogo, V.; Fjellstad, W.; et al. Divergent agricultural development pathways across farm and landscape scales in Europe: Implications for sustainability and farmer satisfaction. Glob. Environ. Chang. 2024, 86, 102855. [CrossRef]
- Canisius, F.; Turral, H.; Molden, D. Fourier analysis of historical NOAA time series data to estimate bimodal agriculture. Int. J. Remote Sens. 2007, 28, 5503–5522. [CrossRef]
- Kuemmerle, T.; Hostert, P.; St-Louis, V.; Radeloff, V.C. Using image texture to map farmland field size: A case study in Eastern Europe. J. Land Use Sci. 2009, 4, 85–107. [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [CrossRef]
- Wellmann, T.; Haase, D.; Knapp, S.; Salbach, C.; Selsam, P.; Lausch, A. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecol. Indic. 2018, 85, 190–203. [CrossRef]
- Weber, D.; Schwieder, M.; Ritter, L.; Koch, T.; Psomas, A.; Huber, N.; Ginzler, C.; Boch, S. Grassland-use intensity maps for Switzerland based on satellite time series: Challenges and opportunities for ecological applications. Remote Sens. Ecol. Conserv. 2024, 10, 312–327. [CrossRef]
- Liu, H.; Zhou, Z.; Wen, Q.; Chen, J.; Kojima, S. Spatiotemporal Land Use/Land Cover Changes and Impact on Urban Thermal Environments: Analyzing Cool Island Intensity Variations. Sustain. 2024, 16. [CrossRef]
- Qiu, B.; Liu, B.; Tang, Z.; Dong, J.; Xu, W.; Liang, J.; Chen, N.; Chen, J.; Wang, L.; Zhang, C.; et al. National-scale 10-m maps of cropland use intensity in China during 2018-2023. Sci. data 2024, 11, 691. [CrossRef]
- Hank, T.B.; Berger, K.; Bach, H.; Clevers, J.G.P.W.; Gitelson, A.; Zarco-Tejada, P.; Mauser, W. Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges; Springer Netherlands, 2019; Vol. 40; ISBN 0123456789.
- Wulder, M.A.; Coops, N.C. Make Earth observations open access. Nature 2014, 513, 30–31. [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [CrossRef]
- Nieke, J.; Rast, M. Towards the Copernicus Hyperspectral Imaging Mission For The Environment (CHIME). In Proceedings of the IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium; IEEE, 2018; pp. 157–159.
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002.
- Lee, C.M.; Cable, M.L.; Hook, S.J.; Green, R.O.; Ustin, S.L.; Mandl, D.J.; Middleton, E.M. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens. Environ. 2015, 167, 6–19.
- Kraft, S.; Del Bello, U.; Bouvet, M.; Drusch, M.; Moreno, J. FLEX: ESA’s Earth Explorer 8 candidate mission. Int. Geosci. Remote Sens. Symp. 2012, 7125–7128.
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15. [CrossRef]
- Sethy, P.K.; Pandey, C.; Sahu, Y.K.; Behera, S.K. Hyperspectral imagery applications for precision agriculture - a systemic survey; Springer US, 2022; Vol. 81; ISBN 0123456789.
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [CrossRef]
- Barbosa Júnior, M.R.; Moreira, B.R. de A.; Carreira, V. dos S.; Brito Filho, A.L. de; Trentin, C.; Souza, F.L.P. de; Tedesco, D.; Setiyono, T.; Flores, J.P.; Ampatzidis, Y.; et al. Precision agriculture in the United States: A comprehensive meta-review inspiring further research, innovation, and adoption. Comput. Electron. Agric. 2024, 221, 108993. [CrossRef]
- Marques, P.; Pádua, L.; Sousa, J.J.; Fernandes-Silva, A. Advancements in Remote Sensing Imagery Applications for Precision Management in Olive Growing: A Systematic Review. Remote Sens. 2024, 16, 1324. [CrossRef]
- Bonfanti, J.; Langridge, J.; Avadí Ef, A.; Casajus, N.; Chaudhary, A.; Damour Hi, G.; Estrada-Carmona, N.; Jones, S.K.; Makowski, D.; Mitchell, M.; et al. Global review of meta-analyses reveals key data gaps in agricultural impact studies on biodiversity in croplands. BioRxiv 2024, 0–22.
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 1–29.
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 1–44. [CrossRef]
- Lausch, A.; Selsam, P.; Pause, M.; Bumberger, J. Monitoring vegetation- and geodiversity with remote sensing and traits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382. [CrossRef]
- Cavender-Bares, J.; Gamon, J.A.; Townsend, P.A. Remote Sensing of Plant Biodiversity; Cavender-Bares, J., Gamon, J.A., Townsend, P.A., Eds.; Springer International Publishing: Cham, 2020; ISBN 978-3-030-33156-6.
- Lausch, A.; Bastian, O.; Klotz, S.; Leitão, P.J.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 2018, 9, 1799–1809. [CrossRef]
- Lausch, A.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Chabrilliat, S.; Dietrich, P.; Gerighausen, H.; Glässer, C.; Hacker, J.; et al. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sens. 2019, 11, 2356. [CrossRef]
- Lausch, A.; Schaepman, M.E.; Skidmore, A.K.; Truckenbrodt, S.C.; Hacker, J.M.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Dietrich, P.; et al. Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sens. 2020, 12, 3690. [CrossRef]
- Lausch, A.; Schaepman, M.E.; Skidmore, A.K.; Catana, E.; Bannehr, L.; Bastian, O.; Borg, E.; Bumberger, J.; Dietrich, P.; Glässer, C.; et al. Remote Sensing of Geomorphodiversity Linked to Biodiversity—Part III: Traits, Processes and Remote Sensing Characteristics. Remote Sens. 2022, 14, 2279.
- Lausch, A.; Bannehr, L.; Berger, S.A.; Borg, E.; Bumberger, J. Monitoring Water Diversity and Water Quality with Remote Sensing and Traits. Remote Sens. 2024. [CrossRef]
- Andersson, E.; Haase, D.; Anderson, P.; Cortinovis, C.; Goodness, J.; Kendal, D.; Lausch, A.; McPhearson, T.; Sikorska, D.; Wellmann, T. What are the traits of a social-ecological system: towards a framework in support of urban sustainability. npj Urban Sustain. 2021, 1, 14. [CrossRef]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R.; et al. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban Plan. 2020, 204, 103921. [CrossRef]
- Xie, C.; Wang, J.; Haase, D.; Wellmann, T.; Lausch, A. Measuring spatio-temporal heterogeneity and interior characteristics of green spaces in urban neighborhoods: A new approach using gray level co-occurrence matrix. Sci. Total Environ. 2023, 855, 158608. [CrossRef]
- Roilo, S.; Paulus, A.; Alarcón-Segura, V.; Kock, L.; Beckmann, M.; Klein, N.; Cord, A.F. Quantifying agricultural land-use intensity for spatial biodiversity modelling: implications of different metrics and spatial aggregation methods. Landsc. Ecol. 2024, 39, 55. [CrossRef]
- Erb, K.H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Müller, D.; Verburg, P.H.; Reenberg, A. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 2013, 5, 464–470. [CrossRef]
- Diogo, V.; Helfenstein, J.; Mohr, F.; Varghese, V.; Debonne, N.; Levers, C.; Swart, R.; Sonderegger, G.; Nemecek, T.; Schader, C.; et al. Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe. Environ. Sci. Policy 2022, 137, 128–142. [CrossRef]
- Dullinger, I.; Essl, F.; Moser, D.; Erb, K.; Haberl, H.; Dullinger, S. Biodiversity models need to represent land-use intensity more comprehensively. Glob. Ecol. Biogeogr. 2021, 30, 924–932. [CrossRef]
- Rascher, U.; Alonso, L.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanus, J.; et al. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Chang. Biol. 2015, 21, 4673–4684. [CrossRef]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use And Land Cover Classification System For Use With Remote Sensor Data; vVASHINGTON, 1976; Vol. 964;.
- Adewumi, J.R.; Akomolafe, J.K.; Ajibade, F.O.; Fabeku, B.B. Application of GIS and Remote Sensing Technique to Change Detection in Land Use/Land Cover Mapping of Igbokoda, Ondo State, Nigeria. J. Appl. Sci. Process Eng. 1970, 3. [CrossRef]
- Matthews, E. Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteorol. 1983, 22, 474–487. [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [CrossRef]
- Copernicus Copernicus the European Union’s Earth observation programme. https://www.copernicus.eu. Accessed 02. 08 2024.
- Rocchini, D.; Santos, M.J.; Ustin, S.L.; Féret, J.; Asner, G.P.; Beierkuhnlein, C.; Dalponte, M.; Feilhauer, H.; Foody, G.M.; Geller, G.N.; et al. The Spectral Species Concept in Living Color. J. Geophys. Res. Biogeosciences 2022, 127, 1–13. [CrossRef]
- Maudet, S.; Brusse, T.; Poss, B.; Caro, G.; Marrec, R. Estimating landscape intensity through farming practices: An integrative and flexible approach to modelling farming intensity from field to landscape. Ecol. Modell. 2025, 501, 110975. [CrossRef]
- Lausch, A. Menz, G. Bedeutung der Integration linearer Elemente in Fernerkundungsdaten zur Berechnung von Landschaftsstrukturmaßen. Photogramm. Fernerkundung Geoinf. 1999, 3, 185–194.
- Lausch, A.; Herzog, F. Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecol. Indic. 2002, 2.
- Billeter, R.; Liira, J.; Bailey, D.; Bugter, R.; Arens, P.; Augenstein, I.; Aviron, S.; Baudry, J.; Bukacek, R.; Burel, F.; et al. Indicators for biodiversity in agricultural landscapes: A pan-European study. J. Appl. Ecol. 2008, 45. [CrossRef]
- Mohr, F.; Diogo, V.; Helfenstein, J.; Debonne, N.; Dimopoulos, T.; Dramstad, W.; García-Martín, M.; Hernik, J.; Herzog, F.; Kizos, T.; et al. Why has farming in Europe changed? A farmers’ perspective on the development since the 1960s. Reg. Environ. Chang. 2023, 23, 156. [CrossRef]
- Martin, A.E.; Collins, S.J.; Crowe, S.; Girard, J.; Naujokaitis-Lewis, I.; Smith, A.C.; Lindsay, K.; Mitchell, S.; Fahrig, L. Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agric. Ecosyst. Environ. 2020, 288, 106698. [CrossRef]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [CrossRef]
- Joswig, J.S.; Wirth, C.; Schuman, M.C.; Kattge, J.; Reu, B.; Wright, I.J.; Sippel, S.D.; Rüger, N.; Richter, R.; Schaepman, M.E.; et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 2022, 6, 36–50. [CrossRef]
- Picado, E.F.; Romero, K.F. Mapping Spatial Variability of Sugarcane Foliar Nitrogen , Phosphorus , Potassium and Chlorophyll Concentrations Using Remote Sensing. Geomatics 2025, 1–19. [CrossRef]
- Candiani, G.; Tagliabue, G.; Panigada, C.; Verrelst, J.; Picchi, V.; Rivera Caicedo, J.P.; Boschetti, M. Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission. Remote Sens. 2022, 14, 1792. [CrossRef]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272.
- Berger, K.; Verrelst, J.; Féret, J.-B.; Hank, T.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102174. [CrossRef]
- Loizzo, R.; Daraio, M.; Guarini, R.; Longo, F.; Lorusso, R.; Dini, L.; Lopinto, E. Prisma Mission Status and Perspective. In Proceedings of the IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium; IEEE, 2019; pp. 4503–4506.
- Matsunaga, T.; Iwasaki, A.; Tachikawa, T.; Tanii, J.; Kashimura, O.; Mouri, K.; Inada, H.; Tsuchida, S.; Nakamura, R.; Yamamoto, H.; et al. Hyperspectral Imager Suite (HISUI): Its Launch and Current Status. Int. Geosci. Remote Sens. Symp. 2020, 3272–3273.
- Feingersh, T.; Dor, E. Ben SHALOM – A Commercial Hyperspectral Space Mission. In Optical Payloads for Space Missions; Wiley, 2015; pp. 247–263.
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [CrossRef]
- Lhotáková, Z.; Neuwirthová, E.; Potůčková, M.; Červená, L.; Hunt, L.; Kupková, L.; Lukeš, P.; Campbell, P.; Albrechtová, J. Mind the leaf anatomy while taking ground truth with portable chlorophyll meters. Sci. Rep. 2025, 15, 1855. [CrossRef]
- Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Naiken, V.; Mabhaudhi, T. Predicting the Chlorophyll Content of Maize over Phenotyping as a Proxy for Crop Health in Smallholder Farming Systems. Remote Sens. 2022, 14, 518. [CrossRef]
- Drusch, M.; Moreno, J.; Del Bello, U.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.; Mohammed, G.; et al. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1273–1284.
- De Grave, C.; Verrelst, J.; Morcillo-Pallarés, P.; Pipia, L.; Rivera-Caicedo, J.P.; Amin, E.; Belda, S.; Moreno, J. Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources. Remote Sens. Environ. 2020, 251, 112101.
- Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 2015, 168, 420–436. [CrossRef]
- Moreno, J.F.; Goulas, Y.; Huth, A.; Middleton, E.; Miglietta, F.; Mohammed, G.; Nedbal, L.; Rascher, U.; Verhoef, W.; Drusch, M. Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission. Int. Geosci. Remote Sens. Symp. 2016, 2016-Novem, 264–267.
- Dong, N.; Prentice, I.C.; Wright, I.J.; Wang, H.; Atkin, O.K.; Bloomfield, K.J.; Domingues, T.F.; Gleason, S.M.; Maire, V.; Onoda, Y.; et al. Leaf nitrogen from the perspective of optimal plant function. J. Ecol. 2022, 110, 2585–2602. [CrossRef]
- Zheng, J.; Song, X.; Yang, G.; Du, X.; Mei, X.; Yang, X. Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review. Remote Sens. 2022, 14. [CrossRef]
- Silva, L.; Conceição, L.A.; Lidon, F.C.; Maçãs, B. Remote Monitoring of Crop Nitrogen Nutrition to Adjust Crop Models: A Review. Agric. 2023, 13, 1–23. [CrossRef]
- Arogoundade, A.M.; Mutanga, O.; Odindi, J.; Naicker, R. The role of remote sensing in tropical grassland nutrient estimation: a review. Environ. Monit. Assess. 2023, 195. [CrossRef]
- Xi, R.; Gu, Y.; Zhang, X.; Ren, Z. Nitrogen monitoring and inversion algorithms of fruit trees based on spectral remote sensing: a deep review. Front. Plant Sci. 2024, 15, 1–19. [CrossRef]
- Zhang, J.; Hu, Y.; Li, F.; Fue, K.G.; Yu, K. Meta-Analysis Assessing Potential of Drone Remote Sensing in Estimating Plant Traits Related to Nitrogen Use Efficiency. Remote Sens. 2024, 16. [CrossRef]
- Ravikumar, S.; Vellingiri, G.; Sellaperumal, P.; Pandian, K.; Sivasankar, A.; Sangchul, H. Real-time nitrogen monitoring and management to augment N use efficiency and ecosystem sustainability–A review. J. Hazard. Mater. Adv. 2024, 16, 100466. [CrossRef]
- Chowdhury, M.; Kumar Khura, T.; Ahmad Parray, R.; Kushwaha, H.L.; Upadhyay, P.K.; Jha, A.; Patra, K.; Kushwah, A.; Kumar Prajapati, V. The use of destructive and nondestructive techniques in concrete nitrogen assessment in plants. J. Plant Nutr. 2024, 47, 2271–2294. [CrossRef]
- Tasnim, M.; Simic, A.; Verrelst, J.; Tian, Q.; Soleil, A.; Poku, H.; Rahman, A.; Processing, I.; Científic, P.; Val, U. De Optimizing Empirical and Hybrid Modeling for Advanced Canopy Chlorophyll and Nitrogen Retrieval Technique Using EnMAP Data. Environ. Challenges 2025, 18, 101114.
- Verrelst, J.; Rivera-Caicedo, J.P.; Reyes-Muñoz, P.; Morata, M.; Amin, E.; Tagliabue, G.; Panigada, C.; Hank, T.; Berger, K. Mapping landscape canopy nitrogen content from space using PRISMA data. ISPRS J. Photogramm. Remote Sens. 2021, 178, 382–395. [CrossRef]
- Wang, Y.; Suarez, L.; Hornero, A.; Poblete, T.; Ryu, D.; Gonzalez-Dugo, V.; Zarco-Tejada, P.J. Assessing plant traits derived from Sentinel-2 to characterize leaf nitrogen variability in almond orchards: modeling and validation with airborne hyperspectral imagery. Precis. Agric. 2025, 26, 13. [CrossRef]
- Zhang, X.; Han, L.; Sobeih, T.; Lappin, L.; Lee, M.A.; Howard, A.; Kisdi, A. The Self-Supervised Spectral–Spatial Vision Transformer Network for Accurate Prediction of Wheat Nitrogen Status from UAV Imagery. Remote Sens. 2022, 14, 1–14. [CrossRef]
- Xu, S.; Xu, X.; Blacker, C.; Gaulton, R.; Zhu, Q.; Yang, M.; Yang, G.; Zhang, J.; Yang, Y.; Yang, M.; et al. Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV. Remote Sens. 2023, 15. [CrossRef]
- Smith, D.R.; King, K.W.; Johnson, L.; Francesconi, W.; Richards, P.; Baker, D.; Sharpley, A.N. Surface Runoff and Tile Drainage Transport of Phosphorus in the Midwestern United States. J. Environ. Qual. 2015, 44, 495–502. [CrossRef]
- Valipour, M.; Krasilnikof, J.; Yannopoulos, S.; Kumar, R.; Deng, J.; Roccaro, P.; Mays, L.; Grismer, M.E.; Angelakis, A.N. The evolution of agricultural drainage from the earliest times to the present. Sustain. 2020, 12. [CrossRef]
- Jepsen, M.R.; Kuemmerle, T.; Müller, D.; Erb, K.; Verburg, P.H.; Haberl, H.; Vesterager, J.P.; Andrič, M.; Antrop, M.; Austrheim, G.; et al. Transitions in European land-management regimes between 1800 and 2010. Land use policy 2015, 49, 53–64. [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [CrossRef]
- Koch, J.; Elsgaard, L.; Greve, M.H.; Gyldenkærne, S.; Hermansen, C.; Levin, G.; Wu, S.; Stisen, S. Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale. Biogeosciences 2023, 20, 2387–2403. [CrossRef]
- Williamson, T.N., Dobrowolski, E.G.; Meyer, S.M.; Frey, J.W.; Allred, B.J. Delineation of tile-drain networks using thermal and multispectral imagery—Implications for water quantity and quality differences from paired edge- of-field sites. J. Soil Water Conserv. 2018, 74, 1–11. [CrossRef]
- Carlsen, A.H.; Fensholt, R.; Looms, M.C.; Gominski, D.; Stisen, S.; Jepsen, M.R. Systematic review of the detection of subsurface drainage systems in agricultural fields using remote sensing systems. Agric. Water Manag. 2024, 299, 108892. [CrossRef]
- Karbs, H.H. Subsurface Drainage Mapping By Airborne Infrared.; Proceedings of the Oklahoma Academy of Science, 1970; Vol. 18, pp. 10–18.
- Gökkaya, K.; Budhathoki, M.; Christopher, S.F.; Hanrahan, B.R.; Tank, J.L. Subsurface tile drained area detection using GIS and remote sensing in an agricultural watershed. Ecol. Eng. 2017, 108, 370–379. [CrossRef]
- Cho, E.; Jacobs, J.M.; Jia, X.; Kraatz, S. Identifying Subsurface Drainage using Satellite Big Data and Machine Learning via Google Earth Engine. Water Resour. Res. 2019, 55, 8028–8045. [CrossRef]
- Lai, Q.; Xin, Q.; Tian, Y.; Chen, X.; Li, Y.; Wu, R. Structural Analysis and 3D Reconstruction of Underground Pipeline Systems Based on LiDAR Point Clouds. Remote Sens. 2025, 17. [CrossRef]
- Woo, D.K.; Ji, J.; Song, H. Subsurface drainage pipe detection using an ensemble learning approach and aerial images. Agric. Water Manag. 2023, 287, 108455. [CrossRef]
- Allred, B.; Eash, N.; Freeland, R.; Martinez, L.; Wishart, D.B. Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study. Agric. Water Manag. 2018, 197, 132–137. [CrossRef]
- Becker, A.M.; Becker, R.H.; Doro, K.O. Locating Drainage Tiles at a Wetland Restoration Site within the Oak Openings Region of Ohio, United States Using UAV and Land Based Geophysical Techniques. Wetlands 2021, 41. [CrossRef]
- Liu, Z.; Chen, G.K.; Tang, B.; Wen, Q.; Tan, R.; Huang, Y. Regional scale terrace mapping in fragmented mountainous areas using multi-source remote sensing data and sample purification strategy. Sci. Total Environ. 2024, 925, 171366. [CrossRef]
- Lu, Y.; Li, X.; Xin, L.; Song, H.; Wang, X. Mapping the terraces on the Loess Plateau based on a deep learning-based model at 1.89 m resolution. Sci. Data 2023, 10, 1–15. [CrossRef]
- Yu, M.; Rui, X.; Xie, W.; Xu, X.; Wei, W. Research on Automatic Identification Method of Terraces on the Loess Plateau Based on Deep Transfer Learning. Remote Sens. 2022, 14. [CrossRef]
- Ding, H.; Na, J.; Jiang, S.; Zhu, J.; Liu, K.; Fu, Y.; Li, F. Evaluation of three different machine learning methods for object-based artificial terrace mapping—a case study of the loess plateau, China. Remote Sens. 2021, 13, 1–19. [CrossRef]
- Zhao, F.; Xiong, L.; Wang, C.; Wang, H.; Wei, H.; Tang, G. Terraces mapping by using deep learning approach from remote sensing images and digital elevation models. Trans. GIS 2021, 25, 2438–2454. [CrossRef]
- Zhai, D.; Dong, J.; Cadisch, G.; Wang, M.; Kou, W.; Xu, J.; Xiao, X.; Abbas, S. Comparison of pixel- and object-based approaches in phenology-based rubber plantation mapping in fragmented landscapes. Remote Sens. 2018, 10. [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269. [CrossRef]
- Godone, D.; Giordan, D.; Baldo, M. Rapid mapping application of vegetated terraces based on high resolution airborne lidar. Geomatics, Nat. Hazards Risk 2018, 9, 970–985. [CrossRef]
- Le Vot, T.; Cohen, M.; Nowak, M.; Passy, P.; Sumera, F. Resilience of Terraced Landscapes to Human and Natural Impacts: A GIS-Based Reconstruction of Land Use Evolution in a Mediterranean Mountain Valley. Land 2024, 13, 1–18. [CrossRef]
- Garzón-Oechsle, A.; Johanson, E.; Nagarajan, S.; Martínez, V. In between the Sites: Understanding Late Holocene Manteño Agricultural Contexts in the Chongón-Colonche Mountains of Coastal Ecuador through UAV-Lidar and Excavation. J. F. Archaeol. 2025, 50, 42–59. [CrossRef]
- Lozić, E. Application of airborne lidar data to the archaeology of agrarian land use. The case study of the early medieval microregion of bled (Slovenia). Remote Sens. 2021, 13. [CrossRef]
- Masini, N.; Gizzi, F.T.; Biscione, M.; Fundone, V.; Sedile, M.; Sileo, M.; Pecci, A.; Lacovara, B.; Lasaponara, R. Medieval archaeology under the canopy with LiDAR. the (Re)discovery of a medieval fortified settlement in southern Italy. Remote Sens. 2018, 10. [CrossRef]
- Smith, C.; Baker, J.C.A.; Spracklen, D. V. Tropical deforestation causes large reductions in observed precipitation. Nature 2023, 615, 270–275. [CrossRef]
- Hansen, M.C.; Potapov, P. V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S. V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science (80-. ). 2013, 342, 850–853. [CrossRef]
- Ponvert-Delisles Batista, D.R.; Estrada-Medina, H.; Gijón-Yescas, G.N.; Álvarez-Rivera, O.O. Land covers analyses during slash and burn agriculture by using multispectral imagery obtained with Unattended Aerial Vehicles (UAVs). Trop. Subtrop. Agroecosystems 2021, 24. [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [CrossRef]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [CrossRef]
- Ballère, M.; Bouvet, A.; Mermoz, S.; Le Toan, T.; Koleck, T.; Bedeau, C.; André, M.; Forestier, E.; Frison, P.L.; Lardeux, C. SAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery. Remote Sens. Environ. 2021, 252. [CrossRef]
- Tarazona, Y.; Mantas, V.M.; Pereira, A.J.S.C. Improving tropical deforestation detection through using photosynthetic vegetation time series – (PVts-β). Ecol. Indic. 2018, 94, 367–379. [CrossRef]
- Wang, X.; Shu, L.; Han, R.; Yang, F.; Gordon, T.; Wang, X.; Xu, H. A Survey of Farmland Boundary Extraction Technology Based on Remote Sensing Images. Electron. 2023, 12. [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 1–32. [CrossRef]
- Preidl, S.; Lange, M.; Doktor, D. Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery. Remote Sens. Environ. 2020, 240, 111673. [CrossRef]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [CrossRef]
- Chapman, T. Calculating the Interspersion and Juxtaposition Rates for Saint Clair Flats State Wildlife Area by, 2022.
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res. 2009, 3, 1–28. [CrossRef]
- Oksanen, T. Shape-describing indices for agricultural field plots and their relationship to operational efficiency. Comput. Electron. Agric. 2013, 98, 252–259. [CrossRef]
- Griffel, L.M.; Vazhnik, V.; Hartley, D.S.; Hansen, J.K.; Roni, M. Agricultural field shape descriptors as predictors of field efficiency for perennial grass harvesting: An empirical proof. Comput. Electron. Agric. 2020, 168. [CrossRef]
- Salas, E.A.L.; Subburayalu, S.K. Correction: Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets. PLoS One 2019, 14, e0222474. [CrossRef]
- Blüthgen, N.; Dormann, C.F.; Prati, D.; Klaus, V.H.; Kleinebecker, T.; Hölzel, N.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 2012, 13, 207–220. [CrossRef]
- Rocchini, D.; Balkenhol, N.; Carter, G.A.; Foody, G.M.; Gillespie, T.W.; He, K.S.; Kark, S.; Levin, N.; Lucas, K.; Luoto, M.; et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol. Inform. 2010, 5, 318–329. [CrossRef]
- Rocchini, D.; Marcantonio, M.; Ricotta, C. Measuring Rao’s Q diversity index from remote sensing: An open source solution. Ecol. Indic. 2017, 72, 234–238. [CrossRef]
- Rocchini, D.; Bacaro, G.; Chirici, G.; Da Re, D.; Feilhauer, H.; Foody, G.M.; Galluzzi, M.; Garzon-Lopez, C.X.; Gillespie, T.W.; He, K.S.; et al. Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecol. Indic. 2018, 85, 983–990. [CrossRef]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [CrossRef]
- Howison, R.A.; Piersma, T.; Kentie, R.; Hooijmeijer, J.C.E.W.; Olff, H. Quantifying landscape-level land-use intensity patterns through radar-based remote sensing. J. Appl. Ecol. 2018, 55, 1276–1287.
- Herrero-Huerta, M.; Bucksch, A.; Puttonen, E.; Rainey, K.M. Canopy roughness: A new phenotypic trait to estimate aboveground biomass from unmanned aerial system. Plant Phenomics 2020, 2020. [CrossRef]
- Alfieri, J.G.; Kustas, W.P.; Nieto, H.; Prueger, J.H.; Hipps, L.E.; McKee, L.G.; Gao, F.; Los, S. Influence of wind direction on the surface roughness of vineyards. Irrig. Sci. 2019, 37, 359–373. [CrossRef]
- Singh, A.; Gaurav, K.; Rai, A.K.; Beg, Z. Machine learning to estimate surface roughness from satellite images. Remote Sens. 2021, 13, 1–27. [CrossRef]
- Turner, R.; Panciera, R.; Tanase, M.A.; Lowell, K.; Hacker, J.M.; Walker, J.P. Estimation of soil surface roughness of agricultural soils using airborne LiDAR. Remote Sens. Environ. 2014, 140, 107–117. [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14. [CrossRef]
- Qiu, B.; Hu, X.; Chen, C.; Tang, Z.; Yang, P.; Zhu, X.; Yan, C.; Jian, Z. Maps of cropping patterns in China during 2015–2021. Sci. Data 2022, 9, 1–9. [CrossRef]
- El Hajj, M.; Bégué, A.; Guillaume, S.; Martiné, J.F. Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices - The case of sugarcane harvest on Reunion Island. Remote Sens. Environ. 2009, 113, 2052–2061.
- Maponya, M.G.; van Niekerk, A.; Mashimbye, Z.E. Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning. Comput. Electron. Agric. 2020, 169, 105164. [CrossRef]
- Ahlawat, I.; Sheoran, H.S.; Roohi; Dahiya, G.; Sihag, P. Analysis of sentinel-1 data for regional crop classification: a multi-data approach for rabi crops of district Hisar (Haryana). J. Appl. Nat. Sci. 2020, 12, 165–170. [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: a review. Int. J. Remote Sens. 2019, 40, 6553–6595. [CrossRef]
- Zhao, J.; Zhong, Y.; Hu, X.; Wei, L.; Zhang, L. A robust spectral-spatial approach to identifying heterogeneous crops using remote sensing imagery with high spectral and spatial resolutions. Remote Sens. Environ. 2020, 239, 111605. [CrossRef]
- Nigam, R.; Tripathy, R.; Dutta, S.; Bhagia, N.; Nagori, R.; Chandrasekar, K.; Kot, R.; Bhattacharya, B.K.; Ustin, S. Crop type discrimination and health assessment using hyperspectral imaging. Curr. Sci. 2019, 116, 1108–1123. [CrossRef]
- Prins, A.J.; Van Niekerk, A. Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms. Geo-Spatial Inf. Sci. 2020, 24, 1–13.
- He, T.; Zhang, M.; Xiao, W.; Zhai, G.; Fang, K.; Chen, Y.; Wu, C. Terend and potential enhancement of cropping intensity. Comput. Electron. Agric. 2025, 229, 109777. [CrossRef]
- Du, G.; Han, L.; Yao, L.; Faye, B. Spatiotemporal Dynamics and Evolution of Grain Cropping Patterns in Northeast China: Insights from Remote Sensing and Spatial Overlay Analysis. Agriculture 2024, 14, 1443. [CrossRef]
- Manjunath, K.R.; Kundu, N.; Ray, S.S.; Panigrahy, S.; Parihar, J.S. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-8/, 40–45. [CrossRef]
- Manjunath, K.R.; More, R.S.; Jain, N.K.; Panigrahy, S.; Parihar, J.S. Mapping of rice-cropping pattern and cultural type using remote-sensing and ancillary data: a case study for South and Southeast Asian countries. Int. J. Remote Sens. 2015, 36, 6008–6030. [CrossRef]
- Aduvukha, G.R.; Abdel-Rahman, E.M.; Sichangi, A.W.; Makokha, G.O.; Landmann, T.; Mudereri, B.T.; Tonnang, H.E.Z.; Dubois, T. Cropping pattern mapping in an agro-natural heterogeneous landscape using sentinel-2 and sentinel-1 satellite datasets. Agric. 2021, 11, 1–22. [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [CrossRef]
- Zhang, M.; Wu, B.; Zeng, H.; He, G.; Liu, C.; Tao, S.; Zhang, Q.; Nabil, M.; Tian, F.; Bofana, J.; et al. GCI30: A global dataset of 30m cropping intensity using multisource remote sensing imagery. Earth Syst. Sci. Data 2021, 13, 4799–4817. [CrossRef]
- Lange, M.; Feilhauer, H.; Kühn, I.; Doktor, D. Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sens. Environ. 2022, 277, 112888. [CrossRef]
- Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sens. Environ. 2020, 238, 111124. [CrossRef]
- Fischer, M.; Bossdorf, O.; Gockel, S.; Hänsel, F.; Hemp, A.; Hessenmöller, D.; Korte, G.; Nieschulze, J.; Pfeiffer, S.; Prati, D.; et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 2010, 11, 473–485. [CrossRef]
- Bartold, M.; Kluczek, M.; Wróblewski, K.; Dąbrowska-Zielińska, K.; Goliński, P.; Golińska, B. Mapping management intensity types in grasslands with synergistic use of Sentinel-1 and Sentinel-2 satellite images. Sci. Rep. 2024, 14, 1–17. [CrossRef]
- Sousa Júnior, V. de P.; Sparacino, J.; Espindola, G.M. de; Assis, R.J.S. de Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest. ISPRS Int. J. Geo-Information 2023, 12, 354. [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 1–8. [CrossRef]
- Zhang, P.; Lu, B.; Ge, J.; Wang, X.; Yang, Y.; Shang, J.; La, Z.; Zang, H.; Zeng, Z. Using UAV-based multispectral and RGB imagery to monitor above-ground biomass of oat-based diversified cropping. Eur. J. Agron. 2025, 162, 127422. [CrossRef]
- Da, H.; Li, Y.; Xu, L.; Wang, S.; Hu, L.; Hu, Z.; Wei, Q.; Zhu, R.; Chen, Q.; Xin, D.; et al. Advancing soybean biomass estimation through multi-source UAV data fusion and machine learning algorithms. Smart Agric. Technol. 2025, 10. [CrossRef]
- Breunig, F.M.; Dalagnol, R.; Galvão, L.S.; Bispo, P. da C.; Liu, Q.; Berra, E.F.; Gaida, W.; Liesenberg, V.; Sampaio, T.V.M. Monitoring Cover Crop Biomass in Southern Brazil Using Combined PlanetScope and Sentinel-1 SAR Data. Remote Sens. 2024, 16. [CrossRef]
- Hagn, L.; Schuster, J.; Mittermayer, M.; Hülsbergen, K.J. A new method for satellite-based remote sensing analysis of plant-specific biomass yield patterns for precision farming applications. Precis. Agric. 2024, 25, 2801–2830. [CrossRef]
- Burger, R.; Aouizerats, B.; den Besten, N.; Guillevic, P.; Catarino, F.; van der Horst, T.; Jackson, D.; Koopmans, R.; Ridderikhoff, M.; Robson, G.; et al. The Biomass Proxy: Unlocking Global Agricultural Monitoring through Fusion of Sentinel-1 and Sentinel-2. Remote Sens. 2024, 16, 1–27. [CrossRef]
- Bloem, E.; Gerighausen, H.; Chen, X.; Schnug, E. The potential of spectral measurements for identifying glyphosate application to agricultural fields. Agronomy 2020, 10. [CrossRef]
- Niu, Z.; Rehman, T.; Young, J.; Johnson, W.G.; Yokoo, T.; Young, B.; Jin, J. Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research. Sensors 2023, 23. [CrossRef]
- Zhang, T.; Huang, Y.; Reddy, K.N.; Yang, P.; Zhao, X.; Zhang, J. Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability. Agronomy 2021, 11, 583. [CrossRef]
- Chu, H.; Zhang, C.; Wang, M.; Gouda, M.; Wei, X.; He, Y.; Liu, Y. Hyperspectral imaging with shallow convolutional neural networks (SCNN) predicts the early herbicide stress in wheat cultivars. J. Hazard. Mater. 2022, 421, 126706. [CrossRef]
- Xiao, T.; Yang, L.; He, X.; Wang, L.; Zhang, D.; Cui, T.; Zhang, K.; Bao, L.; An, S.; Zhang, X. A green and efficient method for detecting nicosulfuron residues in field maize using hyperspectral imaging and deep learning. J. Hazard. Mater. 2025, 484, 136724. [CrossRef]
- Pause; Raasch; Marrs; Csaplovics Monitoring Glyphosate-Based Herbicide Treatment Using Sentinel-2 Time Series—A Proof-of-Principle. Remote Sens. 2019, 11, 2541.
- Pon Arasan, A.; Radhamani, S.; Pazhanivelan, S.; Kavitha, R.; Raja, R.; Kumaraperumal, R. Mapping and monitoring of weeds using unmanned aircraft systems and remote sensing. Plant Prot. Sci. 2024, 61, 44–55. [CrossRef]
- Günder, M.; Yamati, F.R.I.; Alcántara, A.A.B.; Mahlein, A.-K.; Sifa, R.; Bauckhage, C. SugarViT -- Multi-objective Regression of UAV Images with Vision Transformers and Deep Label Distribution Learning Demonstrated on Disease Severity Prediction in Sugar Beet. PLoS One 2023, 1–30. [CrossRef]
- Li, J.; Ge, Y.; Puntel, L.A.; Heeren, D.M.; Bai, G.; Balboa, G.R.; Gamon, J.A.; Arkebauer, T.J.; Shi, Y. Devising optimized maize nitrogen stress indices in complex field conditions from UAV hyperspectral imagery. Precis. Agric. 2024, 1–23. [CrossRef]
- Yin, H.; Li, F.; Yang, H.; Di, Y.; Hu, Y.; Yu, K. Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models. Remote Sens. 2024, 16. [CrossRef]
- Almawazreh, A.; Buerkert, A.; Vazhacharickal, P.J.; Peth, S. Assessing canopy temperature responses to nitrogen fertilisation in South Indian crops using UAV -based thermal sensing. Int. J. Remote Sens. 2025, 00, 1–29. [CrossRef]
- Hossen, M.A.; Diwakar, P.K.; Ragi, S. Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS. Sci. Rep. 2021, 11, 1–11. [CrossRef]
- Tiessen, H.; Cuevas, E.; Chacon, P. The role of soil organic matter in sustaining soil fertility. Nature 1994, 371, 783–785. [CrossRef]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; van Wesemael, B. Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database. Remote Sens. 2018, 10. [CrossRef]
- Wilcox, C.H.; Frazier, B.E.; Ball, S.T. Relationship between soil organic carbon and landsat tm data in eastern Washington. Photogramm. Eng. Rem. Sens 1994, 60, 777–781.
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [CrossRef]
- Basnyat, P.; McConkey, B.; Meinert, B.; Gatkze, C.; Noble, G. Agriculture Field Characterization Using Aerial Photograph and Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 7–10. [CrossRef]
- Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 2022, 804, 150187. [CrossRef]
- Zhou, T.; Lv, W.; Geng, Y.; Xiao, S.; Chen, J.; Xu, X.; Pan, J.; Si, B.; Lausch, A. National-scale spatial prediction of soil organic carbon and total nitrogen using long-term optical and microwave satellite observations in Google Earth Engine. Comput. Electron. Agric. 2023, 210, 107928. [CrossRef]
- Castaldi, F.; Halil Koparan, M.; Wetterlind, J.; Žydelis, R.; Vinci, I.; Özge Savaş, A.; Kıvrak, C.; Tunçay, T.; Volungevičius, J.; Obber, S.; et al. Assessing the capability of Sentinel-2 time-series to estimate soil organic carbon and clay content at local scale in croplands. ISPRS J. Photogramm. Remote Sens. 2023, 199, 40–60. [CrossRef]
- Wang, X.; Zhang, Y.; Atkinson, P.M.; Yao, H. Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102182. [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [CrossRef]
- Li, H.; Zhang, C.; Zhang, S.; Atkinson, P.M. Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: A case study in the Sacramento Valley, California. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 45–56. [CrossRef]
- Ottinger, M.; Kuenzer, C. Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sens. 2020, 12, 2228. [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, F.; Talebi-khiavi, H.; Xu, T.; Homaee, M. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. CATENA 2022, 212, 106077. [CrossRef]
- Wang, L.; Wang, X.; Wang, D.; Qi, B.; Zheng, S.; Liu, H.; Luo, C.; Li, H.; Meng, L.; Meng, X.; et al. Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years. Remote Sens. 2021, 13, 3607. [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R. Modelling soil organic carbon stock distribution across different land-uses in South Africa: A remote sensing and deep learning approach. ISPRS J. Photogramm. Remote Sens. 2022, 188, 351–362. [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [CrossRef]
- Wang, X.; Zeng, H.; Yang, X.; Shu, J.; Wu, Q.; Que, Y.; Yang, X.; Yi, X.; Khalil, I.; Zomaya, A.Y. Remote sensing revolutionizing agriculture: Toward a new frontier. Futur. Gener. Comput. Syst. 2025, 166, 107691. [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K.A. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10. [CrossRef]
- Wang, D.; Cao, W.; Zhang, F.; Li, Z.; Xu, S.; Wu, X. A Review of Deep Learning in Multiscale Agricultural Sensing. Remote Sens. 2022, 14. [CrossRef]
- Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; Furuya, D.E.G.; Santana, D.C.; Teodoro, L.P.R.; Gonçalves, W.N.; Baio, F.H.R.; Pistori, H.; Junior, C.A. da S.; et al. Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sens. 2020, 12, 1–17. [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El Hadrami, E.M. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195. [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; Wesemael, B. Van ISPRS Journal of Photogrammetry and Remote Sensing Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282.
- Shi, P.; Wang, Y.; Xu, J.; Zhao, Y.; Yang, B.; Yuan, Z.; Sun, Q. Rice nitrogen nutrition estimation with RGB images and machine learning methods. Comput. Electron. Agric. 2021, 180, 105860. [CrossRef]
- Sahabiev, I.; Smirnova, E.; Giniyatullin, K. Spatial prediction of agrochemical properties on the scale of a single field using machine learning methods based on remote sensing data. Agronomy 2021, 11, 1–16. [CrossRef]
- Wolanin, A.; Mateo-Garciá, G.; Camps-Valls, G.; Gómez-Chova, L.; Meroni, M.; Duveiller, G.; Liangzhi, Y.; Guanter, L. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environ. Res. Lett. 2020, 15. [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [CrossRef]
- Jaihuni, M.; Khan, F.; Lee, D.; Basak, J.K.; Bhujel, A.; Moon, B.E.; Park, J.; Kim, H.T. Determining Spatiotemporal Distribution of Macronutrients in a Cornfield Using Remote Sensing and a Deep Learning Model. IEEE Access 2021, 9, 30256–30266. [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science (80-. ). 2010, 327, 828–831.
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agric. 2020, 174, 105450. [CrossRef]
- Khusro, S.; Jabeen, F.; Mashwani, S.R.; Alam, I. Linked open data: Towards the realization of semantic web-A review. Indian J. Sci. Technol. 2014, 7, 745–764.
- Lausch, A.; Schmidt, A.; Tischendorf, L. Data mining and linked open data – New perspectives for data analysis in environmental research. Ecol. Modell. 2015, 295, 5–17. [CrossRef]
- Palma, R.; Janiak, B.; de Sousa, L.M.; Schleidt, K.; Řezník, T.; van Egmond, F.; Leenaars, J.; Moshou, D.; Mouazen, A.; Wilson, P.; et al. GloSIS: The Global Soil Information System Web Ontology. 2024, 0.
- Corcho, O.; Poveda-Villalón, M.; Gómez-Pérez, A. Ontology engineering in the era of linked data. Bull. Assoc. Inf. Sci. Technol. 2015, 41, 13–17. [CrossRef]
- Fibriani, C.; Ashari, A.; Riasetiawan, M. Linked Open Spatial Data for Evaluation of Land Suitability. J. Theor. Appl. Inf. Technol. 2023, 101, 2082–2090.
- Ranatunga, S.; Ødegård, R.S.; Jetlund, K. Use of Semantic Web Technologies to Enhance the Integration and Interoperability of Environmental Geospatial Data : A Framework Based on Ontology-Based Data Access. ISPRS Int. J. Geo-Information 2025. [CrossRef]
- Wang, C.; Zhuo, X.; Li, P.; Chen, N.; Wang, W.; Zeqiang Chen An ontology-based framework for integrating remote sensing imagery, image products, and in situ observations. J. Sensors 2020, 2020.
- Potnis, A. V.; Durbha, S.S.; Shinde, R.C. Semantics-driven remote sensing scene understanding framework for grounded spatio-contextual scene descriptions. ISPRS Int. J. Geo-Information 2021, 10. [CrossRef]
- Aldana-Martín, J.F.; García-Nieto, J.; del Mar Roldán-García, M.; Aldana-Montes, J.F. Semantic modelling of Earth Observation remote sensing. Expert Syst. Appl. 2022, 187, 115838.
- Hamdani, Y.; Xiao, G.; Ding, L.; Calvanese, D. An Ontology-Based Framework for Geospatial Integration and Querying of Raster Data Cube Using Virtual Knowledge Graphs. ISPRS Int. J. Geo-Information 2023, 12. [CrossRef]
- Kazani, A.; Filandrianos, G.; Symeonaki, M.; Stamou, G. Semantic Integration of Data: From Theory to Social Research Practice. In; 2023; pp. 303–314.
- Zhou, X.; Zhang, J.; Chen, D.; Huang, Y.; Kong, W.; Yuan, L.; Ye, H.; Huang, W. Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data. Remote Sens. 2020, 12, 2574. [CrossRef]
- Zolotukhina, A.; Machikhin, A.; Guryleva, A.; Gresis, V.; Kharchenko, A.; Dekhkanova, K.; Polyakova, S.; Fomin, D.; Nesterov, G.; Pozhar, V. Evaluation of Leaf Chlorophyll Content from Acousto-Optic Hyperspectral Data: A Multi-Crop Study. Remote Sens. 2024, 16, 1073. [CrossRef]
- Cheng, J.; Yang, H.; Qi, J.; Sun, Z.; Han, S.; Feng, H.; Jiang, J.; Xu, W.; Li, Z.; Yang, G.; et al. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery. Comput. Electron. Agric. 2022, 202, 107401. [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]
- Qian, B.; Ye, H.; Huang, W.; Xie, Q.; Pan, Y.; Xing, N.; Ren, Y.; Guo, A.; Jiao, Q.; Lan, Y. A sentinel-2-based triangular vegetation index for chlorophyll content estimation. Agric. For. Meteorol. 2022, 322, 109000. [CrossRef]
- Holtgrave, A.K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and -2 data and indices for agricultural land use monitoring. Remote Sens. 2020, 12. [CrossRef]
- Wu, Q.; Zhang, Y.; Zhao, Z.; Xie, M.; Hou, D. Estimation of Relative Chlorophyll Content in Spring Wheat Based on Multi-Temporal UAV Remote Sensing. Agronomy 2023, 13, 1–16. [CrossRef]
- Gitelson, A.A.; Viña, A.; Solovchenko, A. Spectral response of gross primary production to in situ canopy light absorption coefficient of chlorophyll. Photosynth. Res 2025, 1–13. [CrossRef]
- Gitelson, A.; Arkebauer, T.; Solovchenko, A.; Nguy-Robertson, A.; Inoue, Y. An insight into spectral composition of light available for photosynthesis via remotely assessed absorption coefficient at leaf and canopy levels. Photosynth. Res. 2022, 151, 47–60. [CrossRef]
- Abdelbaki, A.; Schlerf, M.; Retzlaff, R.; Machwitz, M.; Verrelst, J.; Udelhoven, T. Comparison of crop trait retrieval strategies using UAV-based VNIR hyperspectral imaging. Remote Sens. 2021, 13, 1–26. [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [CrossRef]
- Lee, S.; Ghimire, A.; Kim, Y.; Lee, J.D. Automatic optimization of regions of interest in hyperspectral images for detecting vegetative indices in soybeans. Front. Plant Sci. 2025, 16, 1–12. [CrossRef]
- Gitelson, A.; Solovchenko, A.; Viña, A. Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups. J. Plant Physiol. 2020, 254. [CrossRef]
- Shen, J.; Huang, Y.; Chen, W.; Li, M.; Tan, W.; Wang, R.; Deng, Y.; Gong, Y.; Ai, S.; Liu, N. Assessing the Transferability of Models for Predicting Foliar Nutrient Concentrations Across Maize Cultivars. Remote Sens. 2025, 17, 1–21. [CrossRef]
- Kharel, T.P.; Tyler, H.L.; Mubvumba, P.; Huang, Y.; Bhandari, A.B.; Fletcher, R.S.; Anapalli, S.; Joshi, D.R.; Mengistu, A.; Birru, G.; et al. Machine learning on multi-spectral imagery to estimate nutrient yield of mixed-species cover crops. Agric. Environ. Lett. 2025, 10, 1–9. [CrossRef]
- Geng, G.; Gu, Q.; Zhou, H.; Zhang, B.; He, Z.; Zheng, R. Random forest model that incorporates solar-induced chlorophyll fluorescence data can accurately track crop yield variations under drought conditions. Ecol. Inform. 2025, 85, 102972. [CrossRef]
- Wu, Y.; Zhang, Z.; Wu, L.; Zhang, Y. Solar-induced chlorophyll fluorescence and its relationship with photosynthesis during waterlogging in a maize field. Agric. For. Meteorol. 2025, 363, 110404. [CrossRef]
- Li, Z.; Zhang, Q.; Li, J.; Yang, X.; Wu, Y.; Zhang, Z.; Wang, S.; Wang, H.; Zhang, Y. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens. Environ. 2020, 236. [CrossRef]
- Song, L.; Cai, J.; Wu, K.; Li, Y.; Hou, G.; Du, S.; Duan, J.; He, L.; Guo, T.; Feng, W. Early diagnosis of wheat powdery mildew using solar-induced chlorophyll fluorescence and hyperspectral reflectance. Eur. J. Agron. 2025, 162. [CrossRef]
- Jin, X.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.; Li, Z.; Ming, B.; et al. High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geosci. Remote Sens. Mag. 2021, 9, 200–231. [CrossRef]
- Camino, C.; González-Dugo, V.; Hernández, P.; Sillero, J.C.; Zarco-Tejada, P.J. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 105–117. [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11.
- Abbas, T.; Farooq, N.; Nadeem, M.A. Application of leaf water content measurement to improve herbicide efficacy for effective weed management in a changing climate – A review. Crop Prot. 2025, 191, 107138. [CrossRef]
- Cardamis, M.; Jia, H.; Qian, H.; Chen, W.; Yan, Y.; Ghannoum, O.; Quigley, A.; Chou, C.T.; Hu, W. Leafeon: Towards Accurate Sensing of Leaf Water Content for Protected Cropping, with mmWave Radar. IEEE Internet Things J. 2025, PP, 1.
- Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop water stress detection based on UAV remote sensing systems. Agric. Water Manag. 2024, 303, 109059. [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. A Review of Crop Water Stress Assessment Using Remote Sensing. Remote Sens. 2021, 13, 4155. [CrossRef]
- Romero-Trigueros, C.; Bayona Gambín, J.M.; Nortes Tortosa, P.A.; Alarcón Cabañero, J.J.; Nicolás, E.N. Determination of Crop Water Stress index by infrared thermometry in grapefruit trees irrigated with saline reclaimed water combined with deficit irrigation. Remote Sens. 2019, 11, 1–23. [CrossRef]
- Jiang, M.; Zheng, C.; Jia, L.; Chen, J. A 20-year dataset ( 2001 – 2020 ) of global cropland water-use efficiency at 1-km grid resolution. Sci. Data 2025, 1–14. [CrossRef]
- Cheng, M.; Yin, D.; Wu, W.; Cui, N.; Nie, C.; Shi, L.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; et al. A review of remote sensing estimation of crop water productivity: definition, methodology, scale, and evaluation. Int. J. Remote Sens. 2023, 44, 5033–5068. [CrossRef]
- Safi, A.R.; Karimi, P.; Mul, M.; Chukalla, A.; de Fraiture, C. Translating open-source remote sensing data to crop water productivity improvement actions. Agric. Water Manag. 2022, 261, 107373. [CrossRef]
- Koetz, B.; Bastiaanssen, W.; Berger, M.; Defourney, P.; Bello, U. Del; Drusch, M.; Drinkwater, M.; Duca, R.; Fernandez, V.; Ghent, D.; et al. High spatio-temporal resolution land surface temperature mission - A copernicus candidate mission in support of agricultural monitoring. Int. Geosci. Remote Sens. Symp. 2018, 2018-July, 8160–8162. [CrossRef]
- Heinemann, S.; Siegmann, B.; Thonfeld, F.; Muro, J.; Jedmowski, C.; Kemna, A.; Kraska, T.; Muller, O.; Schultz, J.; Udelhoven, T.; et al. Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor. Remote Sens. 2020, 12. [CrossRef]
- Lee, J. Estimating Near-Surface Air Temperature from Satellite-Derived Land Surface Temperature Using Temporal Deep Learning: A Comparative Analysis. IEEE Access 2025, 13, 28935–28945. [CrossRef]
- Majumder, A.; Kingra, P.K.; Setia, R.; Singh, S.P.; Pateriya, B. Influence of land use/land cover changes on surface temperature and its effect on crop yield in different agro-climatic regions of Indian Punjab. Geocarto Int. 2020, 35, 663–686. [CrossRef]
- Barai, K.; Wallhead, M.; Hall, B.; Rahimzadeh-Bajgiran, P.; Meireles, J.; Herrmann, I.; Zhang, Y.J. Detecting spatial variation in wild blueberry water stress using UAV-borne thermal imagery: distinct temporal and reference temperature effects. Precis. Agric. 2025, 26, 1–24. [CrossRef]
- García-Santos, V.; Sánchez, J.M.; Cuxart, J. Evapotranspiration Acquired with Remote Sensing Thermal-Based Algorithms: A State-of-the-Art Review. Remote Sens. 2022, 14, 1–36. [CrossRef]
- El Hazdour, I.; Le Page, M.; Hanich, L.; Chakir, A.; Lopez, O.; Jarlan, L. A GEE TSEB workflow for daily high-resolution fully remote sensing evapotranspiration: Validation over four crops in semi-arid conditions and comparison with the SSEBop experimental product. Environ. Model. Softw. 2025, 187, 106365. [CrossRef]
- Bhattarai, N.; Wagle, P. Recent advances in remote sensing of evapotranspiration. Remote Sens. 2021, 13, 1–5. [CrossRef]
- Pelosi, A.; Villani, P.; Bolognesi, S.F.; Chirico, G.B.; D’urso, G. Predicting crop evapotranspiration by integrating ground and remote sensors with air temperature forecasts. Sensors (Switzerland) 2020, 20, 1–18. [CrossRef]
- Ippolito, M.; De Caro, D.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Irrig. Sci. 2023, 41, 5–22. [CrossRef]
- Wagner Wolff; Francisco, J.P.; Flumignan, D.L.; Marin, F.R.; Folegatti, M.V. Optimized algorithm for evapotranspiration retrieval via remote sensing. Agric. Water Manag. 2022, 262. [CrossRef]
- Garofalo, S. Pietro; Ardito, F.; Sanitate, N.; De Carolis, G.; Ruggieri, S.; Giannico, V.; Rana, G.; Ferrara, R.M. Robustness of Actual Evapotranspiration Predicted by Random Forest Model Integrating Remote Sensing and Meteorological Information: Case of Watermelon (Citrullus lanatus, (Thunb.) Matsum. & Nakai, 1916). Water (Switzerland) 2025, 17.
- Ratshiedana, P.E.; Elbasit, M.A.M.; Adam, E.; Chirima, G.J. Evaluation of remote sensing algorithms for estimating actual evapotranspiration in arid agricultural environments. Hydrol. Earth Syst. Sci. 2025.
- Liu, M.; Lei, H.; Wang, X.; Paredes, P. High-resolution mapping of evapotranspiration over heterogeneous cropland affected by soil salinity. Agric. Water Manag. 2025, 308, 109301. [CrossRef]
- Kaihotsu, I.; Asanuma, J.; Aida, K.; Oyunbaatar, D. Evaluation of the AMSR2 L2 soil moisture product of JAXA on the Mongolian Plateau over seven years (2012–2018). SN Appl. Sci. 2019, 1, 1–14. [CrossRef]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: Satellite data analysis. Remote Sens. Environ. 2016, 173, 1–14. [CrossRef]
- NISAR NISAR: The NASA-ISRO SAR Mission. Water: Vital for Life and Civilization. © 2019 California Institute of Technol- ogy. Government Sponsorship Acknowledged. Available online: https://nisar.jpl.nasa.gov/system/documents/files/15 _NISARApplications_SoilMoist Available online: https://nisar.jpl.nasa.gov/system/documents/files/15_NISARApplications_SoilMoisture1.pdf.
- Benninga, H.J.F.; van der Velde, R.; Su, Z. Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields. J. Hydrol. X 2020, 9, 100066. [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Gavahi, K.; Kumar, S.; Hain, C.; Zhan, X.; Duan, Q.; Peters-Lidard, C.; Karimiziarani, S. High-resolution smap satellite soil moisture product: Exploring the opportunities. Bull. Am. Meteorol. Soc. 2021, 102, 309–315. [CrossRef]
- Noory, H.; Khoshsima, M.; Tsunekawa, A.; Tsubo, M.; Haregeweyn, N.; Pashapour, S. Developing a method for root-zone soil moisture monitoring at the field scale using remote sensing and simulation modeling. Agric. Water Manag. 2025, 308, 109263. [CrossRef]
- Jalilvand, E.; Tajrishy, M.; Ghazi Zadeh Hashemi, S.A.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [CrossRef]
- Ghazali, M.F.; Wikantika, K.; Harto, A.B.; Kondoh, A. Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Inf. Process. Agric. 2020, 7, 294–306. [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring; Springer Netherlands, 2019; Vol. 40; ISBN 0123456789.
- Alvino, A.; Marino, S. Remote sensing for irrigation of horticultural crops. Horticulturae 2017, 3. [CrossRef]
- Mpakairi, K.S.; Dube, T.; Sibanda, M.; Mutanga, O. Leveraging remote sensing for optimised national scale agricultural water management in South Africa. Sci. Total Environ. 2025, 974, 179199. [CrossRef]
- Zhou, D.; Zheng, C.; Jia, L.; Menenti, M.; Lu, J.; Chen, Q. Evaluating the Performance of Irrigation Using Remote Sensing Data and the Budyko Hypothesis: A Case Study in Northwest China. Remote Sens. 2025, 17. [CrossRef]
- Pitoro, V.S.J.; Franco, J.R.; de Souza Correa, L.R.; Manjate, M.J.; Román, R.M.S. Evaluating Water Productivity and Efficiency in Irrigated Fields Using Remote Sensing: A Case Study in Mozambique’s Sugarcane Cultivation. Water Conserv. Sci. Eng. 2025, 10. [CrossRef]
- Ahmad, U.; Sohel, F. Evaluating decision support systems for precision irrigation and water use efficiency. Digit. Eng. 2025, 4, 100038. [CrossRef]
- Akbar, M.U.; Mirchi, A.; Arshad, A.; Alian, S.; Mehata, M.; Taghvaeian, S.; Khodkar, K.; Kettner, J.; Datta, S.; Wagner, K. Multi-model ensemble mapping of irrigated areas using remote sensing, machine learning, and ground truth data. Agric. Water Manag. 2025, 312. [CrossRef]
- Zhai, W.; Cheng, Q.; Duan, F.; Huang, X.; Chen, Z. Remote sensing-based analysis of yield and water-fertilizer use efficiency in winter wheat management. Agric. Water Manag. 2025, 311, 109390. [CrossRef]
- Liu, Y.; Wang, Y.; Liao, Y.; Liao, R.; Šimůnek, J. Generating high-precision farmland irrigation pattern maps using remotely sensed ecological indices and machine learning algorithms. Agric. Water Manag. 2025, 308. [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [CrossRef]
- Alordzinu, K.E.; Li, J.; Lan, Y.; Appiah, S.A.; Al Aasmi, A.; Wang, H.; Liao, J.; Sam-amoah, L.K.; Qiao, S. Ground-based hyperspectral remote sensing for estimating water stress in tomato growth in sandy loam and silty loam soils. Sensors 2021, 21. [CrossRef]
- Wang, X.; Guo, Z.; Zhang, K.; Fu, Z.; Lee, C.K.F.; Yang, D.; Detto, M.; Zhang, Y.; Wu, J. Can Large-Scale Satellite Products Track the Effects of Atmospheric Dryness and Soil Water Deficit on Ecosystem Productivity Under Droughts? Geophys. Res. Lett. 2025, 52. [CrossRef]
- Yu, J.; Wang, W.; Chen, Z.; Cao, M.; Qian, H. Disentangling the dominance of atmospheric and soil water stress on vegetation productivity in global drylands. J. Hydrol. 2025, 657, 133043. [CrossRef]
- Sankey, T.T. UAV hyperspectral-thermal-lidar fusion in phenotyping: genetic trait differences among Fremont cottonwood populations. Landsc. Ecol. 2025, 40, 1–17. [CrossRef]
- Gitelson, A.; Arkebauer, T.; Viña, A.; Skakun, S.; Inoue, Y. Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region. Remote Sens. Environ. 2021, 258. [CrossRef]
- Wang, X.; Lei, H.; Li, J.; Huo, Z.; Zhang, Y.; Qu, Y. Estimating evapotranspiration and yield of wheat and maize croplands through a remote sensing-based model. Agric. Water Manag. 2023, 282, 108294. [CrossRef]
- Koganti, T.; Ghane, E.; Martinez, L.R.; Iversen, B. V.; Allred, B.J. Mapping of agricultural subsurface drainage systems using unmanned aerial vehicle imagery and ground penetrating radar; 2021; Vol. 21; ISBN 4591732010. [CrossRef]
- Rahmani, S.R.; Schulze, D.G. Mapping subsurface tile lines on a research farm using aerial photography, paper maps, and expert knowledge. Agrosystems, Geosci. Environ. 2023, 6, 1–13. [CrossRef]
- Zhao, C.; Pan, Y.; Zhu, X.; Li, L.; Xia, X.; Ren, S.; Gao, Y. Monitoring of deforestation events in the tropics using multidimensional features of Sentinel 1 radar data. Front. For. Glob. Chang. 2023, 6. [CrossRef]
- Tang, X.; Bratley, K.H.; Cho, K.; Bullock, E.L.; Olofsson, P.; Woodcock, C.E. Near real-time monitoring of tropical forest disturbance by fusion of Landsat, Sentinel-2, and Sentinel-1 data. Remote Sens. Environ. 2023, 294, 113626. [CrossRef]
- Zhao, F.; Sun, R.; Zhong, L.; Meng, R.; Huang, C.; Zeng, X.; Wang, M.; Li, Y.; Wang, Z. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning. Remote Sens. Environ. 2022, 269, 112822. [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens. Environ. 2020, 238, 110968. [CrossRef]
- Li, Y.; Ye, Y.; Fang, X.; Zhang, C.; Zhao, Z. Loss of wetlands due to the expansion of polder in the Dongting Plain, China, AD 1368–1980. Holocene 2020, 30, 646–656. [CrossRef]
- Li, Y.; Dai, H.; Dai, Z.; Zhang, L. The polder systems legacies in the early twentieth century affect the contemporary landscape in the Jianghan Plain of Hubei, China. Herit. Sci. 2024, 12, 1–14. [CrossRef]
- Rosen, P. a.; Hensley, S.; Gurrola, E.; Rogez, F.; Chan, S.; Martin, J.; Rodriguez, E. SRTM C-band topographic data: quality assessments and calibration activities. IGARSS 2001. Scanning Present Resolv. Futur. Proceedings. IEEE 2001 Int. Geosci. Remote Sens. Symp. (Cat. No.01CH37217) 2001, 2, 739–741.
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [CrossRef]
- Zink, M.; Fiedler, H.; Hajnsek, I.; Krieger, G.; Moreira, A.; Werner, M. The TanDEM-X Mission Concept. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing; IEEE, 2006; pp. 1938–1941.
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [CrossRef]
- Potin, P.; Rosich, B.; Roeder, J.; Bargellini, P. Sentinel-1 Mission operations concept. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium; IEEE, 2014; pp. 1465–1468.
- Kankaku, Y.; Suzuki, S.; OSAWA, Y. ALOS-2 mission and development status. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS; IEEE, 2013; pp. 2396–2399.
- Hirano, A.; Welch, R.; Lang, H. Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J. Photogramm. Remote Sens. 2003, 57, 356–370. [CrossRef]
- Takaku, J.; Tadono, T. High resolution DSM generation from ALOS PRISM - mosaic dataset -. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium; IEEE, 2012; pp. 2687–2690.
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat mission. Geophys. Res. Lett. 2005, 32, 1–4. [CrossRef]
- Roy, Y. Le; Deschaux-Beaume, M. SRAL , A RADAR ALTIME TER DESIGNED TO MEAS URE A WIDE RANGE OF SURFACE TY PES Thales Alenia Space , 26 avenue Jean -François Champollion – 31037 Toulouse Cedex 1 ( France ) * Presenting author ( E -mail : yves.le-roy@thalesaleniaspace.com ) European Space. Power 2009, 1, 445–448.
- Donnellan, A.; Parker, J.; Hensley, S.; Pierce, M.; Wang, J.; Rundle, J. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake. Geochemistry, Geophys. Geosystems 2014, 15, 815–829. [CrossRef]
- Dillner, R.P.; Wimmer, M.A.; Porten, M.; Udelhoven, T.; Retzlaff, R. Combining a Standardized Growth Class Assessment, UAV Sensor Data, GIS Processing, and Machine Learning Classification to Derive a Correlation with the Vigour and Canopy Volume of Grapevines. Sensors 2025, 25, 1–36. [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping — A review. Geoderma 2011, 162, 1–19. [CrossRef]
- Kehoe, M.; Harding, A.; Pagdilao, S.J.; Appels, W.M. Effect of topographical and soil complexity on potato yields in irrigated fields. Agric. Water Manag. 2025, 307, 109216. [CrossRef]
- Perović, V.; Čakmak, D.; Jakšić, D.; Milanović, M.; Matić, M.; Pavlović, D.; Mitrović, M.; Pavlović, P. Development and evaluation approach of soil quality in agricultural soils: Integrated system for a more reliable delineation of homogeneous management zones. Appl. Soil Ecol. 2025, 206. [CrossRef]
- Tang, J.; Xie, Y.; Cheng, H.; Liu, G. Catena Impact of farmland landscape characteristics on gully erosion in the black soil region of Northeast China. Catena 2025, 249, 108623. [CrossRef]
- Liu, G.; Xia, J.; Zheng, K.; Cheng, J.; Wang, K.; Liu, Z.; Wei, Y.; Xie, D. Measurement and evaluation method of farmland microtopography feature information based on 3D LiDAR and inertial measurement unit. Soil Tillage Res. 2024, 236, 105921. [CrossRef]
- Ambaru, B.; Manvitha, R.; Madas, R. Synergistic integration of remote sensing and soil metagenomics data: advancing precision agriculture through interdisciplinary approaches. Front. Sustain. Food Syst. 2024, 8. [CrossRef]
- Wrbka, T.; Erb, K.H.; Schulz, N.B.; Peterseil, J.; Hahn, C.; Haberl, H. Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land use policy 2004, 21, 289–306. [CrossRef]
- Sertel, E.; Topaloğlu, R.H.; Şallı, B.; Algan, I.Y.; Aksu, G.A. Comparison of landscape metrics for three different level land cover/land use maps. ISPRS Int. J. Geo-Information 2018, 7. [CrossRef]
- Cai, Z.; Hu, Q.; Zhang, X.; Yang, J.; Wei, H.; He, Z.; Song, Q.; Wang, C.; Yin, G.; Xu, B. An Adaptive Image Segmentation Method with Automatic Selection of Optimal Scale for Extracting Cropland Parcels in Smallholder Farming Systems. Remote Sens. 2022, 14. [CrossRef]
- Wagner, M.P.; Oppelt, N. Extracting agricultural fields from remote sensing imagery using graph-based growing contours. Remote Sens. 2020, 12. [CrossRef]
- Watkins, B.; Van Niekerk, A. Automating field boundary delineation with multi-temporal Sentinel-2 imagery. Comput. Electron. Agric. 2019, 167, 105078.
- Tieskens, K.F.; Schulp, C.J.E.; Levers, C.; Lieskovský, J.; Kuemmerle, T.; Plieninger, T.; Verburg, P.H. Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes. Land use policy 2017, 62, 29–39. [CrossRef]
- Ye, S.; Ren, S.; Song, C.; Du, Z.; Wang, K.; Du, B.; Cheng, F.; Zhu, D. Spatial pattern of cultivated land fragmentation in mainland China: Characteristics, dominant factors, and countermeasures. Land use policy 2024, 139, 107070. [CrossRef]
- Erikstad, L.; Simensen, T.; Bakkestuen, V.; Halvorsen, R. Index Measuring Land Use Intensity—A Gradient-Based Approach. Geomatics 2023, 3, 188–204. [CrossRef]
- Meier, E.S.; Indermaur, A.; Ginzler, C.; Psomas, A. An effective way to map land-use intensity with a high spatial resolution based on habitat type and environmental data. Remote Sens. 2020, 12, 1–21. [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.J.B.; Tondoh, J.E. Multiscale remote sensing to map the spatial distribution and extent of cropland in the sudanian savanna of West Africa. Remote Sens. 2017, 9, 1–24. [CrossRef]
- Eckert, S.; Kiteme, B.; Njuguna, E.; Zaehringer, J.G. Agricultural expansion and intensification in the foothills of Mount Kenya: A landscape perspective. Remote Sens. 2017, 9, 1–20. [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Forkuor, G.; Kuenzer, C. Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment. Remote Sens. 2017, 9. [CrossRef]
- Gilcher, M.; Udelhoven, T. Field geometry and the spatial and temporal generalization of crop classification algorithms—a randomized approach to compare pixel based and convolution based methods. Remote Sens. 2021, 13, 1–20. [CrossRef]
- Janus, J. Measuring land fragmentation considering the shape of transportation network: A method to increase the accuracy of modeling the spatial structure of agriculture with case study in Poland. Comput. Electron. Agric. 2018, 148, 259–271. [CrossRef]
- Wang, H.; Feng, C.; Li, X.; Yang, Y.; Zhang, Y.; Su, J.; Luo, D.; Wei, D.; He, Y. Plant Species Diversity Assessment in the Temperate Grassland Region of China Using UAV Hyperspectral Remote Sensing. Diversity 2024, 16. [CrossRef]
- Xu, D.; Chen, H.; Ji, F.; Zhu, J.; Wang, Z.; Zhang, R.; Hou, M.; Huang, X.; Wang, D.; Lu, T.; et al. New insights on canopy heterogeneous analysis and light micro-climate simulation in Chinese solar greenhouse. Comput. Electron. Agric. 2025, 233, 110179. [CrossRef]
- Contreras, F.; Cayuela, M.L.; Sánchez-Monedero, M.Á.; Pérez-Cutillas, P. Multi-Source Remote Sensing for large-scale biomass estimation in mediterranean olive orchards using GEDI LiDAR and Machine Learning 2025.
- Feng, H.; Fan, Y.; Yue, J.; Bian, M.; Liu, Y.; Chen, R.; Ma, Y.; Fan, J.; Yang, G.; Zhao, C. Estimation of potato above-ground biomass based on the VGC-AGB model and deep learning. Comput. Electron. Agric. 2025, 232, 110122. [CrossRef]
- Chen, M.; Tang, Y.; Zou, X.; Huang, Z.; Zhou, H.; Chen, S. 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM. Comput. Electron. Agric. 2021, 187, 106237. [CrossRef]
- Hadadi, M.; Mehdi Saraeian; Godbersen, J.; Jubery, T.; Li, Y.; Attigala, L.; Aditya Balu, S.S.; Schnable, P.S.; Krishnamurthy, A.; Ganapathysubramanian, B.; et al. Procedural Generation of 3D Maize Plant Architecture from LIDAR. Comput. Sci. 2025, 1–28. [CrossRef]
- Bao, Y.; Tang, L.; Srinivasan, S.; Schnable, P.S. ScienceDirect Field-based architectural traits characterisation of maize plant using time-of-flight 3D imaging. Biosyst. Eng. 2018, 178, 86–101. [CrossRef]
- Rocchini, D.; Dadalt, L.; Delucchi, L.; Neteler, M.; Palmer, M.W. Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness. Community Ecol. 2014, 15, 37–43. [CrossRef]
- Yang, H.; Yang, Z.; Wu, Y.; Wang, C.; Wu, Y.; Zhang, P.; Wang, B. High-Resolution Remote Sensing Farmland Extraction Network Based on Dense-Feature Overlay Fusion and Information. IEEE Geosci. Remote Sens. Lett. 2025, 22, 1–5. [CrossRef]
- Pooya, M.R.; Hasankhani, A.; Fathololomi, S.; Karimi Firozjaei, M. A Spatial Multi-Criteria Decision-Making Approach to Evaluating Homogeneous Areas for Rainfed Wheat Yield Assessment. Water 2025, 17, 1045. [CrossRef]
- Fang, G.; Wang, C.; Dong, T.; Wang, Z.; Cai, C.; Chen, J.; Liu, M.; Zhang, H. A Landscape-Clustering Zoning Strategy to Map Multi-Crops in Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1 Imagery with Feature Selection. Agriculture 2025, 15, 186. [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustain. 2023, 15. [CrossRef]
- Yuzugullu, O.; Fajraoui, N.; Liebisch, F. Soil Texture and pH Mapping Using Remote Sensing and Support Sampling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 12685–12705. [CrossRef]
- Gao, L.; Zhang, Y.; Zang, D.; Yang, Q.; Liu, H.; Luo, C. Using Satellites to Monitor Soil Texture in Typical Black Soil Areas and Assess Its Impact on Crop Growth. Agriculture 2025, 15, 912. [CrossRef]
- Liu, F.; Zhang, G.L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [CrossRef]
- Bahrami, A.; Danesh, M.; Bahrami, M. Studying sand component of soil texture using the spectroscopic method. Infrared Phys. Technol. 2022, 122, 104056. [CrossRef]
- Swetha, R.K.; Bende, P.; Singh, K.; Gorthi, S.; Biswas, A.; Li, B.; Weindorf, D.C.; Chakraborty, S. Predicting soil texture from smartphone-captured digital images and an application. Geoderma 2020, 376, 114562. [CrossRef]
- Taghizadeh-Mehrjardi, R.; Emadi, M.; Cherati, A.; Heung, B.; Mosavi, A.; Scholten, T. Bio-inspired hybridization of artificial neural networks: An application for mapping the spatial distribution of soil texture fractions. Remote Sens. 2021, 13, 1–23. [CrossRef]
- Swain, S.R.; Chakraborty, P.; Panigrahi, N.; Vasava, H.B.; Reddy, N.N.; Roy, S.; Majeed, I.; Das, B.S. Estimation of soil texture using Sentinel-2 multispectral imaging data: An ensemble modeling approach. Soil Tillage Res. 2021, 213, 105134. [CrossRef]
- Shen, Q.; Shang, K.; Xiao, C.; Tang, H.; Wu, T.; Wang, C. A novel hyperspectral remote sensing estimation model for surface soil texture using AHSI/ZY1-02D satellite image. Int. J. Appl. Earth Obs. Geoinf. 2025, 138, 104453. [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A. V.; Fensholt, R. Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: A case study in western Niger. Remote Sens. Environ. 2017, 191, 286–296. [CrossRef]
- Tao, J.; Jiang, Q.; Zhang, X.; Huang, J.; Wang, Y.; Wu, W. From frequency to intensity – A new index for annual large-scale cropping intensity mapping. Comput. Electron. Agric. 2023, 215, 108428. [CrossRef]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11. [CrossRef]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [CrossRef]
- Xu, F.; Yao, X.; Zhang, K.; Yang, H.; Feng, Q.; Li, Y.; Yan, S.; Gao, B.; Li, S.; Yang, J.; et al. Deep learning in cropland field identification: A review. Comput. Electron. Agric. 2024, 222, 109042. [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: a review. Neural Comput. Appl. 2022, 34, 9511–9536. [CrossRef]
- Choukri, M.; Laamrani, A.; Chehbouni, A. Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review. Sensors 2024, 24, 1–19. [CrossRef]
- Tan, Y.; Gu, J.; Lu, L.; Zhang, L.; Huang, J.; Pan, L.; Lv, Y.; Wang, Y.; Chen, Y. Hyperspectral Band Selection for Crop Identification and Mapping of Agriculture. Remote Sens. 2025, 17, 663. [CrossRef]
- Bourriz, M.; Hajji, H.; Laamrani, A.; Elbouanani, N.; Abdelali, H.A.; Bourzeix, F.; El-Battay, A.; Amazirh, A.; Chehbouni, A. Integration of Hyperspectral Imaging and AI Techniques for Crop Type Mapping: Present Status, Trends, and Challenges. Remote Sens. 2025, 17, 1–37. [CrossRef]
- Muthoka, J.M.; Rowhani, P.; Salakpi, E.E.; Balzter, H.; Antonarakis, A.S. Classification of grassland community types and palatable pastures in semi-arid savannah grasslands of Kenya using multispectral Sentinel-2 imagery. Front. Sustain. Food Syst. 2025, 9, 1–16. [CrossRef]
- Li, Y.; Liu, T.; Wang, Y.; Duan, L.; Li, M.; Zhang, J.; Zhang, G. A more effective approach for species-level classifications using multi-source remote sensing data: Validation and application to an arid and semi-arid grassland. Ecol. Indic. 2024, 160, 111853. [CrossRef]
- Zhang, M.; Yu, W.; Chen, A.; Xu, C.; Guo, J.; Xing, X.; Yang, D.; Wang, Z.; Yang, X. Two-tier classification framework for mapping grassland types using multisource earth observation data. GIScience Remote Sens. 2024, 61. [CrossRef]
- Liu, C.; Zhang, Q.; Tao, S.; Qi, J.; Ding, M.; Guan, Q.; Wu, B.; Zhang, M.; Nabil, M.; Tian, F.; et al. A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sens. Environ. 2020, 251, 112095. [CrossRef]
- Krishna, G.; Biradar, C.M. Spatiotemporal mapping of rice fallows and soil moisture dynamics for sustainable intensification using time series geospatial big data. J. Appl. Remote Sens. 2025, 19. [CrossRef]
- Tao, J.; Wu, W.; Liu, W. Spatial-temporal dynamics of cropping frequency in hubei province over 2001-2015. Sensors (Switzerland) 2017, 17, 1–15. [CrossRef]
- Xiang, M.; Yu, Q.; Wu, W. From multiple cropping index to multiple cropping frequency: Observing cropland use intensity at a finer scale. Ecol. Indic. 2019, 101, 892–903. [CrossRef]
- Arjasakusuma, S.; Kusuma, S.S.; Mahendra, W.K.; Astriviany, N. Mapping paddy field extent and temporal pattern variation in a complex terrain area using sentinel 1-time series data: Case study of magelang district, indonesia. Int. J. Geoinformatics 2021, 17, 79–88. [CrossRef]
- Pazhanivelan, S.; Kumaraperumal, R.; Vishnu Priya, M.; Rengabashyam, K.; Shankar, K.; Nivas Raj, M.; Yadav, M.K. Multi-Temporal Analysis of Cropping Patterns and Intensity Using Optical and SAR Satellite Data for Sustaining Agricultural Production in Tamil Nadu, India. Sustain. 2025, 17, 1–25. [CrossRef]
- Yu, Q.; Xiang, M.; Sun, Z.; Wu, W. The complexity of measuring cropland use intensity: An empirical study. Agric. Syst. 2021, 192, 103180. [CrossRef]
- Conrad, C.; Schönbrodt-Stitt, S.; Löw, F.; Sorokin, D.; Paeth, H. Cropping intensity in the Aral Sea Basin and its dependency from the runoffformation 2000-2012. Remote Sens. 2016, 8. [CrossRef]
- Rufin, P.; Levers, C.; Baumann, M.; Jägermeyr, J.; Krueger, T.; Kuemmerle, T.; Hostert, P. Global-scale patterns and determinants of cropping frequency in irrigation dam command areas. Glob. Environ. Chang. 2018, 50, 110–122. [CrossRef]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 1–10. [CrossRef]
- Zheng, B.; Campbell, J.B.; de Beurs, K.M. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sens. Environ. 2012, 117, 177–183. [CrossRef]
- Zhang, W.; Li, W.; Wang, C.; Yu, Q.; Tang, H.; Wu, W. A novel index for mapping crop residue covered cropland using remote sensing data. Comput. Electron. Agric. 2025, 231. [CrossRef]
- Du, J.; Jacinthe, P.-A.; Song, K.; Zhang, L.; Zhao, B.; Liu, H.; Wang, Y.; Zhang, W.; Zheng, Z.; Yu, W.; et al. Maize crop residue cover mapping using Sentinel-2 MSI data and random forest algorithms. Int. Soil Water Conserv. Res. 2025, 13, 189–202. [CrossRef]
- Yao, Y.; Ren, H.; Liu, Y. Remote sensing estimation of winter wheat residue cover with dry and wet soil background. Agric. Water Manag. 2025, 307, 109227. [CrossRef]
- Williams, F.; Gelder, B.; Presley, D.A.; Pape, B.; Einck, A. Estimation of Crop Residue Cover Utilizing Multiple Ground Truth Survey Techniques and Multi-Satellite Regression Models. Remote Sens. 2024, 16. [CrossRef]
- Kavoosi, Z.; Raoufat, M.H.; Dehghani, M.; Abdolabbas, J.; Kazemeini, S.A.; Nazemossadat, M.J. Feasibility of satellite and drone images for monitoring soil residue cover. J. Saudi Soc. Agric. Sci. 2020, 19, 56–64. [CrossRef]
- Singh, G.; Kant, Y.; Dadhwal, V.K. Remote sensing of crop residue burning in Punjab (India): a study on burned area estimation using multi-sensor approach. Geocarto Int. 2009, 24, 273–292. [CrossRef]
- Sharma, A.; Kumar Singh, P. Applicability of UAVs in detecting and monitoring burning residue of paddy crops with IoT Integration: A step towards greener environment. Comput. Ind. Eng. 2023, 184, 109524. [CrossRef]
- Walker, K. Overcoming Common Pitfalls to Improve the Accuracy of Crop Residue Burning Measurement Based on Remote Sensing Data. Remote Sens. 2024, 16. [CrossRef]
- Xie, Z.; Zhao, Y.; Jiang, R.; Zhang, M.; Hammer, G.; Chapman, S.; Brider, J.; Potgieter, A.B. Seasonal dynamics of fallow and cropping lands in the broadacre cropping region of Australia. Remote Sens. Environ. 2024, 305, 114070. [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.G.; Aneece, I.P.; Foley, D.J.; McCormick, R.L. Automated Cropland Fallow Algorithm (ACFA) for the Northern Great Plains of USA. Int. J. Digit. Earth 2024, 17, 1–23. [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.; Rasmussen, L.V.; Rasmussen, K.; Tian, F.; Tagesson, T.; Zhang, W.; Fensholt, R. The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2. Remote Sens. Environ. 2020, 239. [CrossRef]
- Denis, A.; Desclee, B.; Migdall, S.; Hansen, H.; Bach, H.; Ott, P.; Kouadio, A.L.; Tychon, B. Multispectral remote sensing as a tool to support organic crop certification: Assessment of the discrimination level between organic and conventional maize. Remote Sens. 2021, 13, 1–27. [CrossRef]
- Atanasova, D.; Bozhanova, V.; Biserkov, V.; Maneva, V. Distinguishing areas of organic, biodynamic and conventional farming by means of multispectral images. A pilot study. Biotechnol. Biotechnol. Equip. 2021, 35, 977–993. [CrossRef]
- Denis, A.; Tychon, B. Remote sensing enables high discrimination between organic and non-organic cotton for organic cotton certification in West Africa. Agron. Sustain. Dev. 2015, 35, 1499–1510. [CrossRef]
- Serrano-Grijalva, L.; Ochoa-Hueso, R.; Veen, G.F.; Repeto-Deudero, I.; Van Rijssel, S.Q.; Koorneef, G.J.; Van der Putten, W.H. Normalized difference vegetation index analysis reveals increase of biomass production and stability during the conversion from conventional to organic farming. Glob. Chang. Biol. 2024, 30, 1–12. [CrossRef]
- Cheng, T.; Zhang, D.; Zhang, G.; Wang, T.; Ren, W.; Yuan, F.; Liu, Y.; Wang, Z.; Zhao, C. High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges. Artif. Intell. Agric. 2025, 15, 98–115. [CrossRef]
- Lausch, A.; Salbach, C.; Schmidt, A.; Doktor, D.; Merbach, I.; Pause, M. Deriving phenology of barley with imaging hyperspectral remote sensing. Ecol. Modell. 2015, 295. [CrossRef]
- Ispizua Yamati, F.R.; Bömer, J.; Noack, N.; Linkugel, T.; Paulus, S.; Mahlein, A.K. Configuration of a multisensor platform for advanced plant phenotyping and disease detection: Case study on Cercospora leaf spot in sugar beet. Smart Agric. Technol. 2025, 10. [CrossRef]
- Grubinger, S.; Coops, N.C.; O’Neill, G.A.; Degner, J.C.; Wang, T.; Waite, O.J.M.; Riofrío, J.; Koch, T.L. Seasonal vegetation dynamics for phenotyping using multispectral drone imagery: Genetic differentiation, climate adaptation, and hybridization in a common-garden trial of interior spruce (Picea engelmannii × glauca). Remote Sens. Environ. 2025, 317. [CrossRef]
- Peng, Y.; Solovchenko, A.; Zhang, C.; Shurygin, B.; Liu, X.; Wu, X.; Gong, Y.; Fang, S.; Gitelson, A. Remote sensing of rice phenology and physiology via absorption coefficient derived from unmanned aerial vehicle imaging. Precis. Agric. 2024, 25, 285–302. [CrossRef]
- Zheng, C.; Abd-elrahman, A.; Whitaker, V. Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming. Remote Sens. 2021, 13, 1–29. [CrossRef]
- French, A.; Sanchez, C.A.; Wirth, T.; Scott, A.T.; Shields, J.; Bautista, E.; Saber, M.N.; Wisniewski, E. Estimating Fao-56 Crop Growth Stage Lengths with Sentinel 2. SSRN Electron. J. 2022.
- Xiang, M.; Yu, Q.; Li, Y.; Shi, Z.; Wu, W. Increasing multiple cropping for land use intensification: The role of crop choice. Land use policy 2022, 112, 105846. [CrossRef]
- Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations. Agronomy 2021, 11. [CrossRef]
- Mokhtari, A.; Noory, H.; Vazifedoust, M.; Palouj, M.; Bakhtiari, A.; Barikani, E.; Zabihi Afrooz, R.A.; Fereydooni, F.; Sadeghi Naeni, A.; Pourshakouri, F.; et al. Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran. Agric. Water Manag. 2019, 218, 234–249. [CrossRef]
- Betbeder, J.; Hubert-Moy, L.; Burel, F.; Corgne, S.; Baudry, J. Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar. Ecol. Indic. 2015, 52, 545–557. [CrossRef]
- Pirbasti, M.A.; Mcardle, G.; Akbari, V. Hedgerows Monitoring in Remote Sensing: A Comprehensive Review. IEEE Access 2024, 12, 156184–156207. [CrossRef]
- Ahlswede, S.; Asam, S.; Röder, A. Hedgerow object detection in very high-resolution satellite images using convolutional neural networks. J. Appl. Remote Sens. 2021, 15. [CrossRef]
- Wolstenholme, J.M.; Cooper, F.; Thomas, R.E.; Ahmed, J.; Parsons, K.J.; Parsons, D.R. Automated identification of hedgerows and hedgerow gaps using deep learning. Remote Sens. Ecol. Conserv. 2025. [CrossRef]
- Smigaj, M.; Gaulton, R. Capturing hedgerow structure and flowering abundance with UAV remote sensing. Remote Sens. Ecol. Conserv. 2021, 7, 521–533. [CrossRef]
- Barnsley, S.L.; Lovett, A.A.; Dicks, L. V. Mapping nectar-rich pollinator floral resources using airborne multispectral imagery. J. Environ. Manage. 2022, 313, 114942. [CrossRef]
- Prokoph, S.; Cheema, J.; Kirmer, A.; Lausch, A.; Bannehr, L. Monitoring von blütenreichen Flächen mittels Fernerkundung. DGPF 2022, 30, 220–236.
- Abdel-Rahman, E.M.; Makori, D.M.; Landmann, T.; Piiroinen, R.; Gasim, S.; Pellikka, P.; Raina, S.K. The utility of AISA eagle hyperspectral data and random forest classifier for flower mapping. Remote Sens. 2015, 7, 13298–13318. [CrossRef]
- Gallmann, J.; Schüpbach, B.; Jacot, K.; Albrecht, M.; Winizki, J.; Kirchgessner, N.; Aasen, H. Flower Mapping in Grasslands With Drones and Deep Learning. Front. Plant Sci. 2022, 12, 1–16.
- Gonzales, D.; Hempel de Ibarra, N.; Anderson, K. Remote Sensing of Floral Resources for Pollinators – New Horizons From Satellites to Drones. Front. Ecol. Evol. 2022, 10, 1–16. [CrossRef]
- Schnalke, M.; Funk, J.; Wagner, A. Bridging technology and ecology: enhancing applicability of deep learning and UAV-based flower recognition. Front. Plant Sci. 2025, 16, 1–16. [CrossRef]
- El Afandi, G.; Ismael, H.; Fall, S.; Ankumah, R. Effectiveness of Utilizing Remote Sensing and GIS Techniques to Estimate the Exposure to Organophosphate Pesticides Drift over Macon, Alabama. Agronomy 2023, 13, 1–18. [CrossRef]
- Bolívar-Santamaría, S.; Reu, B. Detection and characterization of agroforestry systems in the Colombian Andes using sentinel-2 imagery. Agrofor. Syst. 2021, 95, 499–514. [CrossRef]
- Koralewicz, A.; Vlcek, J.; Menor, I.O.; Hirons, M.; Akinyugha, A.; Olowoyo, O.S.; Ajayi-Ebenezer, M.; Owen, O. Mapping the extent and exploring the drivers of cocoa agroforestry in Nigeria, insights into trends for climate change adaptation. Agrofor. Syst. 2025, 99, 1–20. [CrossRef]
- Yang, W.; Ortiz-Gonzalo, D.; Tong, X.; Gominski, D.; Fensholt, R. Mapping forest-agroforest frontiers in the Peruvian Amazon with deep learning and PlanetScope satellite data. Ecol. Inform. 2025, 86, 103034. [CrossRef]
- Ahmad, T.; Sahoo, P.M.; Jally, S.K. Estimation of area under agroforestry using high resolution satellite data. Agrofor. Syst. 2016, 90, 289–303. [CrossRef]
- Brandt, M.; Gominski, D.; Reiner, F.; Kariryaa, A.; Guthula, V.B.; Ciais, P.; Tong, X.; Zhang, W.; Govindarajulu, D.; Ortiz-Gonzalo, D.; et al. Severe decline in large farmland trees in India over the past decade. Nat. Sustain. 2024, 7, 860–868. [CrossRef]
- Veettil, B.K.; Van, D.D.; Quang, N.X.; Hoai, P.N. Remote sensing of plastic-covered greenhouses and plastic-mulched farmlands: Current trends and future perspectives. L. Degrad. Dev. 2023, 34, 591–609. [CrossRef]
- Niu, B.; Feng, Q.; Qiu, B.; Su, S.; Zhang, X.; Cui, R.; Zhang, X.; Sun, F.; Yan, W.; Zhao, S.; et al. Global-PCG-10: a 10-m global map of plastic-covered greenhouses derived from Sentinel-2 in 2020. Earth Syst. Sci. Data 2025, 1–30.
- Zhang, M.; Dong, J.; Ge, Q.; Hasituya; Hao, P. A Review of Agricultural Film Mapping: Current Status, Challenges, and Future Directions. J. Remote Sens. (United States) 2025, 5. [CrossRef]
- Wu, Y.; Dai, J.; Zhu, Y.; Zhang, T. Intelligent Agricultural Greenhouse Extraction Method Based on Multi-Feature Modeling: Fusion of Geometric, Spatial, and Spectral Characteristics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 5568–5581.
- Zhang, X.; Li, J.; Li, H.; Guo, Z.; Chang, C.; Xu, X.; Zhen, T.; Yu, K.; Li, P. Identification Of Plastic Film Mulched Farmland in the Core Area of the Beijing-Tianjin Sand Source Region Using Multi-Temporal Remote Sensing Features 2025. [CrossRef]
- Shafi, U.; Mumtaz, R.; Anwar, Z.; Ajmal, M.M.; Khan, M.A.; Mahmood, Z.; Qamar, M.; Jhanzab, H.M. Tackling Food Insecurity Using Remote Sensing and Machine Learning-Based Crop Yield Prediction. IEEE Access 2023, 11, 108640–108657. [CrossRef]
- Haseeb, M.; Tahir, Z.; Mahmood, S.A.; Tariq, A. Winter wheat yield prediction using linear and nonlinear machine learning algorithms based on climatological and remote sensing data. Inf. Process. Agric. 2025. [CrossRef]
- Fita, D.; Rubio, C.; Franch, B.; Castiñeira-Ibáñez, S.; Tarrazó-Serrano, D.; San Bautista, A. Improving harvester yield maps postprocessing leveraging remote sensing data in rice crop. Precis. Agric. 2025, 26. [CrossRef]
- Hou, X.; Zhang, J.; Luo, X.; Zeng, S.; Lu, Y.; Wei, Q.; Liu, J.; Feng, W.; Li, Q. Peanut yield prediction using remote sensing and machine learning approaches based on phenological characteristics. Comput. Electron. Agric. 2025, 232, 110084. [CrossRef]
- Liu, Y.; Feng, H.; Fan, Y.; Yue, J.; Yang, F.; Fan, J.; Ma, Y.; Chen, R.; Bian, M.; Yang, G. Utilizing UAV-based hyperspectral remote sensing combined with various agronomic traits to monitor potato growth and estimate yield. Comput. Electron. Agric. 2025, 231, 109984. [CrossRef]
- Abdul-Jabbar, T.S.; Ziboon, A.T.; Albayati, M.M. Crop yield estimation using different remote sensing data: literature review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129.
- Badagliacca, G.; Messina, G.; Presti, E. Lo; Preiti, G.; Di Fazio, S.; Monti, M.; Modica, G.; Praticò, S. Durum Wheat (Triticum durum Desf.) Grain Yield and Protein Estimation by Multispectral UAV Monitoring and Machine Learning Under Mediterranean Conditions. AgriEngineering 2025, 7, 99. [CrossRef]
- Raza, A.; Shahid, M.A.; Zaman, M.; Miao, Y.; Huang, Y.; Safdar, M.; Maqbool, S.; Muhammad, N.E. Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions. Remote Sens. 2025, 17. [CrossRef]
- Mena, F.; Pathak, D.; Najjar, H.; Sanchez, C.; Helber, P.; Bischke, B.; Habelitz, P.; Miranda, M.; Siddamsetty, J.; Nuske, M.; et al. Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction. Remote Sens. Environ. 2025, 318, 114547. [CrossRef]
- Dhillon, M.S.; Kübert-Flock, C.; Dahms, T.; Rummler, T.; Arnault, J.; Steffan-Dewenter, I.; Ullmann, T. Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany. Remote Sens. 2023, 15. [CrossRef]
- Řeřicha, J.; Kohútek, M.; Vandírková, V.; Krofta, K.; Kumhála, F.; Kumhálová, J. Assessment of UAV Imageries for Estimating Growth Vitality, Yield and Quality of Hop (Humulus lupulus L.) Crops. Remote Sens. 2025, 17, 1–20. [CrossRef]
- Brito, L.G. de; Jorge, R.C.; Oliveira, V.C. de; Cassemiro, P.F.; Dal Pai, A.; Sarnighausen, V.C.R.; Rodrigues, S.A. Classification Models for Nitrogen Concentration in Hop Leaves Using Digital Image Processing. Appl. Sci. 2025, 15. [CrossRef]
- Dietrich, P.; Elias, M.; Dietrich, P.; Harpole, S.; Roscher, C.; Bumberger, J. Advancing plant biomass measurements: Integrating smartphone-based 3D scanning techniques for enhanced ecosystem monitoring. Methods Ecol. Evol. 2025, 2025, 1–10. [CrossRef]
- Zhang, H.; Zhang, L.; Wu, H.; Wang, D.; Ma, X.; Shao, Y.; Jiang, M.; Chen, X. Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes. Agriculture 2025, 15, 309. [CrossRef]
- Acharya, B.; Dodla, S.; Tubana, B.; Gentimis, T.; Rontani, F.; Adhikari, R.; Duron, D.; Bortolon, G.; Setiyono, T. Characterizing Optimum N Rate in Waterlogged Maize (Zea mays L.) with Unmanned Aerial Vehicle (UAV) Remote Sensing. Agronomy 2025, 15, 434.
- Segarra, J.; Buchaillot, M.L.; Stefani, U.; Araus, J.L.; Kefauver, S.C. Sentinel-2 Responsiveness to Fertilization Gradients in Wheat at Field Level in Córdoba Province, Argentina. 2020 Mediterr. Middle-East Geosci. Remote Sens. Symp. M2GARSS 2020 - Proc. 2020, 322–325.
- Zhou, T.; Geng, Y.; Lv, W.; Xiao, S.; Zhang, P.; Xu, X.; Chen, J.; Wu, Z.; Pan, J.; Si, B.; et al. Effects of optical and radar satellite observations within Google Earth Engine on soil organic carbon prediction models in Spain. J. Environ. Manage. 2023, 338, 117810. [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [CrossRef]
- Suleymanov, A.; Gabbasova, I.; Suleymanov, R.; Abakumov, E.; Polyakov, V.; Liebelt, P. Mapping soil organic carbon under erosion processes using remote sensing. Hungarian Geogr. Bull. 2021, 70, 49–64. [CrossRef]
- Yuzugullu, O.; Fajraoui, N.; Don, A.; Liebisch, F. Satellite-based soil organic carbon mapping on European soils using available datasets and support sampling. Sci. Remote Sens. 2024, 9, 100118. [CrossRef]
- Radočaj, D.; Gašparović, M.; Jurišić, M. Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review. Agric. 2024, 14. [CrossRef]
- Qian, J.; Yang, J.; Sun, W.; Zhao, L.; Shi, L.; Shi, H.; Liao, L.; Dang, C. Soil Organic Carbon Estimation and Transfer Framework in Agricultural Areas Based on Spatiotemporal Constraint Strategy Combined with Active and Passive Remote Sensing. 2025, 1–18. [CrossRef]
- Geng, J.; Tan, Q.; Lv, J.; Fang, H. Assessing spatial variations in soil organic carbon and C:N ratio in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil Tillage Res. 2024, 235, 105897. [CrossRef]
- Xu, D.; Chen, S.; Zhou, Y.; Ji, W.; Shi, Z. Spatial Estimation of Soil Organic Matter and Total Nitrogen by Fusing Field Vis–NIR Spectroscopy and Multispectral Remote Sensing Data. Remote Sens. 2025, 17. [CrossRef]
- Zhang, Y.; Luo, C.; Zhang, W.; Wu, Z.; Zang, D. Mapping Soil Organic Matter in Black Soil Cropland Areas Using Remote Sensing and Environmental Covariates. Agric. 2025, 15. [CrossRef]
- Zhang, J.; Gan, S.; Yang, P.; Zhou, J.; Huang, X.; Chen, H.; He, H.; Saintilan, N.; Sanders, C.J.; Wang, F. A global assessment of mangrove soil organic carbon sources and implications for blue carbon credit. Nat. Commun. 2024, 15, 8994. [CrossRef]
- Chen, X.; Yuan, F.; Ata-Ul-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. A bibliometric analysis of research on remote sensing-based monitoring of soil organic matter conducted between 2003 and 2023. Artif. Intell. Agric. 2025, 15, 26–38. [CrossRef]
- Van Wasmael, B. A European soil organic carbon monitoring system leveraging Sentinel 2 imagery and the LUCAS soil data base. Geoderma 2024.
- Petropoulos, T.; Benos, L.; Busato, P.; Kyriakarakos, G.; Kateris, D.; Aidonis, D.; Bochtis, D. Soil Organic Carbon Assessment for Carbon Farming: A Review. Agric. 2025, 15. [CrossRef]
- Gomez, C.; Oltra-carrió, R.; Bacha, S.; Lagacherie, P.; Briottet, X. Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR / SWIR imagery. Remote Sens. Environ. 2015, 164, 1–15.
- Shabou, M.; Mougenot, B.; Chabaane, Z.L.; Walter, C.; Boulet, G.; Aissa, N. Ben; Zribi, M. Soil clay content mapping using a time series of Landsat TM data in semi-arid lands. Remote Sens. 2015, 7, 6059–6078. [CrossRef]
- Gomez, C.; Adeline, K.; Bacha, S.; Driessen, B.; Gorretta, N.; Lagacherie, P.; Roger, J.M.; Briottet, X. Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios. Remote Sens. Environ. 2018, 204, 18–30. [CrossRef]
- Paul, S.S.; Coops, N.C.; Johnson, M.S.; Krzic, M.; Chandna, A.; Smukler, S.M. Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation. Geoderma 2020, 363, 114177. [CrossRef]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H. Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data. Int. J. Remote Sens. 2019, 40, 1506–1533. [CrossRef]
- Franz, A.; Sowiński, J.; Głogowski, A.; Fiałkiewicz, W. A Preliminary Study on the Use of Remote Sensing Techniques to Determine the Nutritional Status and Productivity of Oats on Spatially Variable Sandy Soils. Agronomy 2025, 15. [CrossRef]
- Fongaro, C.T.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W. de S.; Dotto, A.C.; Vicente, L.E.; Franceschini, M.H.D.; Ustin, S.L. Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images. Remote Sens. 2018, 10. [CrossRef]
- Cerasola, V.A.; Orsini, F.; Pennisi, G.; Moretti, G.; Bona, S.; Mirone, F.; Verrelst, J.; Berger, K.; Gianquinto, G. Hyperspectral imaging for precision nitrogen management: A comparative exploration of two methodological approaches to estimate optimal nitrogen rate in processing tomato. Smart Agric. Technol. 2025, 10, 100802. [CrossRef]
- Wang, J.; Wang, W.; Liu, S.; Hui, X.; Zhang, H.; Yan, H.; Maes, W.H. UAV-Based Multiple Sensors for Enhanced Data Fusion and Nitrogen Monitoring in Winter Wheat Across Growth Seasons. Remote Sens. 2025, 17. [CrossRef]
- Misbah, K.; Laamrani, A.; Khechba, K.; Dhiba, D.; Chehbouni, A. Multi-sensors remote sensing applications for assessing, monitoring, and mapping npk content in soil and crops in african agricultural land. Remote Sens. 2022, 14. [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14. [CrossRef]
- Zhang, W.; Zhu, L.; Zhuang, Q.; Chen, D.; Sun, T. Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning. Agric. 2023, 13. [CrossRef]
- Lin, C.; Ma, R.; Zhu, Q.; Li, J. Using hyper-spectral indices to detect soil phosphorus concentration for various land use patterns. Environ. Monit. Assess. 2015, 187. [CrossRef]
- Guo, C.; Zhang, L.; Zhou, X.; Zhu, Y.; Cao, W.; Qiu, X.; Cheng, T.; Tian, Y. Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precis. Agric. 2018, 19, 55–78. [CrossRef]
- Wang, S.; Adhikari, K.; Wang, Q.; Jin, X.; Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 2018, 84, 263–272. [CrossRef]
- Wang, X.; Geng, Y.; Zhou, T.; Zhao, Y.; Li, H.; Liu, Y.; Li, H.; Ren, R.; Zhang, Y.; Xu, X.; et al. Mapping the soil C:N ratio at the European scale by combining multi-year Sentinel radar and optical data via cloud computing. Soil Tillage Res. 2025, 245, 106311. [CrossRef]
- Rapiya, M.; Ramoelo, A.; Truter, W. Seasonal monitoring of forage C:N:ADF ratio in natural rangeland using remote sensing data. Environ. Monit. Assess. 2025, 197. [CrossRef]
- Wang, X.; Geng, Y.; Zhou, T.; Zhao, Y.; Li, H.; Liu, Y.; Li, H.; Ren, R.; Zhang, Y.; Xu, X.; et al. Mapping the soil C:N ratio at the European scale by combining multi-year Sentinel radar and optical data via cloud computing. Soil Tillage Res. 2025, 245, 106311. [CrossRef]
- Lei, S.; Zhou, P.; Lin, J.; Tan, Z.; Huang, J.; Yan, P.; Chen, H. Spatiotemporal Variation in Carbon and Water Use Efficiency and Their Influencing Variables Based on Remote Sensing Data in the Nanling Mountains Region. Remote Sens. 2025, 17. [CrossRef]
- Yue, F.; Liu, D.; Xiong, L.; Chen, J.; Chen, H.; Yin, J. Understanding the roles of climate change, land use and land cover change and water diversion project in modulating water- and carbon-use efficiency in Han River Basin. J. Environ. Manage. 2025, 373, 123445. [CrossRef]
- Xu, C.; Chen, X.; Yu, Q.; Avirmed, B.; Zhao, J.; Liu, W.; Sun, W. Relationship between ecological spatial network and vegetation carbon use efficiency in the Yellow River Basin, China. GIScience Remote Sens. 2024, 61. [CrossRef]
- Nair, R.; Luo, Y.; El-Madany, T.; Rolo, V.; Pacheco-Labrador, J.; Caldararu, S.; Morris, K.A.; Schrumpf, M.; Carrara, A.; Moreno, G.; et al. Nitrogen availability and summer drought, but not N:P imbalance, drive carbon use efficiency of a Mediterranean tree-grass ecosystem. Glob. Chang. Biol. 2024, 30, 1–18.
- Wu, J.; Gao, Z.; Liu, Q.; Li, Z.; Zhong, B. Methods for sandy land detection based on multispectral remote sensing data. Geoderma 2018, 316, 89–99. [CrossRef]
- Di Raimo, L.A.D.L.; Couto, E.G.; Poppiel, R.R.; Mello, D.C. de; Amorim, R.S.S.; Torres, G.N.; Bocuti, E.D.; Veloso, G.V.; Fernandes-Filho, E.I.; Francelino, M.R.; et al. Sand subfractions by proximal and satellite sensing: Optimizing agricultural expansion in tropical sandy soils. Catena 2024, 234. [CrossRef]
- Secu, C.V.; Stoleriu, C.C.; Lesenciuc, C.D.; Ursu, A. Normalized Sand Index for Identification of Bare Sand Areas in Temperate Climates Using Landsat Images, Application to the South of Romania. Remote Sens. 2022, 14. [CrossRef]
- Meng, J.; Chu, N.; Luo, C.; Liu, H.; Li, X. High-Resolution Mapping of Topsoil Sand Content in Planosol Regions Using Temporal and Spectral Feature Optimization. Remote Sens. 2025, 17, 1–18. [CrossRef]
- Espinoza, N.S.; Piedade, M.T.F.; Demarchi, L.O.; Lima, G.R.; Resende, A.F.; Ferreira, R.R.; Silva, F.A.G.; Machado, L.A.T.; Schörgart, J. Detection of white sand patches in central Amazonia using remote sensing and meteorological data. Int. J. Remote Sens. 2025, 46, 3446–3465. [CrossRef]
- Lou, H.; Yang, S.; Zhao, C.; Shi, L.; Wu, L.; Wang, Y.; Wang, Z. Detecting and analyzing soil phosphorus loss associated with critical source areas using a remote sensing approach. Sci. Total Environ. 2016, 573, 397–408. [CrossRef]
- Aziz, D.; Rafiq, S.; Saini, P.; Ahad, I.; Gonal, B.; Rehman, S.A.; Rashid, S.; Saini, P.; Rohela, G.K.; Aalum, K.; et al. Remote sensing and artificial intelligence: revolutionizing pest management in agriculture. Front. Sustain. Food Syst. 2025, 9. [CrossRef]
- Bautista, A.S.; Tarrazó-Serrano, D.; Uris, A.; Blesa, M.; Estruch-Guitart, V.; Castiñeira-Ibáñez, S.; Rubio, C. Remote Sensing Evaluation Drone Herbicide Application Effectiveness for Controlling Echinochloa spp. in Rice Crop in Valencia (Spain). Sensors 2024, 24, 1–16.
- Mahlein, A.-K. Present and Future Trends in Plant Disease Detection. 2016, 1–11.
- Okole, N.; Yamati, F.R.I.; Hossain, R.; Varrelmann, M.; Mahlein, A.K.; Heim, R.H.J. Hyperspectral signatures and betalain indicator for beet mosaic virus infection in sugar beet. 2023 IEEE Int. Work. Metrol. Agric. For. MetroAgriFor 2023 - Proc. 2023, 506–511.
- Okole, N.; Ispizua Yamati, F.R.; Hossain, R.; Varrelmann, M.; Mahlein, A.K.; Heim, R.H.J. Aerial low-altitude remote sensing and deep learning for in-field disease incidence scoring of virus yellows in sugar beet. Plant Pathol. 2024, 2310–2324. [CrossRef]
- Hossain, R.; Ispizua Yamati, F.R.; Barreto, A.; Savian, F.; Varrelmann, M.; Mahlein, A.K.; Paulus, S. Elucidation of turnip yellows virus (TuYV) spectral reflectance pattern in Nicotiana benthamiana by non-imaging sensor technology. J. Plant Dis. Prot. 2023, 130, 35–43. [CrossRef]
- Barreto, A.; Ispizua Yamati, F.R.; Varrelmann, M.; Paulus, S.; Mahlein, A.K. Disease Incidence and Severity of Cercospora Leaf Spot in Sugar Beet Assessed by Multispectral Unmanned Aerial Images and Machine Learning. Plant Dis. 2023, 107, 188–200. [CrossRef]
- Isip, M.F.; Alberto, R.T.; Biagtan, A.R. Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery. Spat. Inf. Res. 2020, 28, 369–375. [CrossRef]
- Navrozidis, L.; Alexandridis, T.K.; Moshou, Di.; Pantazi, X.E.; Alexandra Tamouridou, A.; Kozhukh, D.; Castef, F.; Lagopodi, A.; Zartaloudis, Z.; Mourelatos, S.; et al. Olive Trees Stress Detection Using Sentinel-2 Images. Int. Geosci. Remote Sens. Symp. 2019, 7220–7223.
- Safari, M.M.; Malian, A. Plant disease mapping in paddy growing stages using remotely sensed data. Environ. Earth Sci. 2025, 84, 1–19. [CrossRef]
- Taneja, A.; Rani, S. Target localization and communication for remote sensing with use case of self-supervised learning in plant disease detection. Int. J. Remote Sens. 2025, 1–22. [CrossRef]
- Zhu, H.; Lin, C.; Liu, G.; Wang, D.; Qin, S.; Li, A.; Xu, J.L.; He, Y. Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection. Front. Plant Sci. 2024, 15, 1–24. [CrossRef]
- Zheng, Q.; Huang, W.; Xia, Q.; Dong, Y.; Ye, H.; Jiang, H.; Chen, S.; Huang, S. Remote Sensing Monitoring of Rice Diseases and Pests from Different Data Sources: A Review. Agronomy 2023, 13. [CrossRef]
- Zhang, T.; Cai, Y.; Zhuang, P.; Li, J. Remotely Sensed Crop Disease Monitoring by Machine Learning Algorithms: A Review. Unmanned Syst. 2024, 12, 161–171. [CrossRef]
- Schmidtlein, S. Imaging spectroscopy as a tool for mapping Ellenberg indicator values. J. Appl. Ecol. 2005, 42, 966–974. [CrossRef]
- Schmidt, J.; Fassnacht, F.E.; Lausch, A.; Schmidtlein, S. Assessing the functional signature of heathland landscapes via hyperspectral remote sensing. Ecol. Indic. 2017, 73, 505–512. [CrossRef]
- Schmidtlein, S.; Feilhauer, H.; Bruelheide, H. Mapping plant strategy types using remote sensing. J. Veg. Sci. 2012, 23, 395–405. [CrossRef]
- Cushnahan, T.A.; Grafton, M.C.E.; Pearson, D.; Ramilan, T. Hyperspectral Data Can Classify Plant Functional Groups Within New Zealand Hill Farm Pasture. Remote Sens. 2025, 17, 1–22. [CrossRef]
- Kanta, C.; Kumar, A.; Chauhan, A.; Singh, H.; Sharma, I.P. The Interplay Between Plant Functional Traits and Climate Change; 2024; ISBN 9789819715107.
- Schweiger, A.K.; Schütz, M.; Risch, A.C.; Kneubühler, M.; Haller, R.; Schaepman, M.E. How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response. Methods Ecol. Evol. 2017, 8, 86–95. [CrossRef]
- Möckel, T.; Löfgren, O.; Prentice, H.C.; Eklundh, L.; Hall, K. Airborne hyperspectral data predict Ellenberg indicator values for nutrient and moisture availability in dry grazed grasslands within a local agricultural landscape. Ecol. Indic. 2016, 66, 503–516. [CrossRef]
- Klinke, R.; Kuechly, H.; Frick, A.; Förster, M.; Schmidt, T.; Holtgrave, A.K.; Kleinschmit, B.; Spengler, D.; Neumann, C. Indicator-Based Soil Moisture Monitoring of Wetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG - J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 71–84. [CrossRef]
- Peng, Y.; Kira, O.; Nguy-Robertson, A.; Suyker, A.; Arkebauer, T.; Sun, Y.; Gitelson, A.A. Gross primary production estimation in crops using solely remotely sensed data. Agron. J. 2019, 111, 2981–2990. [CrossRef]
- Reeves, M.C.; Zhao, M.; Running, S.W. Usefulness and limits of MODIS GPP for estimating wheat yield. Int. J. Remote Sens. 2005, 26, 1403–1421. [CrossRef]
- Maleki, M.; Arriga, N.; Barrios, J.M.; Wieneke, S.; Liu, Q.; Peñuelas, J.; Janssens, I.A.; Balzarolo, M. Estimation of Gross Primary Productivity (GPP) Phenology of a Short-Rotation Plantation Using Remotely Sensed Indices Derived from Sentinel-2 Images. Remote Sens. 2020, 12, 2104. [CrossRef]
- Celis, J.; Xiao, X.; White, P.M.; Cabral, O.M.R.; Freitas, H.C. Improved Modeling of Gross Primary Production and Transpiration of Sugarcane Plantations with Time-Series Landsat and Sentinel-2 Images. Remote Sens. 2023, 16, 46. [CrossRef]
- Shirkey, G.; John, R.; Chen, J.; Dahlin, K.; Abraha, M.; Sciusco, P.; Lei, C.; Reed, D.E. Fine resolution remote sensing spectra improves estimates of gross primary production of croplands. Agric. For. Meteorol. 2022, 326, 109175. [CrossRef]
- Cicuéndez, V.; Inclán, R.; Sánchez-Cañete, E.P.; Román-Cascón, C.; Sáenz, C.; Yagüe, C. Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information. Agronomy 2024, 14. [CrossRef]
- He, L.; Mostovoy, G. Cotton yield estimate using Sentinel-2 data and an ecosystem model over the southern US. Remote Sens. 2019, 11. [CrossRef]
- Wang, T.; Zhang, Y.; Yue, C.; Wang, Y.; Wang, X.; Lyu, G.; Wei, J.; Yang, H.; Piao, S. Progress and challenges in remotely sensed terrestrial carbon fluxes. Geo-Spatial Inf. Sci. 2024, 28, 1–21. [CrossRef]
- Yan, Y.; Xu, X.; Liu, X.; Wen, Y.; Ou, J. Assessing the contributions of climate change and human activities to cropland productivity by means of remote sensing. Int. J. Remote Sens. 2020, 41, 2004–2021. [CrossRef]
- Feng, X.; Liu, G.; Chen, J.M.; Chen, M.; Liu, J.; Ju, W.M.; Sun, R.; Zhou, W. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manage. 2007, 85, 563–573. [CrossRef]
- Li, C.; Han, W.; Peng, M. Improving the spatial and temporal estimating of daytime variation in maize net primary production using unmanned aerial vehicle-based remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102467. [CrossRef]
- Niedertscheider, M.; Kastner, T.; Fetzel, T.; Haberl, H.; Kroisleitner, C.; Plutzar, C.; Erb, K.H. Mapping and analysing cropland use intensity from a NPP perspective. Environ. Res. Lett. 2016, 11. [CrossRef]
- Xu, L.; Zhao, Z.; Wang, C.; Wang, H.; Ma, C. Quantitative estimation of net primary productivity by an improved tCASA model using Landsat time series data: A case study of Central Plains, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, PP, 1–16. [CrossRef]
- Li, J.; Xu, D.; Xu, Z.; Wang, Y.; Yang, J. Analysis of Spatio-Temporal Variation of Vegetation Npp and its Driving Factors in Tianshan Mountains Based on Casa Model.
- Baeza, S.; Paruelo, J.M. Spatial and temporal variation of human appropriation of net primary production in the Rio de la Plata grasslands. ISPRS J. Photogramm. Remote Sens. 2018, 145, 238–249. [CrossRef]
- Liu, Y.; Song, W. Mapping human appropriation of net primary production in agroecosystems in the Heihe River Basin, China. Agric. Ecosyst. Environ. 2022, 335, 107996. [CrossRef]
- Paudel, S.; Mueller, K.; Ovando-Montejo, G.; Tango, L.; Rushforth, R.; Lant, C. A dataset cataloging product-specific human appropriation of net primary production (HANPP) in US counties. Data Br. 2023, 50, 109530. [CrossRef]
- Matej, S.; Weidinger, F.; Kaufmann, L.; Roux, N.; Gingrich, S.; Haberl, H.; Krausmann, F.; Erb, K.H. A global land-use data cube 1992–2020 based on the Human Appropriation of Net Primary Production. Sci. Data 2025, 12, 1–20. [CrossRef]
- Zhao, J.; Sun, X.; Wang, M.; Li, G.; Hou, X. Crop mapping and quantitative evaluation of cultivated land use intensity in Shandong Province, 2018–2022. L. Degrad. Dev. 2024, 4648–4665. [CrossRef]
- Cai, W.; Ullah, S.; Yan, L.; Lin, Y. Remote sensing of ecosystem water use efficiency: A review of direct and indirect estimation methods. Remote Sens. 2021, 13, 1–20. [CrossRef]
- Yu, X.; Yin, Q.; Zhao, T.; Chen, K.; Qian, L.; Wang, W.; Hu, X.; Zhang, B. Detecting ecosystem water use efficiency responses to drought from long-term remote sensing data. Ecol. Indic. 2025, 177, 113734. [CrossRef]
- Rao, S.; Kisekka, I. Science of the Total Environment Carbon – water coupling in California almond orchards : a multi-scale assessment of ecosystem water use efficiency using eddy covariance and remote sensing. Sci. Total Environ. 2025, 990, 179914.
- Jiang, L.; Zhang, F.; Chi, J.; Yan, P.; Bu, X.; He, Y.; Bai, T. Evaluation of pear orchard yield and water use efficiency at the field scale by assimilating remotely sensed LAI and SM into the WOFOST model. Comput. Electron. Agric. 2025, 233, 110145. [CrossRef]
- He, J.; Zhou, Y.; Liu, X.; Duan, W.; Pan, N. Spatiotemporal Changes in Water-Use Efficiency of China’s Terrestrial Ecosystems During 2001–2020 and the Driving Factors. Remote Sens. 2025, 17. [CrossRef]
- Ali, A.; Kaul, H.P. Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review. Remote Sens. 2025, 17, 1–26. [CrossRef]
- Guillevic, P.C.; Aouizerats, B.; Burger, R.; Den Besten, N.; Jackson, D.; Ridderikhoff, M.; Zajdband, A.; Houborg, R.; Franz, T.E.; Robertson, G.P.; et al. Planet’s Biomass Proxy for monitoring aboveground agricultural biomass and estimating crop yield. F. Crop. Res. 2024, 316, 109511. [CrossRef]
- Reinermann, S.; Boos, C.; Kaim, A.; Schucknecht, A.; Asam, S.; Annuth, S.H.; Schmitt, T.M.; Koellner, T.; Kiese, R. Grassland yield estimations - potentials and limitations of remote sensing , process-based modelling and field measurements. 2025.
- Åström, O.; Månsson, S.; Lazar, I.; Nilsson, M.; Ekelöf, J.; Oxenstierna, A.; Sopasakis, A. Predicting Intra-Field Yield Variations for Winter Wheat Using Remote Sensing and Graph Attention Networks. SSRN Electron. J. 2025. [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14. [CrossRef]
- Luo, L.; Sun, S.; Xue, J.; Gao, Z.; Zhao, J.; Yin, Y.; Gao, F.; Luan, X. Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation. Agric. Syst. 2023, 210, 103711. [CrossRef]
- Filippi, P.; Jones, E.J.; Ginns, B.J.; Whelan, B.M.; Roth, G.W.; Bishop, T.F.A. Mapping the depth-to-soil pH constraint, and the relationship with cotton and grain yield at the within-field scale. Agronomy 2019, 9, 1–15. [CrossRef]
- Li, M.; Wang, J.; Li, K.; Liu, Y.; Ochir, A.; Davaasuren, D. Assessment of grazing livestock balance on the Eastern Mongolian Plateau based on remote sensing monitoring and grassland carrying capacity evaluation. Sci. Rep. 2024, 14, 1–11. [CrossRef]
- Ren, J.; Zhang, N.; Liu, X.; Wu, S.; Li, D. Dynamic Harvest Index Estimation of Winter Wheat Based on UAV Hyperspectral Remote Sensing Considering Crop Aboveground Biomass Change and the Grain Filling Process. Remote Sens. 2022, 14. [CrossRef]
- Xu, J.; Meng, J.; Quackenbush, L.J. Use of remote sensing to predict the optimal harvest date of corn. F. Crop. Res. 2019, 236, 1–13. [CrossRef]
- Li, H.; Luo, Y.; Xue, X.; Zhao, Y.; Zhao, H.; Li, F. A comparison of harvest index estimation methods of winter wheat based on field measurements of biophysical and spectral data. Biosyst. Eng. 2011, 109, 396–403. [CrossRef]
- Yue, J.; Yao, Y.; Shen, J.; Li, T.; Xu, N.; Feng, H.; Wei, Y.; Xu, X.; Lin, Y.; Guo, W.; et al. Winter wheat harvest detection via Sentinel-2 MSI images. Int. J. Remote Sens. 2025, 46, 2482–2500. [CrossRef]
- Paz-Kagan, T.; Zaady, E.; Salbach, C.; Schmidt, A.; Lausch, A.; Zacharias, S.; Notesco, G.; Ben-Dor, E.; Karnieli, A. Mapping the spectral soil quality index (SSQI) using airborne imaging spectroscopy. Remote Sens. 2015, 7. [CrossRef]
- Baroudy, A.A. El; Ali, A.M.; Mohamed, E.S.; Moghanm, F.S.; Shokr, M.S.; Savin, I.; Poddubsky, A.; Ding, Z.; Kheir, A.M.S.; Aldosari, A.A.; et al. Modeling Land Suitability for Rice Crop Using Remote Sensing and Soil Quality Indicators: The Case Study of the Nile Delta. Sustainability 2020, 12, 9653. [CrossRef]
- Kumar, U.S.; Kapali, B.S.C.; Nageswaran, A.; Umapathy, K.; Jangir, P.; Swetha, K.; Begum, M.A. Fusion of MobileNet and GRU: Enhancing Remote Sensing Applications for Sustainable Agriculture and Food Security. Remote Sens. Earth Syst. Sci. 2024, 8, 118–131. [CrossRef]
- Dedeoğlu, M.; Başayiğit, L.; Yüksel, M.; Kaya, F. Assessment of the vegetation indices on Sentinel-2A images for predicting the soil productivity potential in Bursa, Turkey. Environ. Monit. Assess. 2020, 192. [CrossRef]
- Fadl, M.E.; AbdelRahman, M.A.E.; El-Desoky, A.I.; Sayed, Y.A. Assessing soil productivity potential in arid region using remote sensing vegetation indices. J. Arid Environ. 2024, 222, 105166. [CrossRef]
- Rieser, J.; Veste, M.; Thiel, M.; Schönbrodt-stitt, S. Coverage and rainfall response of biological soil crusts using multi-temporal sentinel-2 data in a central european temperate dry acid grassland. Remote Sens. 2021, 13. [CrossRef]
- Crucil, G.; Van Oost, K. Towards mapping of soil crust using multispectral imaging. Sensors 2021, 21, 1–19.
- Weber, B.; Hill, J. Remote Sensing of Biological Soil Crusts at Different Scales. In; 2016; pp. 215–234.
- Crucil, G. Characterizing soil physical crusts in loamy soils using spectral data processing techniques from proximal and remote sensing, UCL-Université Catholique de Louvain, 2022.
- Han, H.Q.; Yin, C.Y.; Wang, K.; Zhou, H.Y. Progress and Prospects of Research on Karst Ecosystem Services. Appl. Ecol. Environ. Res. 2025, 23, 507–529. [CrossRef]
- Wu, C.; Wu, Z.; Wang, Y.; Yang, Y. Effect of soil crust on the prediction of soil organic matter based on soil colour. Catena 2025, 251. [CrossRef]
- Beaugendre, N.; Malam Issa, O.; Choné, A.; Cerdan, O.; Desprats, J.F.; Rajot, J.L.; Sannier, C.; Valentin, C. Developing a predictive environment-based model for mapping biological soil crust patterns at the local scale in the Sahel. Catena 2017, 158, 250–265. [CrossRef]
- Brom, J.; Duffková, R.; Haberle, J.; Zajíček, A.; Nedbal, V.; Bernasová, T.; Křováková, K. Identification of infiltration features and hydraulic properties of soils based on crop water stress derived from remotely sensed data. Remote Sens. 2021, 13. [CrossRef]
- Francos, N.; Romano, N.; Nasta, P.; Zeng, Y.; Szabó, B.; Manfreda, S.; Ciraolo, G.; Mészáros, J.; Zhuang, R.; Su, B.; et al. Mapping water infiltration rate using ground and uav hyperspectral data: A case study of alento, italy. Remote Sens. 2021, 13, 1–30. [CrossRef]
- Geng, Y.; Zhou, T.; Zhang, Z.; Cui, B.; Sun, J.; Zeng, L.; Yang, R.; Wu, N.; Liu, T.; Pan, J.; et al. Continental-scale mapping of soil pH with SAR-optical fusion based on long-term earth observation data in google earth engine. Ecol. Indic. 2024, 165, 112246. [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Wang, Z. Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing. Comput. Electron. Agric. 2018, 154, 204–212. [CrossRef]
- Jia, P.; Shang, T.; Zhang, J.; Sun, Y. Inversion of soil pH during the dry and wet seasons in the Yinbei region of Ningxia, China, based on multi-source remote sensing data. Geoderma Reg. 2021, 25, e00399. [CrossRef]
- Webb, H.; Barnes, N.; Powell, S.; Jones, C. Does drone remote sensing accurately estimate soil pH in a spring wheat field in southwest Montana? Precis. Agric. 2021, 22, 1803–1815. [CrossRef]
- Wang, Z.; Wu, W.; Liu, H. Comparing Soil pH Mapping from Multi-Temporal PlanetScope and Sentinel-2 Data Across Land Use Types. Remote Sens. 2025, 17, 189. [CrossRef]
- Molaeinasab, A.; Tarkesh, M.; Bashari, H.; Toomanian, N.; Aghasi, B.; Jalalian, A. Spatial modeling of soil chemical properties in an arid region of Central Iran using machine learning and remote sensing data. Model. Earth Syst. Environ. 2025, 11, 1–19. [CrossRef]
- Srivastava, P.K.; Srivastava, S.; Singh, P.; Gupta, A.; Dugesar, V. Soil chemical properties estimation using hyperspectral remote sensing: A review. In Earth Observation for Monitoring and Modeling Land Use; Elsevier, 2025; pp. 25–43.
- Rogovska, N.; Blackmer, A.M. Remote sensing of soybean canopy as a tool to map high pH, calcareous soils at field scale. Precis. Agric. 2009, 10, 175–187. [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [CrossRef]
- Šestak, I.; Mihaljevski Boltek, L.; Mesić, M.; Zgorelec, Ž.; Perčin, A. Hyperspectral sensing of soil ph, total carbon and total nitrogen content based on linear and non-linear calibration methods. J. Cent. Eur. Agric. 2019, 20, 504–523. [CrossRef]
- Jain, S.; Sethia, D.; Tiwari, K.C. Developing novel spectral indices for precise estimation of soil pH and organic carbon with hyperspectral data and machine learning. Environ. Monit. Assess. 2024, 196. [CrossRef]
- Scudiero, E.; Corwin, D.L.; Anderson, R.G.; Yemoto, K.; Clary, W.; Wang, Z.; Skaggs, T.H. Remote sensing is a viable tool for mapping soil salinity in agricultural lands. Calif. Agric. 2017, 71, 231–238. [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Wu, C.; Luo, J.; Wu, Y. Mapping soil alkalinity and salinity in northern songnen plain, China with the hj-1 hyperspectral imager data and partial least squares regression. Sensors (Switzerland) 2018, 18. [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [CrossRef]
- Lazzeri, G.; Milewski, R.; Förster, S.; Moretti, S.; Chabrillat, S. Early Detection of Soil Salinization by Means of Spaceborne Hyperspectral Imagery 2025. [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [CrossRef]
- GORJİ, T.; YILDIRIM, A.; SERTEL, E.; TANIK, A. Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. Int. J. Environ. Geoinformatics 2019, 6, 33–49. [CrossRef]
- Aldabaa, A.A.A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 2015, 239, 34–46. [CrossRef]
- Jingwei, W.; Vincent, B.; Jinzhong, Y.; Bouarfa, S.; Vidal, A. Remote sensing monitoring of changes in soil salinity: A case study in inner Mongolia, China. Sensors 2008, 8, 7035–7049. [CrossRef]
- AbdelRahman, M.A.E. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications; Springer International Publishing, 2023; Vol. 34; ISBN 0123456789.
- Ruf, T.; Gilcher, M.; Udelhoven, T.; Emmerling, C. Implications of bioenergy cropping for soil: Remote sensing identification of silage maize cultivation and risk assessment concerning soil erosion and compaction. Land 2021, 10, 1–16. [CrossRef]
- Liu, S.; Dong, A.; Niu, B.; Xu, F.; Xu, J.; Yin, L.; Wang, S. Maize/cover crop intercropping mitigates soil erosion and enhances yield of ridge cultivation in Chinese Mollisol region. Catena 2025, 255, 109012. [CrossRef]
- Fahd, S.; Waqas, M.; Zafar, Z.; Soufan, W.; Almutairi, K.F.; Tariq, A. Integration of RUSLE model with remotely sensed data over Google Earth Engine to evaluate soil erosion in Central Indus Basin. Earth Surf. Process. Landforms 2025, 50, 1–17. [CrossRef]
- Zhang, X.; Qin, C.; Ma, S.; Liu, J.; Wang, Y.; Liu, H.; An, Z.; Ma, Y. Study on the Extraction of Topsoil-Loss Areas of Cultivated Land Based on Multi-Source Remote Sensing Data. Remote Sens. 2025, 17. [CrossRef]
- Gammoudi, A.; Guesmi, H.; Tebini, A.; Attia, R.; Chahed, T.S.; Trabelsi, H. Soil degradation risk prediction in an arid region (Northern Tataouine, Tunisia): using an empirical model coupling with remote sensing and GIS. Environ. Res. Commun. 2025, 7. [CrossRef]
- Molua, O.C.; Ukpene, A.O.; Ighrakpata, F.C.; Emagbetere, J.U.; Nwachuku, D.N. Review on Nondestructive Methods of Detecting Compacted Soils and Effects of Compacted Soil on Crop Production. Open J. Agric. Sci. (ISSN 2734-214X) 2023, 4, 1–16. [CrossRef]
- Bento, N.L.; Ferraz, G.A. e S.; Santana, L.S.; Faria, R.D.O.; Rossi, G.; Bambi, G. Plant Height and Soil Compaction in Coffee Crops Based on LiDAR and RGB Sensors Carried by Remotely Piloted Aircraft. Remote Sens. 2025, 17, 1445.
- Mikhailova, E.A.; Post, C.J.; Zurqani, H.A.; Hutton, P.C.; Nelson, D.G. Enriching Earth Science Education with Direct and Proximal Remote Sensing of Soil Using a Mobile Geospatial Application. 2025, 1–16. [CrossRef]
- Lambot, S.; Wu, K.; Bates, J.; Fluhrer, A.; Montzka, C.; Henrion, M.; Peichl, M.; Dill, S.; Bruecker, P.; Engel, M.; et al. Multi-Sensor Drone Fleet for Soil and Crop Analyses: Integrating Gpr, Sar, Lidar, Multispectral and Infrared Imaging 2025.
- Kulkarni, S.G.; Bajwa, S.G.; Huitink, G. Investigation of the effects of soil compaction in cotton. Trans. ASABE 2010, 53. [CrossRef]
- Bento, N.L.; Silva Ferraz, G.A. e.; Santana, L.S.; de Oliveira Faria, R.; da Silva Amorim, J.; de Lourdes Oliveira e Silva, M.; Silva, M.M.A.; Alonso, D.J.C. Soil compaction mapping by plant height and spectral responses of coffee in multispectral images obtained by remotely piloted aircraft system. Precis. Agric. 2024, 25, 729–750. [CrossRef]
- Milewski, R.; Schmid, T.; Chabrillat, S.; Jiménez, M.; Escribano, P.; Pelayo, M.; Ben-Dor, E. Analyses of the Impact of Soil Conditions and Soil Degradation on Vegetation Vitality and Crop Productivity Based on Airborne Hyperspectral VNIR–SWIR–TIR Data in a Semi-Arid Rainfed Agricultural Area (Camarena, Central Spain). Remote Sens. 2022, 14.
- Serrano, J.; Marques, J.; Shahidian, S.; Carreira, E.; Marques da Silva, J.; Paixão, L.; Paniagua, L.L.; Moral, F.; Ferraz de Oliveira, I.; Sales-Baptista, E. Sensing and Mapping the Effects of Cow Trampling on the Soil Compaction of the Montado Mediterranean Ecosystem. Sensors 2023, 23. [CrossRef]
- Kuemmerle, T.; Fernandez, P.D.; Baumann, M.; Burton, J. Uncovering patterns of cattle intensification across South America’s dry diagonal. Environ. Res. Lett. 2025, 0–12. [CrossRef]
- Gómez Giménez, M.; de Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sens. Environ. 2017, 198, 126–139. [CrossRef]
- Weber, D.; Schwieder, M.; Ritter, L.; Koch, T.; Psomas, A.; Huber, N.; Ginzler, C.; Boch, S. Grassland-use intensity maps for Switzerland based on satellite time series: Challenges and opportunities for ecological applications. Remote Sens. Ecol. Conserv. 2024, 10, 312–327. [CrossRef]
- Potočnik Buhvald, A.; Račič, M.; Immitzer, M.; Oštir, K.; Veljanovski, T. Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables. Remote Sens. 2022, 14. [CrossRef]
- Rivas, H.; Touchais, H.; Thierion, V.; Millet, J.; Curtet, L.; Fauvel, M. Nationwide operational mapping of grassland first mowing dates combining machine learning and Sentinel-2 time series. Remote Sens. Environ. 2024, 315, 114476. [CrossRef]
- Bekkema, M.E.; Eleveld, M. Mapping Grassland Management Intensity Using Sentinel-2 Satellite Data. GI_Forum 2018, 1, 194–213. [CrossRef]
- Wu, R.; Hong, Z.; Du, W.; Shan, Y.; Ying, H.; Wu, R.; Gantumur, B. A Generalized Spatiotemporally Weighted Boosted Regression to Predict the Occurrence of Grassland Fires in the Mongolian Plateau. Remote Sens. 2025, 17, 1–18. [CrossRef]
- Molema, T.R.; Tesfamichael, S.G.; Fundisi, E. Optical and radar remote sensing for burn scar mapping in the grassland biome. Remote Sens. Appl. Soc. Environ. 2025, 38, 101548. [CrossRef]
- Mofokeng, O.D.; Adelabu, S.A.; Durowoju, O.S.; Adagbasa, E.A. Grass curing-driven fire danger index in a protected mountainous grassland using fused MODIS and Sentinel-2. Int. J. Remote Sens. 2024, 45, 5359–5384. [CrossRef]
- Hu, X.; Jiang, F.; Qin, X.; Huang, S.; Yang, X.; Meng, F. An Optimized Smoke Segmentation Method for Forest and Grassland Fire Based on the UNet Framework. Fire 2024, 7, 1–18. [CrossRef]
- Marčiš, M.; Fraštia, M.; Lieskovský, T.; Ambroz, M.; Mikula, K. Photogrammetric Measurement of Grassland Fire Spread: Techniques and Challenges with Low-Cost Unmanned Aerial Vehicles. Drones 2024, 8. [CrossRef]
- Watzig, C.; Schaumberger, A.; Klingler, A.; Dujakovic, A.; Atzberger, C.; Vuolo, F. Grassland cut detection based on Sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding. Remote Sens. Environ. 2023, 292, 113577. [CrossRef]
- Reuß, F.; Navacchi, C.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Schaumberger, A.; Klingler, A.; Mayer, K.; Wagner, W. Evaluation of limiting factors for SAR backscatter based cut detection of alpine grasslands. Sci. Remote Sens. 2024, 9. [CrossRef]
- Dujakovic, A.; Watzig, C.; Schaumberger, A.; Klingler, A.; Atzberger, C.; Vuolo, F. Enhancing grassland cut detection using Sentinel-2 time series through integration of Sentinel-1 SAR and weather data. Remote Sens. Appl. Soc. Environ. 2025, 37, 101453. [CrossRef]






















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
