Submitted:
22 July 2025
Posted:
23 July 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Preparation of Photocatalysts
3.2.1. Synthesis of BiOBr
3.2.2. Synthesis of BNQDs
3.2.3. Synthesis of BiOBr/BNQDs-X%
3.3. Photocatalytic Activity Experiment
3.4. Characterizations
3.5. Photoelectrochemical Property
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose. 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Lu, M.; Liang, L.; Zhang, H. .Wei, J. Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes. Chemical Engineering Journal. 2020, 387. [Google Scholar]
- Pitcheri, R.; Mooni, S.P.; Harikrishnan, L.; Raghav, J.; Roy, S.; Maaouni, N.; Radhalayam, D.; Alothman, A.A.; Alharbi, A.F.; Al-Zahrani, F.A.M.; Nunna, G.P. .Ko, T.J. Novel S-scheme β-Cu2V2O7/Ni/Pg-C3N4 heterojunction photocatalyst for sunlight-induced degradation of RhB. Surfaces and Interfaces. 2024, 52. [Google Scholar]
- Basely, A.M.; Shaker, M.H.; Helmy, F.M.; Abdel-Messih, M.F.; Ahmed, M.A. Construction of Bi2S3/g-C3N4 step S-scheme heterojunctions for photothermal decomposition of rhodamine B dye under natural sunlight radiations. Inorganic Chemistry Communications 2023, 148. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, J.; Brouzgou, A.; Wang, A.; Jing, S.; Kannan, P.; Chen, F. .Tsiakaras, P. Efficient photocatalytic H2O2 production and photodegradation of RhB over K-doped g-C3N4/ZnO S-scheme heterojunction. Journal of Colloid and Interface Science. 2025, 677, 1120–1133. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Yu, J.C. Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere 2021, 278. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, Y.; Wan, J.; Yan, Z.; Ma, Y.; Zhang, G.; Wang, S. Ti3C2Tx as electron-hole transfer mediators to enhance AgBr/BiOBr Z heterojunction photocatalytic for the degradation of Tetrabromobisphenol A: Mechanism Insight. Applied Catalysis B: Environmental 2022, 319. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Yu, X. Enhancement of photocatalytic ammonia production over BiOBr nanosheets with photo-assembled Au cocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 662. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, X.; Chen, L.; Liang, R.; Yan, G. .Liang, S. O defect anchored Ru on BiOBr with nanoconfined structure for catalytic N2 fixation. Applied Catalysis B: Environment and Energy 2024, 349. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Fan, S.; Li, X.; Zhao, Q. An efficient Z-type CeO2/BiOBr heterostructure with enhanced photo-oxidation degradation of o-DCB and CO2 reduction ability. Applied Catalysis B: Environment and Energy 2024, 356. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Zhang, D.; Liu, C.; Zhou, X.; Yang, H.; Qu, J.; He, D. Efficient photocatalytic water disinfection by a novel BP/BiOBr S-scheme heterojunction photocatalyst. Chemical Engineering Journal 2023, 468. [Google Scholar] [CrossRef]
- Cao, T.; Xu, Q.; Zhang, J.; Wang, S.; Di, T.; Deng, Q. S-scheme g-C3N4/BiOBr heterojunction for efficient photocatalytic H2O2 production. Chinese Journal of Catalysis. 2025, 72, 118–129. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, P.; Tuerhong, R.; Chai, K.; Du, X.; Su, X.; Zhao, L.; Han, L. Regulating the electronic structure of BiOBr by Cu-doping to promote efficient photocatalytic nitrogen fixation reaction. Separation and Purification Technology 2025, 364. [Google Scholar] [CrossRef]
- Liu, J.; Qin, W.; Wang, Y.; Xu, Q.; Xie, Y.; Chen, Y.; Dai, Y. .Zhang, W. NH2-UiO-66 modification BiOBr enhancement photoreduction CO2 to CO. Separation and Purification Technology. 2024, 344. [Google Scholar]
- Ning, J.; Zhang, B.; Siqin, L.; Liu, G.; Wu, Q.; Xue, S.; Shao, T.; Zhang, F.; Zhang, W.; Liu, X. Designing advanced S-scheme CdS QDs/La-Bi2WO6 photocatalysts for efficient degradation of RhB. Exploration 2023, 3. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Niu, J.; Zheng, H.; Zhang, W.; Leong, Y.K.; Chang, J.-S. .Lai, B. Activation of PAA at the Fe–Nx Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation. Environmental Science & Technology. 2024, 58, 21871–21881. [Google Scholar]
- Dong, H.; Yin, B.; Li, J.; Guo, W.; Meng, D.; Zhu, X.; Zhang, G.; Zhang, G.; Xin, Y.; Chen, Q. Photocatalytic remediation of fluoranthene contaminated soil by eco-friendly GQDs/TiO2/α-FeOOH composite photocatalyst: Efficiency, influence factors, mechanism, and toxicity analysis. Separation and Purification Technology 2025, 357. [Google Scholar] [CrossRef]
- Cheng, M.; Li, H.; Wu, Z.; Yu, Z.; Tao, X.; Huang, L. Synergistic effects of CQDs and oxygen vacancies on CeO2 photocatalyst for efficient photocatalytic nitrogen fixation. Separation and Purification Technology. 2025, 354. [Google Scholar] [CrossRef]
- Su, X.; Dong, Y.; Zhu, Y.; Shi, H. MIL-125-NH2/BNQDs persistent photocatalyst enhanced peroxymonosulfate activation for efficient PET plastics removal. Chemical Engineering Journal. 2024, 501. [Google Scholar] [CrossRef]
- Guo, J.; Hou, J.; Yang, Z.; Xia, J.; Wu, J.; You, G.; Miao, L. Boron nitride quantum dots supported hollow NH2-MIL-125 drive photo-Fenton-PMS system for photocatalytic tetracycline degradation: Contribution of tannic acid etching. Chemosphere 2024, 365. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, Y.; Lin, Y.; Wu, S.; Yu, X.; Yang, C. Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of sulfamethazine. Chemical Engineering Journal 2021, 405. [Google Scholar] [CrossRef]
- Wu, J.; Xie, Y.; Ling, Y.; Si, J.; Li, X.; Wang, J.; Ye, H.; Zhao, J.; Li, S.; Zhao, Q.; Hou, Y. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chemical Engineering Journal. 2020, 400. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Dong, Y.; Shi, H. Dual metal ions/BNQDs boost PMS activation over copper tungstate photocatalyst for antibiotic removal: Intermediate, toxicity assessment and mechanism. Journal of Materials Science & Technology 2024, 170, 11–24. [Google Scholar]
- Ren, K.; Zhao, W.; Zhai, Z.; Han, T.; Shi, H. 2D/0D Bi2MoO6 nanosheets/BN quantum dots photocatalysts with enhanced charge separation for efficient elimination of antibiotic. Applied Surface Science. 2021, 562. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Zhao, Q.; Liu, B. Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed {001} facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene. Applied Catalysis B: Environmental 2021, 281. [Google Scholar] [CrossRef]
- Ren, K.; Lv, M.; Xie, Q.; Zhang, C.; Shi, H. Dual BN quantum dot/Ag co-catalysts synergistically promote electron-hole separation on g-C3N4 nanosheets for efficient antibiotics oxidation and Cr(VI) reduction. Carbon. 2022, 186, 355–366. [Google Scholar] [CrossRef]
- Miao, Z.; Zhang, Y.; Wang, N.; Xu, P.; Wang, X. BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O. Journal of Colloid and Interface Science. 2022, 620, 407–418. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Wang, J.; Wu, X.; Zhang, G. Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal. Journal of Materials Science & Technology. 2020, 56, 236–243. [Google Scholar]
- Cheng, T.; Xing, Z.; Zhang, N.; Sun, P.; Peng, H.; Li, Z.; Wang, N.; Zhou, W. Ti3C2 quantum dots-modified oxygen-vacancy-rich BiOBr hollow microspheres toward optimized photocatalytic performance. Chemosphere 2024, 364. [Google Scholar] [CrossRef]
- Fu, S.; Yuan, W.; Liu, X.; Yan, Y.; Liu, H.; Li, L.; Zhao, F.; Zhou, J. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance. Journal of Colloid and Interface Science. 2020, 569, 150–163. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Li, Y.; Jiang, L.; Zhang, G. Novel BiSbO4/BiOBr nanoarchitecture with enhanced visible-light driven photocatalytic performance: Oxygen-induced pathway of activation and mechanism unveiling. Applied Surface Science 2019, 498. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Chen, M.; Zhang, H.; Peng, J.; Ding, L.; Wang, W. Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants. Separation and Purification Technology 2021, 261. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Tang, Y.; Li, P.; Gao, S.; Wang, Q.; Liu, W.; Zhan, S. Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters 2024, 35. [Google Scholar] [CrossRef]
- Ren, K.; Dong, Y.; Chen, Y.; Shi, H. . Bi2WO6 nanosheets assembled BN quantum dots: Enhanced charge separation and photocatalytic antibiotics degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 637. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Li, H.; Li, H.; Qi, W.; Zhang, Q.; Zhu, J.; Zhao, P.; Yang, S. Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction. Applied Catalysis B: Environmental 2022, 318. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Niu, J. .Chen, M. Facile construction of BiOBr/BiOCOOH p-n heterojunction photocatalysts with improved visible-light-driven photocatalytic performance. Separation and Purification Technology. 2019, 225, 24–32. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Hong, X.; Wang, D.; Wang, F.; Xia, M.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chemical Engineering Journal 2022, 449. [Google Scholar] [CrossRef]
- Xu, H.; Yang, J.; Li, Y.; Fu, F.; Da, K.; Cao, S.; Chen, W.; Fan, X. Fabrication of Bi2O3 QDs decorated TiO2/BiOBr dual Z-scheme photocatalysts for efficient degradation of gaseous toluene under visible-light. Journal of Alloys and Compounds 2023, 950. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Yang, M.-J.; Yang, S.-Y.; Xu, Y.-H. Enhanced photocatalytic degradation of glyphosate over 2D CoS/BiOBr heterojunctions under visible light irradiation. Journal of Hazardous Materials 2021, 407. [Google Scholar] [CrossRef]
- Gao, X.; Shan, P.; Shi, W.; Guo, F. Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein. Catalysts 2025, 15. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; Ren, C.; Wu, L.; Yao, Y.; Zhong, S.; Lin, H.; Zhao, L.; Gao, Y. .Bai, S. Modulating the Selectivity of CO2 Photoreduction by Regulating the Location of PtCu in a UiO-66@ZnIn2S4 Core–Shell Nanoreactor. ACS Catalysis. 2024, 15, 828–840. [Google Scholar] [CrossRef]
- Li, S.; Zeng, H.; Fan, J.; Zhu, M.; Zhang, C.; An, X.; Luo, Z.; Fu, H. .Yang, X. Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties. Catalysts. 2025, 15. [Google Scholar]
- Zhao, W.; Wang, W.; Han, T.; Wang, H.; Zhang, H. .Shi, H. Oxygen vacancies boosted charge separation towards enhanced photodegradation ability over 3D/2D Z-scheme BiO1−XBr/Fe2O3 heterostructures. Separation and Purification Technology 2021, 269. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.; Zhao, L.; Li, L.; Li, N.; Su, X.; Su, Q. Construction of a novel 0D-3D boron nitride quantum dots /NH2-MIL-125(Ti) composite for photodegradation of Rhodamine B. Materials Science in Semiconductor Processing 2023, 167. [Google Scholar] [CrossRef]
- Ni, Q.; Ke, X.; Qian, W.; Yan, Z.; Luan, J.; Liu, W. Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: Coupling DFT/QSAR simulations with experiments. Applied Catalysis B: Environmental 2024, 340. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, G.; Du, H.; Zhu, J.; Li, J. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI). Journal of Hazardous Materials 2021, 407. [Google Scholar] [CrossRef]
- Kanagaraj, T.; Thiripuranthagan, S. Photocatalytic activities of novel SrTiO3—BiOBr heterojunction catalysts towards the degradation of reactive dyes. Applied Catalysis B: Environmental. 2017, 207, 218–232. [Google Scholar] [CrossRef]
- Zhong, R.; Liao, H.; Deng, Q.; Zou, X.; Wu, L. Preparation of a novel composite photocatalyst BiOBr/ZIF-67 for enhanced visible-light photocatalytic degradation of RhB. Journal of Molecular Structure 2022, 1259. [Google Scholar] [CrossRef]
- Jiao, W.; Xie, Y.; He, F.; Wang, K.; Ling, Y.; Hu, Y.; Wang, J.; Ye, H.; Wu, J.; Hou, Y. A visible light-response flower-like La-doped BiOBr nanosheets with enhanced performance for photoreducing CO2 to CH3OH. Chemical Engineering Journal 2021, 418. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Yang, Y.; Wang, X.; Zhou, T.; Yin, G.; Jia, F.; Liu, B. 1D 2D and 3D anatase TiO2 sensitized with BNQDs for sensitive acetone detection. Surfaces and Interfaces. 2023, 38. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Shi, H. Boosting Separation of Charge Carriers in 2D/0D BiOBr Nanoflower Sheets/BN Quantum Dots with the Lorentz Force via Magnetic Field. Energy & Fuels. 2022, 36, 11495–11502. [Google Scholar]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
