Preprint
Article

This version is not peer-reviewed.

Global Weak Solution in a p-Laplacian Attraction-Repulsion Chemotaxis System with Nonlinear Sensitivity and Signal Production

A peer-reviewed article of this preprint also exists.

Submitted:

21 July 2025

Posted:

22 July 2025

You are already at the latest version

Abstract
We consider the following $p$-Laplacian chemotaxis system with logistic source and nonlinear production: $$\left\{ \begin{array}{ll} u_{t}=\bigtriangledown\cdot(|\nabla u|^{p-2}\nabla u)-\chi \nabla\cdot(u^{\alpha} \nabla v)+\xi \nabla\cdot(u^{\beta} \nabla w)+f(u),\;\;x\in \Omega,\;t>0,\\ v_{t}=\triangle v-\sigma v+\eta u^{k_{1}},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega,\;t>0,\\ 0=\triangle w-\delta w+\gamma u^{k_{2}},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega,\;t>0, \end{array}\right. $$ where $ \chi, \xi, \alpha,\beta,\eta,\sigma,\gamma,\delta, k_{1}, k_{2} >0, p\geq 2$, $ \Omega \subset \mathbb{R}^{n}(n\geq2) $ is a smoothly bounded domain. The logistic-type source $f(s)\leq\kappa-\mu s^{m}$ for $\kappa\in \mathbb{R}, \mu>0$ and $ m>1$. We obtain the global boundedness of solutions if (i) $m>\max\{2k_{1},\frac{p\alpha}{p-1}-1\} $, or (ii) $k_{2}>\max\{2k_{1}-\beta,\frac{p\alpha}{p-1}-\beta-1\}$ with $m>\max\{2,2\alpha,2\beta\}$.
Keywords: 
;  ;  ;  

1. Introduction

In this paper, we study the following p-Laplacian chemotaxis system with nonlinear sensitivity and signal production:
u t = · ( | u | p 2 u ) χ · ( u α v ) + ξ · ( u β w ) + f ( u ) , x Ω , t > 0 , v t = Δ v σ v + g 1 ( u ) , x Ω , t > 0 , 0 = Δ w δ w + g 2 ( u ) , x Ω , t > 0 , u ν = v ν = w ν = 0 , x Ω , t > 0 u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , w ( x , 0 ) = w 0 ( x ) , x Ω ,
where χ , ξ , α , β , η , σ , γ , δ , k 1 , k 2 > 0 and p 2 , Ω R n ( n 2 ) is a smoothly bounded domain. u is the density of the cells, v , w denote the concentration of the chemoattractant and chemorepellant. The nonlinear diffusion Δ p u = · ( | u | p 2 u ) is called the slow and fast p Laplacian diffusion if p > 2 and 1 < p < 2 , respectively. The smooth logistic-type source f : R R satisfies for all s>0,
f ( s ) κ μ s m and f ( 0 ) 0
with κ R , μ > 0 and m > 1 . The signal production g i ( i = 1 , 2 ) satisfies for all s>0,
g 1 ( s ) = η s k 1 , g 2 ( s ) = γ s k 2 ,
where η , γ , k 1 , k 2 > 0 .
Considering the effect of attraction without repulsion, problem (1.1) becomes the following Keller-Segel chemotaxis system
u t = u χ · ( u v ) , x Ω , t > 0 , v t = v v + g ( u ) , x Ω , t > 0 , u ν = v ν = 0 , x Ω , t > 0 , u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , x Ω .
When the signal production g ( u ) is linear (i.e. g ( u ) = u ), it was showed that the solutions of (1.4) are global bounded when n = 1 , or n = 2 with Ω u 0 < 4 π χ , or n 3 with small initial conditions(see [1,19,23,35]), whereas when n = 2 with Ω u 0 > 4 π χ , or n 3 , the finite-time blow up may occur for a large class of initial date [2,34]. When the signal production g ( u ) is nonlinear (i.e. 0 < g ( u ) u k ), the boundedness of (1.4) was studied in [17] if k ( 0 , 2 n ) with n 2 . Considering the solution of (1.4) with nonlinear production g ( u ) = u ( u + 1 ) k 1 under the condition f ( u ) = u μ u m , it was proved in [20,21] that the weak solution of (1.4) is bounded globally if 2 ( n + 4 ) n + 6 < m 2 , 0 < k < ( n + 6 ) ( m 1 ) 2 ( n + 2 ) and n = 2 , 3 . Recently, Zhuang et al. [39] got the globally bounded classical solution of (1.4) under k < m 1 , or k = m 1 with μ > 0 sufficiently large.
Now, recall a more general attraction-repulsion chemotaxis system
u t = · ( D ( u ) u ) χ · ( u v ) + ξ · ( u w ) + f ( u ) , x Ω , t > 0 , τ 1 v t = v σ v + g 1 ( u ) , x Ω , t > 0 , τ 2 w t = w δ w + g 2 ( u ) , x Ω , t > 0 , u ν = v ν = w ν = 0 , x Ω , t > 0 u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , w ( x , 0 ) = w 0 ( x ) , x Ω ,
where τ i = { 0 , 1 } ( i = 1 , 2 ) . For the case f ( u ) 0 , g 1 ( u ) = η u , g 2 ( u ) = γ u . If τ 1 = 1 , τ 2 = 0 and D ( u ) satisfying D ( u ) = D 0 u θ ,there exists a global weak solution under the case θ > 1 2 n [14]. Later, [8] optimized the condition of θ into θ > 1 4 n + 2 but added ξ γ χ η 0 . If τ 1 = τ 2 = 0 , and considering p Laplacian diffusion (i.e. D ( u ) = | u | p 2 ), it was showed in [12] that the system (1.5) exists a global bounded weak solution under the case (i) ξ γ χ η 0 , or case (ii) ξ γ χ η > 0 with p > 3 n n + 1 , or 1 < p 3 n n + 1 and u 0 L ( 3 p ) n p is small. More results on attraction-repulsion chemotaxis system can be found in [1,6,7,9,10,11,24,26,29,31,36,38]. For the case f ( u ) = κ μ u m , g 1 ( u ) = η u k 1 , g 2 ( u ) = γ u k 2 . If τ 1 = 1 , τ 2 = 0 , it was shown that when (i) m > max { 2 k 1 , 2 k 1 n 2 + n + 1 p 1 } , or case (ii) k 2 > max { 2 k 1 1 , 2 k 1 n 2 + n + 2 p p 1 } with m > 2 , the problem (1.5) possesses a global bounded weak solution [32]. If τ 1 = τ 2 = 1 , Jia [3] proved that when max { k 1 , k 2 } < m 1 or max { k 1 , k 2 } = m 1 with large μ > 0 , there exists a global bounded weak solution. More results on p-Laplacian chemotaxis models can be found in [4,12,15,16,18,27,28,37,40].
We now formulate the principal result .
Theorem 1.1.
Let p 2 and Ω R n ( n 2 ) be a bounded domain with smooth boundary. Assume that (1.2), (1.3) hold with k 1 > 0 , 0 < k 2 1 and m > 1 . Then for any non-negative initial data u 0 , v 0 , w 0 W 1 , ( Ω ) , problem (1.1) has a globally bounded weak solution ( u , v , w ) L ( Ω ) × W 1 , ( Ω ) × W 1 , ( Ω ) under the assumption (i) m > max { 2 k 1 , p α p 1 1 } , or (ii) k 2 > max { 2 k 1 β , p α p 1 β 1 } with m > max { 2 , 2 α , 2 β } .
Remark 1.1.
When α = β = 1 for (1.1), we optimized the assumption (i) m > max { 2 k 1 , 2 k 1 n 2 + n + 1 p 1 } , or (ii) k 2 > max { 2 k 1 1 , 2 k 1 n 2 + n + 2 p p 1 } with m > 2 of reference [32] into (i) m > max { 2 k 1 , 1 p 1 } or (ii) k 2 > max { 2 k 1 1 , 2 p p 1 } with m > 2 .
This paper is organized as follows. In Sec. 2, we will introduce a regularized problem (2.1) and preliminary lemmas. In Sec. 3, we prove the boundedness of weak solutions of (2.1). Finally, we prove Theorem 1.1 by an approximation procedure in Sec. 4.

2. Preliminaries

Due to the p-Laplacian diffusion, we begin with the definition of weak solution to (1.1).
Definition 2.1.
Let
0 u L l o c 2 ( [ 0 , T ) ; L 2 ( Ω ) ) ,
0 v , w L l o c 2 ( [ 0 , T ) ; W 1 , 2 ( Ω ) )
We call ( u , v , w ) a weak solution of (1.1) if the following equalities hold:
0 T Ω u φ t Ω u 0 ( x ) φ ( x , 0 ) = 0 T Ω | u | p 2 u · φ + χ 0 T Ω u α v · φ ξ 0 T Ω u β w · φ + 0 T Ω f ( u ) φ ,
0 T Ω v φ t Ω v 0 ( x ) φ ( x , 0 ) = 0 T Ω v · φ σ 0 T Ω v φ + 0 T Ω g 1 ( u ) φ
and
0 = 0 T Ω w · φ δ 0 T Ω w φ + 0 T Ω g 2 ( u ) φ
for all φ C 0 ( Ω ¯ × [ 0 , T ) ) .
In order to construct weak solutions of (1.1), we consider the regularized problem
u ε t = · ( ( | u ε | 2 + ε ) p 2 2 u ε ) χ · ( u ε α v ε ) + ξ · ( u ε β w ε ) + f ( u ε ) , v ε t = v ε σ v ε + g 1 ( u ε ) , x Ω , t > 0 , 0 = w ε δ w ε + g 2 ( u ε ) , x Ω , t > 0 , u ε ν = v ε ν = w ε ν = 0 , x Ω , t > 0 u ε ( x , 0 ) = u 0 ( x ) , v ε ( x , 0 ) = v 0 ( x ) , w ε ( x , 0 ) = w 0 ( x ) , x Ω ,
for each ε ( 0 , 1 ) . System (2.1) is locally solvable in the classical sense by using a fixed point theorem similar to [27,29].
Lemma 2.1.
Let p 2 and Ω R n ( n 2 ) be a smooth bounded domain, and that the initial data value u 0 , v 0 , w 0 W 1 , ( Ω ) . Then for any ε ( 0 , 1 ) , there exists T max , ε ( 0 , ] and a local-in-time classical solution ( u ε , v ε , w ε ) C ( Ω ¯ × [ 0 , T max , ε ) ) C 2 , 1 ( Ω ¯ × [ 0 , T max , ε ) ) that satisfies (2.1). Moreover, if T max , ε < , then
lim t T max , ε u ε ( · , t ) L ( Ω ) = .
Lemma 2.2.
Assume (1.2) holds, then there exists a positive constant M : = M ( u 0 , | Ω | ) such that
Ω u ε ( x , t ) d x M f o r t ( 0 , T m a x , ε ) .
Proof. 
Integrating the first functions of (2.1), we have by using (1.2) that
d d t Ω u ε d x κ | Ω | μ | Ω | 1 m ( Ω u ε d x ) m , t ( 0 , T m a x , ε )
which implies (2.2).□
Lemma 2.3.
For any ε 1 , ε 2 > 0 and q > 0 , there exists constants C 1 , C 2 > 0 such that the solution z of the problem
z + δ z = γ u k 2 i n Ω , z ν = 0 o n Ω ,
satisfies
Ω z q + 1 ε 1 Ω u k 2 ( q + 1 ) + C 1 ε 2 Ω u q + 1 + C 2 .
for u L 1 ( Ω ) and 0 < k 2 1 .
Proof. 
The proof closely resembles that of Lemma 2.2 in [30]; therefore, we will omit it.□
Next, we present the Gagliardo-Nirenberg inequality, which will be frequently utilized in the subsequent analysis [13,22].
Lemma 2.4.
Assume that 1 p , q satisfying ( n q ) p n q . Let s > 0 and 0 < r p . Then for any ϕ W 1 , q ( Ω ) L r ( Ω ) , there exists a constant C G N > 0 such that
ϕ L p ( Ω ) C G N ( ϕ L q ( Ω ) λ * ϕ L r ( Ω ) 1 λ * + ϕ L s ( Ω ) ) ,
where
λ * = n r n p 1 n q + n r ( 0 , 1 ) .

3. Regularity Estimates to Regularized Problem

In the section, we study the global boundedness to the regularized problem (2.1), we pay attention to the following lemma.
Lemma 3.1.
Assume that (1.2), (1.3) hold with k 1 > 0 , 0 < k 2 1 and m > 1 . If m > 2 k 1 or k 2 > 2 k 1 β with m > max { 2 , 2 α , 2 β } , there exists a constant C 1 > 0 such that
Ω | v ε | 2 d x C 1 o n t ( 0 , T max ) .
for any ε ( 0 , 1 ) .
Proof. 
Case (i): m > 2 k 1 . Multiplying ( 2.1 ) 2 by 2 v ε , integrating by parts, we obtain
d d t Ω | v ε | 2 = 2 Ω | v ε | 2 2 σ Ω | v ε | 2 2 η Ω u ε k 1 v ε 2 Ω | v ε | 2 2 σ Ω | v ε | 2 + 2 Ω | v ε | 2 + η 2 2 Ω u ε 2 k 1 = 2 σ Ω | v ε | 2 + η 2 2 Ω u ε 2 k 1
Together with (3.2) and the first equation of (2.1), there exists a constant C 2 > 0 such that
d d t ( Ω u ε + Ω | v ε | 2 ) κ | Ω | μ Ω u ε m 2 σ Ω | v ε | 2 + η 2 2 Ω u ε 2 k 1 2 σ Ω | v ε | 2 + C 2 ,
which used m > 2 k 1 and Young’s inequality. Collecting Lemma 2.2 and (3.3), we have
d d t ( Ω u ε + Ω | v ε | 2 ) + 2 σ ( Ω u ε + Ω | v ε | 2 ) 2 σ Ω u ε + C 2 C 3 ,
Case (ii): k 2 > 2 k 1 β with m > max { 2 , 2 α , 2 β } . Multiplying the first equation of (2.1) by 1 + ln u ε and using Young’s inequality, we get
d d t Ω u ε ln u ε ( p p 1 ) p Ω | u ε p 1 p | p + χ Ω u ε α 1 u ε · v ε ξ Ω u ε β 1 u ε · w ε + κ | Ω | + κ Ω ln u ε μ Ω u ε m μ Ω u ε m ln u ε χ Ω u ε α 1 u ε · v ε ξ Ω u ε β 1 u ε · w ε μ 2 Ω u ε m + C 4 ,
which used Ω ln u ε Ω u ε and u ε ln u ε e 1 .
Multiplying ( 2.1 ) 2 by v ε , integrating by part, we have
1 2 d d t Ω | v ε | 2 = Ω | v ε | 2 σ Ω | v ε | 2 η Ω u ε k 1 v ε Ω | v ε | 2 σ Ω | v ε | 2 + η 2 Ω u ε 2 k 1 + 1 4 Ω | v ε | 2 3 4 Ω | v ε | 2 σ Ω | v ε | 2 + η 2 Ω u ε 2 k 1
for all t ( 0 , T max ) . According to the Young’s inequality, we estimate
χ Ω u ε α 1 u ε · v ε = χ α Ω u ε α v ε χ 2 α 2 Ω u ε 2 α + 1 4 Ω | v ε | 2 ,
as well as
ξ Ω u ε β 1 u ε · w ε = ξ β Ω u ε β w ε = δ ξ β Ω u ε β w ε γ ξ β Ω u ε k 2 + β Ω u ε 2 β + δ 2 ξ 2 4 β 2 Ω w ε 2 γ ξ β Ω u ε k 2 + β Ω u ε 2 β + σ Ω u 2 γ ξ β Ω u ε k 2 + β + C 5
which used Lemma 2.3 and for all t ( 0 , T max ) . Since 2 σ Ω u ε ln u ε 2 σ Ω u ε 2 , and collecting (3.5)–(3.8),we have
d d t Ω ( u ε ln u ε + 1 2 | v ε | 2 ) + 2 σ Ω u ε ln u ε + σ Ω | v ε | 2 3 σ Ω u ε 2 + χ 2 α 2 Ω u ε 2 α + Ω u ε 2 β + η 2 Ω u ε 2 k 1 γ ξ β Ω u ε k 2 + β μ 2 Ω u ε m + C 6 .
It follows from k 2 > 2 k 1 β , m > max { 2 , 2 α , 2 β } and Young’s inequality that
3 σ Ω u ε 2 + χ 2 α 2 Ω u ε 2 α + Ω u ε 2 β + η 2 Ω u ε 2 k 1 γ ξ β Ω u ε k 2 + β μ 2 Ω u ε m C 7 .
Let y ( t ) = Ω ( u ε ln u ε + 1 2 | v ε | 2 ) , together with (3.9) and (3.10), this indicates
y ( t ) + 2 σ y ( t ) C 8 .
So we have for all t ( 0 , T max ) that
Ω u ε ln u ε + 1 2 Ω | v ε | 2 C 9 .
Then we derive
1 2 Ω | v ε | 2 Ω u ε ln u ε + C 9 e 1 | Ω | + C 9 ( 3.13 )
for all t ( 0 , T max ) and the desired results are proved.□
Lemma 3.2.
Let p 2 and assume that (1.2)(1.3) hold with m > 1 , k 1 > 0 and 0 < k 2 1 . If m > max { 2 k 1 , p α p 1 1 } or k 2 > max { 2 k 1 β , p α p 1 β 1 } with m > max { 2 , 2 α , 2 β } , then for any q > 1 , one can find a constant C 10 > 0 such that for any t ( 0 , T max )
Ω u ε q ( x , t ) d x C 10
for any ε ( 0 , 1 ) .
Proof. 
Multiply ( 2.1 ) 1 by q u ε q 1 integrate over Ω ,we can find that
d d t Ω u ε q + q ( q 1 ) Ω u ε q 2 ( | u ε | 2 + ε ) p 2 2 | u ε | 2 χ q ( q 1 ) Ω u ε q + α 2 u ε · v ε + ξ q ( q 1 ) q + β 1 Ω u ε q + β 1 w ε + κ q Ω u ε q 1 μ q Ω u ε q + m 1
for all t ( 0 , T max ) . Note that for p 2 and t ( 0 , T max ) ,
( | u ε | 2 + ε ) p 2 2 | u ε | 2 | u ε | p .
Together with (3.15) (3.16), and Young’s inequality, it follows that for p 2
d d t Ω u ε q + q ( q 1 ) Ω u ε q 2 | u ε | p χ q ( q 1 ) Ω u ε q + α 2 u ε · v ε + ξ q ( q 1 ) q + β 1 Ω u ε q + β 1 w ε + κ q Ω u ε q 1 μ q Ω u ε q + m 1 χ q ( q 1 ) Ω u ε q + α 2 u ε · v ε + ξ q ( q 1 ) q + β 1 Ω u ε q + β 1 w ε μ q 2 Ω u ε q + m 1 + C 11 ( 3.17 )
for all t ( 0 , T max ) , where C 11 is a positive constant. As a consequence of Young’s inequality, we have
χ q ( q 1 ) Ω u ε q + α 2 u ε · v ε q ( q 1 ) 2 Ω u ε q 2 | u ε | p + C 12 Ω u ε ( p 1 ) ( q 2 ) + p α p 1 | v ε | p p 1 ,
where C 12 is a positive constant. Quoting Lemma 2.3 and applying Young’s inequality to get constants C 13 , C 14 > 0 such that
ξ q ( q 1 ) q + β 1 Ω u ε q + β 1 w ε = ξ δ q ( q 1 ) q + β 1 Ω u ε q + β 1 w ε ξ γ q ( q 1 ) q + β 1 Ω u ε q + β + k 2 1 ξ γ q ( q 1 ) 4 ( q + β 1 ) Ω u ε q + β + k 2 1 + C 13 Ω w ε q + β + k 2 1 k 2 ξ γ q ( q 1 ) q + β 1 Ω u ε q + β + k 2 1 = C 13 Ω w ε q + β + k 2 1 k 2 3 ξ γ q ( q 1 ) 4 ( q + β 1 ) Ω u ε q + β + k 2 1 ξ γ q ( q 1 ) 2 ( q + β 1 ) Ω u ε q + β + k 2 1 + C 14
for all t ( 0 , T max ) . Together with (3.17) (3.18) and (3.19), we have
d d t Ω u ε q + q ( q 1 ) 2 Ω u ε q 2 | u ε | p C 12 Ω u ε ( p 1 ) ( q 2 ) + p α p 1 | v ε | p p 1 ξ γ q ( q 1 ) 2 ( q + β 1 ) Ω u ε q + β + k 2 1 μ q 2 Ω u ε q + m 1 + C 11 + C 14
for all t ( 0 , T max ) .
Due to the fact that
q ( q 1 ) 2 Ω u ε q 2 | u ε | p = q ( q 1 ) p p 2 ( p + 1 2 ) p u ε p + q 2 p L p ( Ω ) p
for all t ( 0 , T max ) . From (3.20) and (3.21), we conclude that
d d t Ω u ε q + q ( q 1 ) p p 2 ( p + 1 2 ) p u ε p + q 2 p L p ( Ω ) p C 12 Ω u ε ( p 1 ) ( q 2 ) + p α p 1 | v ε | p p 1 ξ γ q ( q 1 ) 2 ( q + β 1 ) Ω u ε q + β + k 2 1 μ q 2 Ω u ε q + m 1 + C 11 + C 14
for all t ( 0 , T max ) . Analogous to Lemma 3.11 in [25],we can choose a positive constant C 15 for any q 2 such that the following inequality holds
d d t Ω | v ε | 2 q + 2 ( q 1 ) q Ω | | v ε | q | 2 C 15 Ω u ε 2 k 1 | v ε | 2 q 2 + C 15 .
From the combination of (3.22) and (3.23), it follows that
d d t ( Ω u ε q + Ω | ε | 2 q ) + q ( q 1 ) p p 2 ( p + 1 2 ) p u ε p + q 2 p L p ( Ω ) p + 2 ( q 1 ) q Ω | | v ε | q | 2 C 12 Ω u ε ( p 1 ) ( q 2 ) + p α p 1 | v ε | p p 1 + C 15 Ω u ε 2 k 1 | v ε | 2 q 2 ξ γ q ( q 1 ) 2 ( q + β 1 ) Ω u ε q + β + k 2 1 μ q 2 Ω u ε q + m 1 + C 16
for all t ( 0 , T max ) .
Case (i): m > max { 2 k 1 , p α p 1 1 } . Let q : = ( p 1 ) ( q + m 1 ) ( p 1 ) ( m + 1 ) p α and take q m + 3 2 p α p 1 ,and m > p α p 1 1 , we have q 2 . Useing H o ¨ lder inequality, we obtain
C 12 Ω u ε ( p 1 ) ( q 2 ) + p α p 1 | v ε | p p 1 C 12 ( Ω u ε q + m 1 ) ( p 1 ) ( q 2 ) + p α ( p 1 ) ( q + m 1 ) ( Ω | v ε | p q p 1 ) 1 q
for all t ( 0 , T max ) . Similarly,
C 15 Ω u ε 2 k 1 | v ε | 2 q 2 C 15 ( Ω u ε q + m 1 ) 2 k 1 q + m 1 ( Ω | v ε | ( 2 q 2 ) λ ) 1 λ ,
where λ = q + m 1 q + m 2 k 1 1 > 1 . Then by means of the Gagliardo–Nirenberg inequality, we deduce
( Ω | v ε | p q p 1 ) 1 q = | v ε | q L p p 1 ( Ω ) p ( p 1 ) q ( C 17 | v ε | q L 2 ( Ω ) θ 1 | v ε | q L 2 q ( Ω ) 1 θ 1 + C 17 | v ε | q L 2 q ( Ω ) ) p ( p 1 ) q
for all t ( 0 , T max ) , where θ 1 = q 2 p 1 p q 2 + 1 n 1 2 . Since p 2 , selecting q > 2 [ ( p 1 ) ( m + 1 ) p α ] p m + 1 , we have θ 1 ( 0 , 1 ) . We invoke (3.27) and Lemma 3.1 with m > 2 k 1 such that
( Ω | v ε | p q p 1 ) 1 q C 18 ( Ω | | v ε | q | 2 ) p θ 1 2 ( p 1 ) q + C 18 ( 3.28 )
with C 18 > 0 . Recalling the Gagliardo–Nirenberg inequality again we estimate
( Ω | v ε | 2 ( q 1 ) λ ) 1 λ = | v ε | q L 2 λ ( q 1 ) q ( Ω ) 2 ( q 1 ) q ( C 19 | v ε | q L 2 ( Ω ) θ 2 | v ε | q L 2 q ( Ω ) 1 θ 2 + C 19 | v ε | q L 2 q ( Ω ) ) 2 ( q 1 ) q
with C 19 > 0 , where θ 2 = q 2 q 2 λ ( q 1 ) q 2 + 1 n 1 2 . Due to m > max { 1 , 2 k 1 } , p 2 and take q > max { m + 3 2 p α p 1 , ( n 2 ) p α 2 ( p 1 ) n ( m 2 k 1 ) 2 + 2 n 2 } , we get θ 2 ( 0 , 1 ) . Then combining Lemma 3.1, we have
( Ω | v ε | 2 ( q 1 ) λ ) 1 λ C 20 ( Ω | | v ε | q | 2 ) ( q 1 ) θ 2 q + C 20 .
Together with (3.25),(3.26), (3.28) and (3.30), we obtain
C 12 Ω u ε ( p 1 ) ( q 2 ) + p α p 1 | v ε | p p 1 + C 15 Ω u ε 2 k 1 | v ε | 2 q 2 C 12 C 18 ( Ω u ε q + m 1 ) ( p 1 ) ( q 2 ) + p α ( p 1 ) ( q + m 1 ) ( Ω | | v ε | q | 2 ) p θ 1 2 ( p 1 ) q + C 12 C 18 ( Ω u ε q + m 1 ) ( p 1 ) ( q 2 ) + p α ( p 1 ) ( q + m 1 ) + C 15 C 20 ( Ω u ε q + m 1 ) 2 k 1 q + m 1 ( Ω | | v ε | q | 2 ) ( q 1 ) θ 2 q + C 15 C 20 ( Ω u ε q + m 1 ) 2 k 1 q + m 1
for p 2 and q > max { m + 3 2 p α p 1 , ( n 2 ) p α 2 ( p 1 ) n ( m 2 k 1 ) 2 + 2 n 2 , 2 [ ( p 1 ) ( m + 1 ) p α ] p m + 1 } .
Next we prove ( p 1 ) ( q 1 ) + 1 ( p 1 ) ( q + m 1 ) + p θ 1 2 ( p 1 ) q < 1 .This is an obvious fact that holds true,otherwise, if ( p 1 ) ( q 1 ) + 1 ( p 1 ) ( q + m 1 ) + p θ 1 2 ( p 1 ) q 1 ,this leads to
θ 1 2 ( p 1 ) q p · ( p 1 ) ( m + 1 ) p α ( p 1 ) ( q + m 1 ) . = 2 2 p 1
which used q = ( p 1 ) ( q + m 1 ) ( p 1 ) ( m + 1 ) p α and p 2 . This means that
( p 1 ) ( q 1 ) + 1 ( p 1 ) ( q + m 1 ) + p θ 1 2 ( p 1 ) q < 1 .
Subsequently,we prove 2 k 1 q + m 1 + ( q 1 ) θ 2 q < 1 . Let
2 k 1 q + m 1 + ( q 1 ) θ 2 q = h 1 ( p , q ) h 2 ( p , q ) .
where
h 1 ( p , q ) = 2 k 1 [ ( p 1 ) ( q + m 1 ) + 2 2 n n ( ( p 1 ) ( m + 1 ) p α ) ] ( q + m 1 ) ( ( p 1 ) ( q 2 ) + p α ) + ( q + m 2 k 1 1 ) ( ( p 1 ) ( q 2 ) + p α )
and
h 2 ( p , q ) = ( q + m 1 ) [ ( p 1 ) ( q + m 1 ) + 2 2 n n ( ( p 1 ) ( m + 1 ) p α ) ] .
A direct calculation yields
h 2 ( p , q ) h 1 ( p , q ) = ( q + m 2 k 1 1 ) [ ( p 1 ) ( q + m 1 ) + 2 2 n n ( ( p 1 ) ( m + 1 ) p α ) ] + ( q + m 1 ) ( ( p 1 ) ( q 2 ) + p α ) ,
Due to q 2 ,we have ( p 1 ) ( q + m 1 ) 2 [ ( p 1 ) ( m + 1 ) p α ] .Combining m > max { 2 k 1 , p α p 1 1 } , p 2 and q > 1 ,we have
h 2 ( p , q ) h 1 ( p , q ) 2 n ( q + m 2 k 1 1 ) ( ( p 1 ) ( m + 1 ) p α ) + ( q + m 1 ) ( ( p 1 ) ( q 2 ) + p α ) > 0 .
It means
2 k 1 q + m 1 + ( q 1 ) θ 2 q < 1 .
Together with (3.31), (3.33), (3.39) and by the Young’s inequality twice, we deduce
C 12 Ω u ε ( p 1 ) ( q 2 ) + p α p 1 | v ε | p p 1 + C 15 Ω u ε 2 k 1 | v ε | 2 q 2 ϵ ( Ω u ε q + m 1 + Ω | | v ε | q | 2 ) + C 21 ( 3.40 )
for any ϵ > 0 , p 2 and q > q 0 : = max { 1 , m + 3 2 p α p 1 , n 2 2 ( p 1 ) n ( m 2 k 1 ) 2 + 1 , 2 [ ( p 1 ) m 1 ] p m + 1 } . Using the Gagliardo–Nirenberg inequality, there exists C 22 > 0 such that
Ω | v ε | 2 q = | v ε | q L 2 ( Ω ) 2 C 22 | v ε | q L 2 ( Ω ) 2 θ 3 | v ε | q L 2 q ( Ω ) 2 ( 1 θ 3 ) + C 22 | v ε | q L 2 q ( Ω ) ,
where θ 3 = q 2 1 2 q 2 + 1 n 1 2 ( 0 , 1 ) . From (3.41) and Lemma 3.1, we conclude taht
Ω | v ε | 2 q C 23 | v ε | q L 2 ( Ω ) 2 + C 23
Using Young’s inequality again, we obtain
Ω u ε q C 24 Ω u ε q + m 1 + C 24
for all t ( 0 , T max ) . Combine (3.24), (3.40), (3.42) and (3.43), we can see that
d d t ( Ω u ε q + Ω | ε | 2 q ) + Ω u ε q + Ω | ε | 2 q C 25
for all q > q 0 > 1 . By the Young’s inequality again, we obtain for q > 1 that
Ω u ε q C 26
holds for all t ( 0 , T max ) .
Case (ii): k 2 > max { 2 k 1 β , p α p 1 β 1 } with m > max { 2 , 2 α , 2 β } . Following the approach used for Case (i), we reach corresponding outcomes.□
Lemma 3.3.
Under assumption of Lemma 3.2, there exists C 27 > 0 such that for any ε ( 0 , 1 )
v ε ( · , t ) W 1 , ( Ω ) C 27 , w ε ( · , t ) W 1 , ( Ω ) C 27
and
u ε ( · , t ) L ( Ω ) C 27 ( 3.47 )
hold for all t ( 0 , T max ) .
Proof. 
In analogy with Lemma 3.3 of [32] , we skip the proof.□

4. Proof of Theorem 1.1.

The existence of global weak solutions to system (1.1) can be shown by taking limits of ( u ε , v ε , w ε ) . We start this analysis with a fundamental lemma from [12,16].
Lemma 4.1.
Under assumption of Lemma 3.2, there exist constants C 1 , C 2 > 0 such that for all t > 0
0 t Ω | u ε ( · , t ) | p C 1
and for all T > 0
t u ε L 1 ( ( 0 , T ) ; ( W 0 2 , p ( Ω ) ) * ) C 2 .
Proof. 
Lemma 3.2’s proof establishes that 0 t Ω u ε q 2 | u ε | p C 3 . Let q = 2 , we deduce (4.1).
Let ψ C 0 ( Ω ) satisfies ψ W 2 , p ( Ω ) 1 . Multiplying ( 2.1 ) 1 by ψ , integrating by part, we obtain
Ω u ε t ψ Ω ( | u ε | 2 + ε ) p 2 2 u ε · ψ + χ Ω u ε α v ε · ψ ξ Ω u ε β w ε · ψ + κ Ω ψ μ Ω u ε m ψ .
Since p 2 , using the H o ¨ lder inequality and Young’s inequality, we can obtain
| Ω ( | u ε | 2 + ε ) p 2 2 u ε · ψ | C 4 Ω ( | u ε | p 1 + 1 ) | ψ | C 5 ( Ω | u ε | p ) p 1 p ( Ω | ψ | p ) 1 p + C 6 ( Ω | ψ | p ) 1 p C 7 Ω | u ε | p + C 8
with C i > 0 ( i = 4 , 5 , 6 , 7 , 8 ) . Due to Lemma 3.3, we can find constants C 9 , C 10 > 0 such that
| χ Ω u ε α v ε · ψ | χ u ε L ( Ω ) α v ε L p p 1 ( Ω ) ψ L p ( Ω ) C 9
and
| ξ Ω u ε β w ε · ψ | ξ u ε L ( Ω ) β w ε L p p 1 ( Ω ) ψ L p ( Ω ) C 10 .
Similarly, we can get
| κ Ω ψ μ Ω u ε l ψ | C 11 ψ L 1 ( Ω ) ( 1 + u ε L ( Ω ) m ) C 12 ( 4.7 )
with C 11 , C 12 > 0 . Combining (4.3)-(4.7) yields
Ω u ε t ψ C 7 Ω | u ε | p + C 13
Integrating (4.8) on ( 0 , T ) and collecting (4.1) yields (4.2).□
Lemma 4.1.
let ( u ε , v ε , w ε ) be the classical solution of (2.1). There exists a nonnegative funtion ( u , v , w ) such that as ε 0 ,
u ε u a . e . in Q T ,
u ε u in L l o c p ( Q T ) ,
u ε * u in L ( Q T ) ,
u ε u in L l o c p ( Q T ) ,
( | u ε | 2 + ε ) p 2 2 u ε | u | p 2 u in L l o c p p 1 ( Q T ) ,
v ε v , u n i f o r m l y ,
v ε v in W r 2 , 1 ( Q T ) , f o r a n y r > 1 ,
w ε w , i n L l o c 2 ( ( 0 , T ) , W 1 , 2 ( Ω ) ) ,
w ε * w , i n L ( Ω × ( 0 , T ) ) ,
w ε * w , i n L ( Ω × ( 0 , T ) ) ,
for any T > 0 .
Proof. 
Through Lemmas 3.3 and 4.1 and together with Aubin-Lions lemma, we obtain a nonnegative function u satisfies as ε 0 ,
u ε u in L l o c p ( Q T ) and a . e . in Q T ,
this yields (4.9) and (4.10).
Collecting Lemma 3.3 and (4.19),we deduce (4.11). Together with (4.1) and (4.19) that (4.12).
Collecting (4.11), (4.19) and Lemma 3.3, we obtain (4.13) by the method of the Lemma 4.5 in [28]. We may further conclude from Lemma 3.3 in conjunction with (1.3) that
sup t ( 1 , ) t 1 t g 1 ( u ε ) L r r d s C 14
for any r > 1 . Collecting Lemma 2.4 in [5] and (4.20), we have
sup t ( 1 , ) t 1 t ( v ε W 2 , r r + v ε t L r r ) d s C 15 ,
this implies
v ε W r 2 , 1 ( Ω × ( t 1 , t ) ) C 16
with C 16 > 0 . In view of (4.22), we obtain (4.15). Since W r 2 , 1 ( Q T ) C 2 n + 2 r , 1 n + 2 2 r ( Q T ) for r > n + 2 2 , one can from (4.22) gets (4.14). In addition, the estimate (3.52) implies (4.16)–(4.18).□
Proof of Theorem 1.1.
We conclude from Lemma 4.2 and Definition 2.1 that ( u , v , w ) in Lemma 4.2 is a global weak solution of (1.1).□

Author Contributions

Conceptualization, Zhe Jia; methodology,Zhe Jia ; formal analysis, Hengyu Ren; investigation,Hengyu Ren ; writing—original draft preparation, Hengyu Ren; writing—review and editing, Zhe Jia;

Funding

Project Supported by the National Natural Science Foundation of China(Grant No.12301251); the Natural Science Foundation of Shandong Province, China (Grant No.ZR2021QA038) and the Scientific Research Foundation of Linyi University, China (Grant No.LYDX2020BS014

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891–1904.
  2. M.A. Herrero and J.J.L. Vel¡äazquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633–683.
  3. Z. Jia, Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and nonlinear production, Disc. Cont. Dyna.Syst.B, (2023),1-17.
  4. C. Jin, Global bounded weak solutions and asymptotic behavior to a chemotaxis- Stokes model with non-Newtonian filtration slow diffusion. J. Differential Equations, 287 (2021), 148-184.
  5. C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bull. London Math. Soc., 50 (2018), 598-618.
  6. H. Jin and Z.A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015) 444–457.
  7. H. Jin and Z.A. Wang, Boundedness, blow up and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162–196.
  8. H. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction–repulsion chemotaxis model in higher dimensional, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3071–3085.
  9. J. Li, Y. Ke and Y. Wang, Large time behavior of solutions to a fully parabolic attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal: RWA, 39 (2018) 261–277.
  10. X. Li, Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion, Math. Methods Appl. Sci. 39 (2015) 289–301.
  11. X. Li and Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165–198.
  12. Y. Li, Global boundedness of weak solution in an attraction-repulsion chemotaxis system with p-Laplacian diffusion, Nonlinear Analysis Real World Applications, 51(2020),102933.
  13. Y. Li, J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity 29 (2015), 1564–1595.
  14. K. Lin, C. Mu and Y. Gao, Boundedness and blow-up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differential Equations, 261 (2016), 4524–4572.
  15. C. Liu, P. Li, Boundedness and global solvability for a chemotaxis–haptotaxis model with p-Laplacian diffusion, Electronic. J. Differ. Equa. 2020 (2020), 1–16.
  16. C. Liu, P. Li, Global existence for a chemotaxis-haptotaxis model with p-laplacian, Commun. Pur. Appl. Anal. 19(3) (2020), 1399–1419.
  17. D. Liu and Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ. Ser. B., 31 (2016), 379–388.
  18. J. Liu, W. Cong, A degenerate p-Laplacian Keller-Segel model, Kinet. Relat. Models 9 (2016), 687–714.
  19. T. Nagai, Global existence of solutions to a parabolic system for chemotaxis in two space dimensions, Nonlinear Anal., 30 (1997), 5381–5388.
  20. E. Nakaguchi and K. Osaki, Global existence of sountions to a parabolic-parabolic system for chemotaxis with weak degradation, Nonlinear Anal., 74 (2011), 286–297.
  21. E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2627–2646.
  22. L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa 20 (1966), 733–737.
  23. K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac. Ser. Int., 44(3) (2001), 441–470.
  24. G.Ren and B.Liu, Global dynamics for an attraction-repulsion chemotaxis model with logistic source. J. Differential Equations, 268(2020),4320-4373.
  25. G. Ren and B. Liu, Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source, Nonlinear Anal. Real World Appl., 46(2019), 545-582.
  26. S. Shi, Z. Liu and H. Jin, Boundedness and large time bahavior of an attraction-repulsion chemotaxis model with logistic source, Kinet. Relat. Models, 10 (3) (2017) 855–878.
  27. W. Tao and Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion. J. Differential Equations, 268(11) (2020) 6872-6919.
  28. W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-navier-stokes system with slow p-Laplacian diffusion, Nonlinear Anal. RWA 45 (2018), 26–52.
  29. Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36.
  30. M. Tian, X. He and S. Zheng, Global boundedness in quasilinear attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal:RWA, 30 (2016),1-15.
  31. Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259–292.
  32. X. Wang, Z. Wang and Z. Jia, Global weak solutions for an attraction-rpulsion chemotaxis system with p-Laplacian diffusion and logistic source, Acta Math. Sci.,44B(3)(2024),909-924.
  33. M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889–2905.
  34. M. Winkler, Finite-time blow-up in the highter-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767.
  35. A. Yagi, Norm behavior of solutions to the parabolic system of chemotaxis, Math. Japonica., 45 (1997), 241–265.
  36. Q. Zhang and Y. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570–584.
  37. P. Zheng,Global weak solution in a p-Laplacian Keller-Segel system with nonlinear sensitivity and saturation effect, 62(2021),121506.
  38. P. Zheng, C. Mu, X. Hu, Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system, Comput. Math. Appl., 72 (2016) 2194–2202.
  39. M. Zhuang, W. Wang and S. Zheng, Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production, Nonlinear Anal: RWA, 47 (2019), 473–483.
  40. M. Zhuang, W. Wang and S. Zheng, Global boundedness of weak solutions to a fully parabolic chemotaxis system with p-Laplacian diffusion and logistic-type source, Z.Angew. Math. Phys, 72(2021), 161.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated